micromodels of software
declarative modelling
and analysis with Alloy

lecture 1: introduction

Daniel Jackson
MIT Lab for Computer Science
Marktoberdorf, August 2002

lightweight models

lightweight models

a foundation for robust, useable programs

lightweight models

a foundation for robust, useable programs

elements
» small & simple notations
» partial models & analyses
» full automation

lightweight models

a foundation for robust, useable programs

elements
» small & simple notations
» partial models & analyses
» full automation

focus on risky aspects
» hard to get right, or to check
» structure-determining
» high cost of failure

what assurance costs

what assurance costs

cost

dassurance

what assurance costs

[Thacking

cost

dassurance

what assurance costs

[Thacking

cost

dassurance

what assurance costs

[Thacking
sketching

cost

dassurance

what assurance costs

[Thacking
sketching
[gwrite-only models

cost

dassurance

what assurance costs

cost

dassurance

[Thacking

sketching
[gwrite-only models
mtype-checked models

what assurance costs

cost

dassurance

[Thacking

sketching
[gwrite-only models
mtype-checked models

mproven models

what assurance costs

cost

dassurance

[Thacking

sketching
[gwrite-only models
mtype-checked models
manalyzed models
mproven models

my work in marktoberdorf context

my work in marktoberdorf context

computation, not interaction
» complementary to Harel & Pnueli
» relational, not algebraic (cf. Tarlecki and Meseguer)
» underlying idioms due to Hoare, Woodcock et al

my work in marktoberdorf context

computation, not interaction
» complementary to Harel & Pnueli
» relational, not algebraic (cf. Tarlecki and Meseguer)
» underlying idioms due to Hoare, Woodcock et al

designed for experts, but not super-experts
» like Harel, not Rushby & Moore
» simulation, not just checking

my work in marktoberdorf context

computation, not interaction
» complementary to Harel & Pnueli
» relational, not algebraic (cf. Tarlecki and Meseguer)
» underlying idioms due to Hoare, Woodcock et al

designed for experts, but not super-experts
» like Harel, not Rushby & Moore
» simulation, not just checking

role of mathematics
» only way to make things simple
» semantics in terms of sets, and SAT

my work in marktoberdorf context

computation, not interaction
» complementary to Harel & Pnueli
» relational, not algebraic (cf. Tarlecki and Meseguer)
» underlying idioms due to Hoare, Woodcock et al

designed for experts, but not super-experts
» like Harel, not Rushby & Moore
» simulation, not just checking

role of mathematics
» only way to make things simple
» semantics in terms of sets, and SAT

started this in 1994, and have had some successes
but much less mature than ACL2, PVS, Statemate, etc

features of Alloy

features of Alloy

structural
» express complex structure, static and dynamic
» with just a few powerful operators

features of Alloy

structural
» express complex structure, static and dynamic
» with just a few powerful operators

declarative
» a full logic, with conjunction and negation
» describe system as collection of constraints

features of Alloy

structural
» express complex structure, static and dynamic
» with just a few powerful operators

declarative
» a full logic, with conjunction and negation
» describe system as collection of constraints

analyzable
» simulation & checking
» fully automatic

structural

structural

structure is everywhere
» highway systems, postal routes, company organizations,
library catalogues, address books, phone networks, .

structural

structure is everywhere
» highway systems, postal routes, company organizations,
library catalogues, address books, phone networks, .

structure is becoming more pervasive
> self-assembling software (eg, Observer pattern)
» memory gets cheaper: address books in every phone

structural

structure is everywhere
» highway systems, postal routes, company organizations,
library catalogues, address books, phone networks, ...

structure is becoming more pervasive
> self-assembling software (eg, Observer pattern)
» memory gets cheaper: address books in every phone

tool researchers have neglected structure
» one traffic light is a state machine, but a city’s lights are a net

structural

structure is everywhere
» highway systems, postal routes, company organizations,
library catalogues, address books, phone networks, .

structure is becoming more pervasive
> self-assembling software (eg, Observer pattern)
» memory gets cheaper: address books in every phone

tool researchers have neglected structure
» one traffic light is a state machine, but a city’s lights are a net

There is no problem in computer science that cannot be solved
by introducing another level of indirection, but that usually
reveals new problems --David Wheeler

declarative

declarative

declarative description
» model is collection of properties
> the more you say, the less happens

declarative

declarative description
» model is collection of properties
» the more you say, the less happens

advantages
» incrementality: to say more, add a property
» partiality: doesn’t require special constructs
» simplicity: no separate language of properties

Sys meets Prop: Sys => Prop

declarative

declarative description
» model is collection of properties
» the more you say, the less happens

advantages
» incrementality: to say more, add a property
» partiality: doesn’t require special constructs
» simplicity: no separate language of properties

Sys meets Prop: Sys => Prop

why less is more
» less constrained system means implementation freedom
» less constrained environment means greater safety

analyzable

analyzable

‘write-only’ models
» useful if precise enough
> but missed opportunity (and wishful thinking)

analyzable

‘write-only’ models
» useful if precise enough
> but missed opportunity (and wishful thinking)

tool-assisted modelling
» simulate and check incrementally
» catch errors early, develop confidence
» optimize for failing case: most of my examples will be wrong

analyzable

‘write-only’ models
» useful if precise enough
> but missed opportunity (and wishful thinking)

tool-assisted modelling
» simulate and check incrementally
» catch errors early, develop confidence
» optimize for failing case: most of my examples will be wrong

Alloy’s analysis

fully automatic, with no user intervention
concrete: generates samples & counterexamples
like testing, sound but not complete

unlike testing, billions cases/second

v

v

v

v

uosuesn INYMY ‘sieas 9 Jo I9MOJ 1]ewS

;9]0eINI3XD 13 dAIRIR|IIP

uosuesn INYMY ‘sieas 9 Jo I9MOJ 1]ewS

aQ

5 &
Qe Qo
oo
58
g .
o <
B(‘D
- :
@ =
el
S %
o A
S ¢
= &
=B
(@)

A[reuonipen

;9]0eINI3XD 13 dAIRIR|IIP

declarative & executable?

traditionally
» declarative XOR executable
» good arguments for both

but can have cake and eat it
» with right analysis technology

L

s
|

iy

O -
i —
T N

'35
Pty
-

[
J-{?h
]

TE
|

Small Tower of 6 Gears, Arthur Ganson

declarative & executable?

traditionally
» declarative XOR executable
» good arguments for both

e

but can have cake and eat it
» with right analysis technology

Alloy’s analysis can ‘execute’ a model
» forwards or backwards AT
» without test cases T
» no ad hoc restrictions on logic

Small Tower of 6 Gears, Arthur Ganson

a humbering problem

10

a humbering problem

given
» document whose paragraphs are tagged with styles
» style sheet that gives numbering rules for styles

10

a humbering problem

given
» document whose paragraphs are tagged with styles
» style sheet that gives numbering rules for styles

produce
» document with numbered paragraphs
(like my Marktoberdorf notes)

10

a humbering problem

given
» document whose paragraphs are tagged with styles
» style sheet that gives numbering rules for styles

produce
» document with numbered paragraphs
(like my Marktoberdorf notes)

\part Introduction
\section Motivation
\subsection Why?
\section Overview

\part Conclusions
\section Unrelated Work

10

a numbering problem

given
» document whose paragraphs are tagged with styles
» style sheet that gives numbering rules for styles

produce
» document with numbered paragraphs
(like my Marktoberdorf notes)

\part Introduction
\section Motivation
\subsection Why?
\section Overview

\part Conclusions
\section Unrelated Work

a candidate solution

style sheet assigns to each style
» an initial value for numbering
» optionally, a parent

11

a candidate solution

style sheet assigns to each style part
» an initial value for numbering A
» optionally, a parent
<style:part><init:A> parent
<style:section><parent:part><init:1> .
section

<style:subsection><parent: section><init:1>]

subsection

(

11

a candidate solution

style sheet assigns to each style part
» an initial value for numbering A
» optionally, a parent
<style:part><init:A> parent
<style:section><parent:part><init:1> .
<style:subsection><parent: section><init:1> mmnﬂoz

\part Introduction
\section Motivation
\subsection Why?
\section Overview

subsection

(

\part Conclusions
\section Unrelated Work

11

a candidate solution

style sheet assigns to each style part
» an initial value for numbering
» optionally, a parent

<style:part><init:A> parent

_Q

<style:section><parent:part><init:1> .
. . o0 section
<style:subsection><parent: section><init:1>

\part Introduction
\section Motivation
\subsection Why?
\section Overview

\part Conclusions
\section Unrelated Work

%

subsection

(

11

styles

12

styles

declare styles & parent relation

sig Style {parent: option Style}

12

styles

declare styles & parent relation

sig Style {parent: option Style}

ask for a sample

fun Show () {some parent}
run Show

12

styles

declare styles & parent relation

sig Style {parent: option Style}

ask for a sample

fun Show () {some parent}
run Show

parent

styles

declare styles & parent relation

sig Style {parent: option Style}

ask for a sample

fun Show () {some parent}
run Show

parent

constrain parent relation to be acyclic

fact {Acyclic (parent)}

styles

declare styles & parent relation e parent

sig Style {parent: option Style}

ask for a sample

fun Show () {some parent}
run Show

constrain parent relation to be acyclic

fact {Acyclic (parent)}

parent

parent

styles

declare styles & parent relation e parent

sig Style {parent: option Style}

ask for a sample

fun Show () {some parent}
run Show

constrain parent relation to be acyclic

fact {Acyclic (parent)}

how to define acyclic
fun Acyclic [t] (r: t -> t) {no iden[t] & *r}

parent

parent

numbers

13

numbers

introduce numbers

sig Number {
next: option Number
Hthis != next}

13

numbers

introduce numbers

sig Number {
next: option Number
Hthis != next}

add numbers to styles

sig NumberedStyle extends Style {init: Number}
fact {Style = NumberedStyle}

13

numbers

introduce numbers

sig Number {
next: option Number
Hthis != next}

add numbers to styles

sig NumberedStyle extends Style {init: Number}
fact {Style = NumberedStyle}

ask for a sample

fun Show () {
some parent}
run Show

13

numbers

introduce numbers

sig Number {
next: option Number
Hthis != next}

add numbers to styles

Style_1
init: Mumber_2

Style_2

parent parent

Style _O
init: Mumber_Z2

sig NumberedStyle extends Style {init: Number}
fact {Style = NumberedStyle}

ask for a sample

fun Show () {
some parent}
run Show

init: Mumber_2

13

numbering

14

numbering

declare numbering

sig Numbering {
num: Style ->? Number}

14

numbering

declare numbering

sig Numbering {
num: Style ->? Number}

ask for a sample

fun ShowNumbering () {some num}
run ShowNumbering
for 2 but 1 Numbering

14

numbering

declare numbering

sig Numbering {
num: Style ->? Number}

ask for a sample

fun ShowNumbering () {some num}
run ShowNumbering
for 2 but 1 Numbering

Style_1
init: Mumber_1

Murmbering _0
num: Style _O-=Mumber_1, Style _1-=MNumber_1

parent

Style _0O
init: Mumber_1

14

numbering

declare numbering

sig Numbering {
num: Style ->? Number}

ask for a sample

fun ShowNumbering () {some num}

run ShowNumbering
for 2 but 1 Numbering

Style_1
Aum: Mumber_1

init: Mumber_1

parent

Style _0
AU Mumber_1
init: RMumber_1

Numbering_0

Style_1
init: Mumber_1

Murmbering _0

num: Style _O-=Mumber_1, Style _1-=MNumber_1

parent

Style _0O

init: Mumber_1

numbering algorithm

15

numbering algorithm

what numbering n’ follows # for paragraph of style s?
> ie, just gave numbering #
» encounter paragraph with style s
» must now generate numbering #’

15

numbering algorithm

what numbering 7’ follows n for paragraph of style s?
> ie, just gave numbering #
» encounter paragraph with style s
» must now generate numbering #’

an attempt:

fun Next (n,n": Numbering, s: Style) {
n.num =
{d: s.*parent, x: Number | x = n.num[d]} +
s -> if no n.num|[s] then s.init else n.num|s].next

}

15

showing next

16

showing next

run Next for 3 but 2 Numbering

16

showing next

run Next for 3 but 2 Numberi

Style _O
(5]

init: Mumhber_2

parent

Style _2
num: Mumber_2
init: Mumber_2

parent

Style_1
num: Mumber_2
init: Mumber_Z2

Numbering_0 ﬂ

16

showing next

run Next for 3 but 2 Numberi

Style _O
(5]

init: Mumhber_2

parent

Style _2
num: Mumber_2
init: Mumber_2

parent

Style_1
num: Mumber_2
init: Mumber_Z2

19

Numbering_0 ﬂ

Style _0
(=)
num: Mumber_2
init: Mumhber_Z2

parent

Style_2
num: Mumber_2
init: Mumhber_Z2

parent

Style_1
num: Mumber_2
init: Mumber_2

=

Numbering_1

2

16

Style _0
(5]

showing next n
num: Mumber_2

run Next for 3 but 2 Numbering
/...._H.__ﬁ Mumber_2

Style _O
Oers) T 2
init: Mumber_2 T— —

[parent

parent
Style_2 /
nws Mumber_ 2

init: Nurnoer_> _/ grandchild style s
is numbered
with initial value

Style _2
num: Mumber_2
init: Mumber_2

parent

parent

Style_1
num: Mumber_2
init: Mumber_2

Style_1
num: Mumber_2
init: Mumber_2

" <D
ﬂ Mumbering_1 ﬂ

Numbering_0

16

guiding the simulation

17

guiding the simulation

fun ShowNext (n,n': Numbering, s: Style) {
Next (n,n';s) && some n.num|s.~parent]}
run ShowNext for 3 but 2 Numbering

17

guiding the simulation

fun ShowNext (n,n': Numbering, s: Style) {
Next (n,n';s) && some n.num|s.~parent]}
run ShowNext for 3 but 2 Numbering

Style _0
init: Mumber_2

Style _2
AU Mumber_2
init: Mumber_2

parent

Style_1
(=)
num: Mumber_2
init: Mumber_2

17

guiding the simulation

fun ShowNext (n,n': Numbering, s: Style) {
Next (n,n';s) && some n.num|s.~parent]}
run ShowNext for 3 but 2 Numbering

Style _0
init: Mumber_2

Style _0
init: Mumber_Z2

parent

Style _2
AU Mumber_2
init: Mumber_2

Style_2
init: Mumber_Z2

parent
parent

Style_1
()

init: Mumber_2

Style_1
(=)
num: Mumber_2
init: Mumber_2

guiding the simulation root style s

. loses its number
fun ShowNext (n,n': Numbering, s: Style) { because no next!

Next (n,n';s) && some n.num|s.~parent]}

run ShowNext for 3 but 2 Numbering
o ||I.|rrr/
L _mI_H_
It Lﬁﬁzw_mﬂum \H e

Style_2
init: Mumber _2

pirent

Style _1
Style_1 (e

A nit: Z:_.:Umﬂumx\
num: Mumber_2 ——
init: Mumber_2

S~ -
—_

Style _0
init: Mumber_2

Style _2
AU Mumber_2
init: Mumber_2

parent

fixing the operation

18

fixing the operation

fun Next (n,n': Numbering, s: Style) {
let i = n.num[s] | some i => some i.next
n'.num = {d: s.*parent, x: Number | x = n.num[d]} +
s -> 1f no n.num[s] then s.init else n.num[s].next }

18

fixing the operation

fun Next (n,n': Numbering, s: Style) {
let i = n.num[s] | some i => some i.next
n'.num = {d: s.*parent, x: Number | x = n.num[d]} +
s -> 1f no n.num[s] then s.init else n.num[s].next }

ATyIE _U
num: Mumber_0
init: Mumber_1

parent

Style _2
(s)

init: Mumber_1

parent

Style_1
num: Mumber_2
init: Mumber_1

fixing the operation

fun Next (n,n': Numbering, s: Style) {
let i = n.num[s] | some i => some i.next
n'.num = {d: s.*parent, x: Number | x = n.num[d]} +
s -> if no n.num[s] then s.init else n.num[s].next }

ATyIe U -
nurm: Mumber_ 0 imit: Mumber_1

init: Mumber_1

parent

parent

Style _2
(=)
Aum: Mumber_1
init: Mumhber_1

Style _2
(s)

init: Mumber_1

parent

parent

Style_1
Aum: Mumber_2
init: Mumber_1

Style_1
num: Mumber_2
init: Mumber_1

18

fixing the operation Jaeages

numbered with
fun Next (n,n': Numbering, s: Style) { initial value
let i = n.num[s] | some i => some i.next
n'.num = {d: s.*parent, x: Number | x = n. HEBEﬁ
s -> if no n.num[s] then s.init else n.num(s].nex

\.1.111I.|-|.II..}...I
_ ATyIE _U mE_m D
e num: Nurmber_0 it EE.:U: 1

init: Mumber_1

[arent

parent

mE_m

Style _2
e Mt (5] num: ZF 353 1
init: Murmker_1 :._; MNumber_1

Harerin

Style_1
Aum: Mumber_2
init: Mumber_1

Style_1
num: Mumber_2
init: Mumber_1

18

guiding the simulation

19

guiding the simulation

fun ShowNext (n,n': Numbering, s: Style) {
Next (n,n',s) && some n.num|s.~parent] && some n.num|s]}
run ShowNext for 3 but 2 Numbering

19

guiding the simulation

fun ShowNext (n,n': Numbering, s: Style) {

Next (n,n',s) && some n.num|s.~parent] && some n.num|s]}
run ShowNext for 3 but 2 Numbering

e Style L

nurm: Mumber_1
ne st

init: Mumber_1

parent

Style_2
()
num: RMNumber_1
init: Mumber_1

parent

Style_1
AU Mumber_2
init: Mumber_1

19

guiding the simulation

fun ShowNext (n,n': Numbering, s: Style) {

Next (n,n',s) && some n.num|s.~parent] && some n.num|s]}
run ShowNext for 3 but 2 Numbering

Qe

next

G

Style L
num: Mumber_1
init: Mumber_1

parent

Style_2
()
num: RMNumber_1
init: Mumber_1

parent

Style_1
AU Mumber_2
init: Mumber_1

Style _0
init: Mumber_1

Style _2
()
Aum: Mumber_2
init: Mumber_1

parent

Style_1
Aum: Mumber_2
init: Mumber_1

19

checking a property

20

checking a property

if style is not a parent, step is reversible

assert Reversible {
all n0, n1, n: Numbering, s: Style - Style.parent |
Next(nO,n,s) && Next(n1,n,s) => n0.num = nl.num}

check Reversible

20

checking a property

if style is not a parent, step is reversible

assert Reversible {

all n0, n1, n: Numbering, s: Style - Style.parent |

Next(nO,n,s) && Next(n1,n,s) => n0.num = nl.num}

check Reversible

fext

next

Style_1
num: Mumber_1
init: Mumber_1

20

trying again...

21

trying again...
make numbering injective

fact {Injective (next)}

21

trying again...
make numbering injective

fact {Injective (next)}

does this fix the problem?

21

counterexample

22

counterexample

after numbering »

22

counterexample

after numbering »

Style_1
(=)
num: Mumber_1
init: Mumber_1

Style _0

init: Mumhber_0

counterexample adjacent style

has no number
afterwards

after numbering #

Style_1
(=)
num: Mumber_1
init: Mumber_1

I i
T Swyle,d ™

mf,_.m_:_.m E:Ermwm\

counterexample, ctd

23

counterexample, ctd

before
numberings

n0 and n1

23

counterexample, ctd

before
numberings

n0 and n1

Style_1
(=)
Aum: Mumber_2
init: Rumber_1

Style _0

init: Mumber_0

23

counterexample, ctd

before
numberings

n0 and n1

Style_1
(=)
Aum: Mumber_2
init: Rumber_1

Style _0

init: Mumber_0

next

Style_1
(=)
Aum: Mumber_2
init: Mumber_1

Style _0
num: Mumber_1
init: Mumhber_0

23

counterexample, ctd

before
numberings

n0 and n1

Style_1
(5]

Style_0

~nit: Murmber_0
B —

adjacent style’s number

eliminated, so value
1 1
before was irrelevant! et
et

e nurm: Mumber_2
init: ZE.:W_WHUW\\.

Style_1

[s)
Aum: Mumber_2
i M noer_1

Stvle_0
num: Mumber_1
“_init: Mumber_0

~— -

masking

24

masking

check again, assuming styles form a line

assert ReversibleWhenLine {
Injective(parent)
&& (some root: Style | Style in root.*~parent) =>
all n0, n1, n: Numbering, s: Style - Style.parent |
Next(nO,n,s) && Next(n1,n,s) => n0.num = nl.num}

check ReversibleWhenLine

24

counterexample, again

25

counterexample, again

Style_1
num: Mumber_1
init: Mumber_2

25

counterexample, again

Style_1

init: Mumber_2

Style_1
num: Mumber_1
init: Mumber_2

counterexample, again

Style_1

init: Mumber_2

Style_1
num: Mumber_1
init: Mumber_2

Style_1
num: Mumber_2
init: Mumber_Z2

counterexample, again

Stvle 1
numm: Mumber_1
_init: Mumber_2 7

e Srula 1
~nit: z:ﬁ:wmﬂumax,
—

Style_1
num: Mumber_2
init: Mumber_Z2

initialization and
increment are
distinct: theorem
is confused!

checking a refactoring

26

checking a refactoring

are these equivalent?

fun Nextl (n,n": Numbering, s: Style) {
n’.num =
{d: s.*parent, x: Number | x = n.num[d]} +
s -> i1f no n.num[s] then s.init else n.num[s].next

}

fun Next2 (n,n": Numbering, s: Style) {
all d: s.*parent | n.num[d] = n.num[d]
n’.num(s] = if no n.num[s] then s.init else n.num[s].next

}

26

checking a refactoring

are these equivalent?

fun Nextl (n,n": Numbering, s: Style) {
n’.num =
{d: s.*parent, x: Number | x = n.num[d]} +
s -> i1f no n.num[s] then s.init else n.num[s].next

}

fun Next2 (n,n": Numbering, s: Style) {
all d: s.*parent | n.num[d] = n.num[d]
n’.num(s] = if no n.num(s] then s.init else n.num|[s].next

}

ask the tool:

assert Same {
all n,n": Numbering, s: Style | Next1(n,n’,s) iff Next2(n,n’,s)}

26

what happened

27

what happened

incrementality
> write a bit, analyze a bit
» constrain just enough
to get key properties
» avoids wasted time,
encourages small models

27

what happened

incrementality
> write a bit, analyze a bit
» constrain just enough
to get key properties
» avoids wasted time,
encourages small models

analysis prompted questions
» number must have next?
» two numbers have same next?
» style hierarchy a tree? line?

27

what happened

incrementality
> write a bit, analyze a bit
» constrain just enough
to get key properties
» avoids wasted time,
encourages small models

analysis prompted questions
» number must have next?
» two numbers have same next?
» style hierarchy a tree? line?

27

declarative vs. operational development

all behaviours;
satisfies no safety properties

q operational L \b L
200000

h declarative

a safety property

IrS;
safety properties

28

what’s been done?

29

what’s been done?

analyzing implemented systems
> Intentional naming (Khurshid)
» Chord peer-to-peer lookup (Wee)
» Transaction cache (Tucker)

29

what’s been done?

analyzing implemented systems
> Intentional naming (Khurshid)
» Chord peer-to-peer lookup (Wee)
» Transaction cache (Tucker)

analyzing existing models

Microsoft COM (Sullivan, from Z)

Firewire leader election (me, from Vaandrager’s IOA)
Unison file synchronizer (Nolte, from Pierce’s maths)
UML meta model (Vaziri, from OCL)

Classic distributed algorithms (Shlyakhter, from SMV)

v

v

v

v

v

29

what’s been done?

analyzing implemented systems
> Intentional naming (Khurshid)
» Chord peer-to-peer lookup (Wee)
» Transaction cache (Tucker)

analyzing existing models

Microsoft COM (Sullivan, from Z)

Firewire leader election (me, from Vaandrager’s IOA)
Unison file synchronizer (Nolte, from Pierce’s maths)
UML meta model (Vaziri, from OCL)

Classic distributed algorithms (Shlyakhter, from SMV)

v

v

v

v

v

typically
» 200 lines of Alloy, 30-200 hours work

29

example: intentional naming

30

example: intentional naming

query scheme
» intentional names are trees
» result of query is set of simple names

30

example: intentional naming

query scheme
> intentional names are trees
» result of query is set of simple names

database

Uﬂ:.apﬂm service

Sm*w‘ ‘ntmS ‘EESH

0.
b
.
~an
s LT N,
......
.
o,
N

30

example: intentional naming

query scheme
> intentional names are trees
» result of query is set of simple names

database query
building service building service
Sm*w‘ ‘ntmHm @printer ne43 @ @camera
g »

30

example: intentional naming

query scheme
> intentional names are trees
» result of query is set of simple names

no0
database query
building service building service
Sm*w‘ .ntmHm @printer ne43 @ @camera
v |
AnQ ni4 n0 n0

nl

30

results

31

results

............

N T R

N Rmﬂ._ hm uses the mmmcﬂﬁzam E&. ca.:ﬁ_ m@
#.a:_..om correspond to wild-cards; this is true for both queries |
Ea ﬂ¢g§5@> Enn :c.mz cm the m_. o ::ﬂ 18 EE

31

results

............

N T R

N Rmﬂ._ hm uses the mmmcﬂﬁzam E&. ca.:ﬁ_ m@
#.a:_..om correspond to wild-cards; this is true for both queries |
Ea ﬂ¢g§5@> Enn :c.mz cm the m_. o ::ﬂ 18 EE

what we did

31

results

............

..m.._.-mm ﬂmmE-_ | ,,k Egﬁﬂnﬁ-m Hw.-mﬁ Gaﬁ Hﬁ& ﬂ.@\

#.a:_..om correspond to wild-cards; this is true for both n_cn:n
Eﬁ m&ﬂﬂ.ﬂﬁﬂﬁﬁ%% Enn :‘c.mz cm %m m_ 2o ::ﬂ 1S :::

what we did
» analyzed claims made in paper: mostly untrue

31

results

............

“““Phis algorithm uses. the assumption that omitted. : m?
Egﬁm correspond to wild-cards; this is true for both a:n:nm
Eﬁ ﬂﬂgﬁﬁnﬁm } :Fn property 5 the ,H_.E::E 1S 9.:

what we did
» analyzed claims made in paper: mostly untrue
» analyzed algebraic properties: also untrue
eg, add is monotonic

31

results

............

“““Phis algorithm uses. the assumption that omitted. : m?
Egﬁm correspond to wild-cards; this is true for both a:n:nm
Eﬁ ﬂﬂgﬁﬁnﬁm } :Fn property 5 the ,H_.E::E 1S 9.:

what we did
» analyzed claims made in paper: mostly untrue
» analyzed algebraic properties: also untrue
eg, add is monotonic
» adapted model for fixes in code: also broken

31

results

R I e sl il O
This &mﬂ: M uses. e ﬁmaﬂﬁ:g 5& cE:R& m?

E butes correspond to wild-cards; this is true for both ncm_._am
Eﬁ m&ﬁgmaﬁﬂmﬁ .P :Fn roperty .,.:, zF .__ E:rﬁ 18 :r:

what we did
» analyzed claims made in paper: mostly untrue
» analyzed algebraic properties: also untrue
eg, add is monotonic
» adapted model for fixes in code: also broken
» developed new semantics & checked it

31

results

R I e sl il O
This &mﬂ: M uses. e ﬁmaﬂﬁ:g 5& cE:R& m?

E butes correspond to wild-cards; this is true for both ncm_._am
Eﬁ m&ﬁgmaﬁﬂmﬁ .P :Fn roperty .,.:, zF .__ E:rﬁ 18 :r:

what we did
» analyzed claims made in paper: mostly untrue
» analyzed algebraic properties: also untrue
eg, add is monotonic
» adapted model for fixes in code: also broken
» developed new semantics & checked it

reflections

31

results

R I e sl i O
This &mﬂ: M uses. e ﬁmaﬂﬁ:g 5& cE:R& m?

E butes correspond to wild-cards; this is true for both ncm_._am
Eﬁ m&ﬁgmaﬁﬂmﬁ .P :Fn roperty .,.:, zF .__ E:rﬁ 18 :r:

what we did
» analyzed claims made in paper: mostly untrue
» analyzed algebraic properties: also untrue
eg, add is monotonic
» adapted model for fixes in code: also broken
» developed new semantics & checked it

reflections
» initial analysis took 2 weeks and 100 lines of Alloy

31

results

g m______._.,_J._____._____... __ .
This mﬁmﬁ: m uses the aﬁ:ﬂmzcz m,.& omitted n?_,.

Eccﬁm correspond to wild-cards; this is true for both n:n:nm
E._a maﬂgmaﬁﬂﬁm .P :Fn E.r: .,.:, zF .__ E:rﬁ 18 :r:

what we did
» analyzed claims made in paper: mostly untrue
» analyzed algebraic properties: also untrue
eg, add is monotonic
» adapted model for fixes in code: also broken
» developed new semantics & checked it

reflections
» initial analysis took 2 weeks and 100 lines of Alloy
» found all bugs in trees of 4 nodes or less -- approx 10 secs

31

results

g n______._.,_J.____.._____... _...ﬁ,,
This m_mﬁ: m uses

Eccﬁm correspond to wild-cards; this is true for both n:n:nm
E.._a mmﬁgmaﬁaﬁm } :Fr ::F: :; :F ,_m -:::,:z 18 :r:

what we did
» analyzed claims made in paper: mostly untrue
» analyzed algebraic properties: also untrue
eg, add is monotonic
» adapted model for fixes in code: also broken
» developed new semantics & checked it

reflections
» initial analysis took 2 weeks and 100 lines of Alloy
» found all bugs in trees of 4 nodes or less -- approx 10 secs
> 2000 lines of tests hadn’t found bugs in a year

the Emnﬂﬁzcm 5& omitted .,:f,.

31

challenge: get numbering right

32

challenge: get numbering right

fix the numbering mechanism to handle
» multiple children
section and figure have parent chapter
» multiple parents
section has parent chapter and appendix

32

€e

ow e sl Jeym

what is a model?

a representation of a system
» more or less useful, not. more or'less correct [Fowler]
» useful to the extent that it answers questions [Ross]

33

what is a model?

a representation of a system
» more or less useful, not. more or'less correct [Fowler]
» useful to the extent that it answers questions [Ross]

role of a model
» to explain & evaluate existing system
» to explore design of system to be built

33

why model?

34

why model?

‘plan to throw one away’ [Brooks]
» 100 line model or 100k lines of code?
» nasty surprises happen sooner

34

why model?

‘plan to throw one away’ [Brooks]
» 100 line model or 100k lines of code?
» nasty surprises happen sooner

designs with clear conceptual models
» easier to use and implement
» allow delegation & division of labour

34

why model?

‘plan to throw one away’ [Brooks]
» 100 line model or 100k lines of code?
» nasty surprises happen sooner

designs with clear conceptual models
» easier to use and implement
» allow delegation & division of labour

separation of concerns
» conceptual flaws get mired in code
» not a good use of testing

34

lightweight formal methods

35

lightweight formal methods

elements
» small & simple notations
» partial models & analyses
» full automation

35

lightweight formal methods

elements
» small & simple notations
» partial models & analyses
» full automation

focus on risky aspects
» hard to get right, or to check
» structure-determining
» high cost of failure

35

