
m
icrom

odels of softw
are

declarative m
odelling

and analysis w
ith A

lloy

lecture 2: a relational logic

Daniel Jackson
M

IT Lab for Com
puter Science

M
arktoberdorf, August 2002

2

the atlantic divide

2

the atlantic divide

Am
erican school of form

al m
ethods

›em
phasis on verification algorithm

s
›eg, SM

V, SPIN, M
urphi

2

the atlantic divide

Am
erican school of form

al m
ethods

›em
phasis on verification algorithm

s
›eg, SM

V, SPIN, M
urphi

European school
›em

phasis on m
odelling

›eg, Z, VDM
, B

2

the atlantic divide

Am
erican school of form

al m
ethods

›em
phasis on verification algorithm

s
›eg, SM

V, SPIN, M
urphi

European school
›em

phasis on m
odelling

›eg, Z, VDM
, B

Alloy brings together
›autom

atic analysis (like SM
V)

›logical notation (like Z)

2

the atlantic divide

Am
erican school of form

al m
ethods

›em
phasis on verification algorithm

s
›eg, SM

V, SPIN, M
urphi

European school
›em

phasis on m
odelling

›eg, Z, VDM
, B

Alloy brings together
›autom

atic analysis (like SM
V)

›logical notation (like Z)

Pittsburgh, hom
e of SM

V

2

the atlantic divide

Am
erican school of form

al m
ethods

›em
phasis on verification algorithm

s
›eg, SM

V, SPIN, M
urphi

European school
›em

phasis on m
odelling

›eg, Z, VDM
, B

Alloy brings together
›autom

atic analysis (like SM
V)

›logical notation (like Z)
O

xford, hom
e of Z

Pittsburgh, hom
e of SM

V

3

first order effects

3

first order effects

Alloy is first order
›to allow exhaustive search

3

first order effects

Alloy is first order
›to allow exhaustive search

design im
plications

›no constructors: com
posites by projection

›no need to distinguish scalars from
 singleton sets

3

first order effects

Alloy is first order
›to allow exhaustive search

design im
plications

›no constructors: com
posites by projection

›no need to distinguish scalars from
 singleton sets

novel features
›no scalars or sets: all expressions are relation-valued
›generalized relational join operator
›finite interpretation

4

atom
s

4

atom
s

structures are built from
›atom

s & relations

4

atom
s

structures are built from
›atom

s & relations

atom
s are

›indivisible
can’t be broken into sm

aller parts
›im

m
utable

don’t change over tim
e

›uninterpreted
no built-in properties

4

atom
s

structures are built from
›atom

s & relations

atom
s are

›indivisible
can’t be broken into sm

aller parts
›im

m
utable

don’t change over tim
e

›uninterpreted
no built-in properties

what’s atom
ic in the real world?

›very little -- a m
odelling abstraction

4

atom
s

structures are built from
›atom

s & relations

atom
s are

›indivisible
can’t be broken into sm

aller parts
›im

m
utable

don’t change over tim
e

›uninterpreted
no built-in properties

what’s atom
ic in the real world?

›very little -- a m
odelling abstraction

contents

4

atom
s

structures are built from
›atom

s & relations

atom
s are

›indivisible
can’t be broken into sm

aller parts
›im

m
utable

don’t change over tim
e

›uninterpreted
no built-in properties

what’s atom
ic in the real world?

›very little -- a m
odelling abstraction

contents

next

State 0
State 1

4

atom
s

structures are built from
›atom

s & relations

atom
s are

›indivisible
can’t be broken into sm

aller parts
›im

m
utable

don’t change over tim
e

›uninterpreted
no built-in properties

what’s atom
ic in the real world?

›very little -- a m
odelling abstraction

contents

next

State 0
State 1

tom
orrow

Date 0
Date 1

5

types

5

types

universe
›contains all atom

s
›a finite (but perhaps big) set
›partitioned into basic types, each a set

DATE = {JAN1, JAN2, …
, DEC31}

PERSON = {ALICE, BOB, CAROL}
STATE = {STATE0, STATE1, STATE2}
FILESYSTEM

 = {FILESYSTEM
0, FILESYSTEM

2}

5

types

universe
›contains all atom

s
›a finite (but perhaps big) set
›partitioned into basic types, each a set

DATE = {JAN1, JAN2, …
, DEC31}

PERSON = {ALICE, BOB, CAROL}
STATE = {STATE0, STATE1, STATE2}
FILESYSTEM

 = {FILESYSTEM
0, FILESYSTEM

2}

no subtyping, so
›atom

s that share properties share a type
Em

ployer = {ALICE}
Em

ployee = {BOB, CAROL}
Em

ployer, Em
ployee in PERSON

6

relations

6

relations

definition
›a tuple is a list of atom

s
›a relation is a set of tuples

birthday = {(ALICE,M
AY1), (BOB,JAN4), (CAROL,DEC9)}

likes = {(ALICE,BOB), (BOB,CAROL), (CAROL,BOB)}

6

relations

definition
›a tuple is a list of atom

s
›a relation is a set of tuples

birthday = {(ALICE,M
AY1), (BOB,JAN4), (CAROL,DEC9)}

likes = {(ALICE,BOB), (BOB,CAROL), (CAROL,BOB)}

typing
›a relation type is a non-em

pty list of basic types
›if i-th type is T, then i-th atom

 in each tuple is in T
birthday: (PERSON, DATE)
likes: (PERSON, PERSON)

7

relations as tables

7

relations as tables

can view relation as table
›atom

s as entries, tuples as rows
›order of colum

ns m
atters, but not order of rows

›can have zero rows, but not zero colum
ns

›no blank entries

7

relations as tables

can view relation as table
›atom

s as entries, tuples as rows
›order of colum

ns m
atters, but not order of rows

›can have zero rows, but not zero colum
ns

›no blank entries

exam
ple

birthday = {(ALICE,M
AY1), (BOB,JAN4), (CAROL,DEC9)}

PERSON
DATE

ALICE
M

AY1
BOB

JAN4
CAROL

DEC9

8

dim
ensions

8

dim
ensions

arity
›num

ber of colum
ns

›relation of arity k is a k-relation
›unary, binary, ternary for k=1, 2, 3
›finite, >0

8

dim
ensions

arity
›num

ber of colum
ns

›relation of arity k is a k-relation
›unary, binary, ternary for k=1, 2, 3
›finite, >0

size›num
ber of rows

›finite, ≥ 0
#p

is an integer expression giving the size of p

8

dim
ensions

arity
›num

ber of colum
ns

›relation of arity k is a k-relation
›unary, binary, ternary for k=1, 2, 3
›finite, >0

size›num
ber of rows

›finite, ≥ 0
#p

is an integer expression giving the size of p

hom
ogeneity

›relation of type (T, T, …
T) is hom

ogeneous
›else heterogeneous

9

relations as graphs

9

relations as graphs

can view 2-relation as graph
›atom

s as nodes
›tuples as arcs

9

relations as graphs

can view 2-relation as graph
›atom

s as nodes
›tuples as arcs

exam
ple

likes = {(ALICE,BOB), (BOB,CAROL), (CAROL,BOB)}

9

relations as graphs

can view 2-relation as graph
›atom

s as nodes
›tuples as arcs

exam
ple

likes = {(ALICE,BOB), (BOB,CAROL), (CAROL,BOB)}

ALICE
BOB

CAROL

10

sets and scalars

10

sets and scalars

sets and scalars
›represented as relations
›set: a unary relation
›scalar: a unary, singleton relation

PERSON = {(ALICE), (BOB), (CAROL)}
-- note ()’s!

Em
ployee = {(BOB), (CAROL)}

Em
ployer = {(ALICE)}

Alice = {(ALICE)}

10

sets and scalars

sets and scalars
›represented as relations
›set: a unary relation
›scalar: a unary, singleton relation

PERSON = {(ALICE), (BOB), (CAROL)}
-- note ()’s!

Em
ployee = {(BOB), (CAROL)}

Em
ployer = {(ALICE)}

Alice = {(ALICE)}

unlike standard set theory
›no distinction between

a, (a), {a}, {(a)}

11

ternary relations

11

ternary relations

for relationships involving 3 atom
s

salary: [PERSON, COM
PANY, SALARY]

salary = {(ALICE,APPLE,$60k), (BOB,BIOGEN,$70k)}

11

ternary relations

for relationships involving 3 atom
s

salary: [PERSON, COM
PANY, SALARY]

salary = {(ALICE,APPLE,$60k), (BOB,BIOGEN,$70k)}

for associating binary relations with atom
s

birthdayRecords: [BIRTH
DAYBOOK, PERSON, DATE]

birthdayRecords =
{(BB0,ALICE,M

AY1), (BB0,BOB,JAN4), (BB1,CAROL,DEC9)}

12

left and right

12

left and right

left and right sets
›left (right) set of p is set of atom

s in left-(right-)m
ost colum

n

12

left and right

left and right sets
›left (right) set of p is set of atom

s in left-(right-)m
ost colum

n

left and right types
›left (right) type of p is the first (last) basic type of p’s type

12

left and right

left and right sets
›left (right) set of p is set of atom

s in left-(right-)m
ost colum

n

left and right types
›left (right) type of p is the first (last) basic type of p’s type

exam
ples

likes = {(ALICE,BOB), (BOB,CAROL), (CAROL,BOB)}

left-set(likes) = {(ALICE,BOB,CAROL)}

right-set(likes) = {(BOB,CAROL)}

left-type(likes) = right-type(likes) = PERSON

13

set operators

13

set operators

standard set operators

13

set operators

standard set operators
union

p + q
contains tuples of p and tuples of q

13

set operators

standard set operators
union

p + q
contains tuples of p and tuples of q

intersection
p & q

contains all tuples in both p and q

13

set operators

standard set operators
union

p + q
contains tuples of p and tuples of q

intersection
p & q

contains all tuples in both p and q

difference
p - q

contains tuples in p but not in q

13

set operators

standard set operators
union

p + q
contains tuples of p and tuples of q

intersection
p & q

contains all tuples in both p and q

difference
p - q

contains tuples in p but not in q

interpretation of +

13

set operators

standard set operators
union

p + q
contains tuples of p and tuples of q

intersection
p & q

contains all tuples in both p and q

difference
p - q

contains tuples in p but not in q

interpretation of +
›for scalars, m

akes a set
Alice + Bob

13

set operators

standard set operators
union

p + q
contains tuples of p and tuples of q

intersection
p & q

contains all tuples in both p and q

difference
p - q

contains tuples in p but not in q

interpretation of +
›for scalars, m

akes a set
Alice + Bob

›for sets, m
akes a new set

Em
ployer + Em

ployee

13

set operators

standard set operators
union

p + q
contains tuples of p and tuples of q

intersection
p & q

contains all tuples in both p and q

difference
p - q

contains tuples in p but not in q

interpretation of +
›for scalars, m

akes a set
Alice + Bob

›for sets, m
akes a new set

Em
ployer + Em

ployee
›for relations, com

bines m
aps

likes + Alice -> Bob

13

set operators

standard set operators
union

p + q
contains tuples of p and tuples of q

intersection
p & q

contains all tuples in both p and q

difference
p - q

contains tuples in p but not in q

interpretation of +
›for scalars, m

akes a set
Alice + Bob

›for sets, m
akes a new set

Em
ployer + Em

ployee
›for relations, com

bines m
aps

likes + Alice -> Bob

subset and equality

13

set operators

standard set operators
union

p + q
contains tuples of p and tuples of q

intersection
p & q

contains all tuples in both p and q

difference
p - q

contains tuples in p but not in q

interpretation of +
›for scalars, m

akes a set
Alice + Bob

›for sets, m
akes a new set

Em
ployer + Em

ployee
›for relations, com

bines m
aps

likes + Alice -> Bob

subset and equality
subset

p in q
q contains every tuple p contains

13

set operators

standard set operators
union

p + q
contains tuples of p and tuples of q

intersection
p & q

contains all tuples in both p and q

difference
p - q

contains tuples in p but not in q

interpretation of +
›for scalars, m

akes a set
Alice + Bob

›for sets, m
akes a new set

Em
ployer + Em

ployee
›for relations, com

bines m
aps

likes + Alice -> Bob

subset and equality
subset

p in q
q contains every tuple p contains

equality
p = q

p and q contain sam
e set of tuples

14

product

14

product

definition
if p contains (p1,…

,pn)

and q contains (q1,…
,qm

)

then p -> q contains (p1,…
,pn,q1,…

,qm
)

14

product

definition
if p contains (p1,…

,pn)

and q contains (q1,…
,qm

)

then p -> q contains (p1,…
,pn,q1,…

,qm
)

punsfor sets s and t, s->t is cartesian product

for scalars a and b, a->b is tuple

14

product

definition
if p contains (p1,…

,pn)

and q contains (q1,…
,qm

)

then p -> q contains (p1,…
,pn,q1,…

,qm
)

punsfor sets s and t, s->t is cartesian product

for scalars a and b, a->b is tuple

exam
ples

birthday = Alice->M
ay1 + Bob->Jan4 + Carol->Dec9

Em
ployee->Em

ployee in likes

15

join

15

join

definition
if p contains (p1,…

,pn-1,pn)

and q contains (q1,…
,qm

)

and pn = q1

then p . q contains (p1,…
,pn-1,q2,…

,qm
)

15

join

definition
if p contains (p1,…

,pn-1,pn)

and q contains (q1,…
,qm

)

and pn = q1

then p . q contains (p1,…
,pn-1,q2,…

,qm
)

constraints
arity(p) + arity(q) > 2

right-type(p) = left-type(q)

16

join, exam
ples

16

join, exam
ples

givenAlice = {(ALICE)}, bb0 = {(BB0)}

likes = {(ALICE,BOB), (BOB,CAROL), (CAROL,BOB)}

birthday = {(ALICE,M
AY1), (BOB,JAN4), (CAROL,DEC9)}

birthdayRecords =

{(BB0,ALICE,M
AY1), (BB0,BOB,JAN4), (BB1,CAROL,DEC9)}

16

join, exam
ples

givenAlice = {(ALICE)}, bb0 = {(BB0)}

likes = {(ALICE,BOB), (BOB,CAROL), (CAROL,BOB)}

birthday = {(ALICE,M
AY1), (BOB,JAN4), (CAROL,DEC9)}

birthdayRecords =

{(BB0,ALICE,M
AY1), (BB0,BOB,JAN4), (BB1,CAROL,DEC9)}

we have
Alice.likes = {(BOB)}; likes.Alice = {}

likes.birthday = {(ALICE,JAN4), (BOB,DEC9),(CAROL,JAN4)}

bb0.birthdayRecords = {(ALICE,M
AY1), (BOB,JAN4)}

Alice.(bb0.birthdayRecords) = {(M
AY1)}

17

join, puns

17

join, puns

punsfor set s and binary relation r, s.r is im
age of s under r

for binary relations p and q, p.q is standard join of p and q

for binary relation r of type (S,T),

S.r is right-set of r

r.T is left-set of r

18

join variants

18

join variants

for non-binary relations, join is not associative

18

join variants

for non-binary relations, join is not associative

3 syntactic variants of join
p.q = p::q = q[p]

binding pow
er: :: m

ost, then ., then []

p.q::r = p.(q.r)

p.q[r] = r.(p.q)

18

join variants

for non-binary relations, join is not associative

3 syntactic variants of join
p.q = p::q = q[p]

binding pow
er: :: m

ost, then ., then []

p.q::r = p.(q.r)

p.q[r] = r.(p.q)

equivalent expressions
Alice.(bb0.birthdayRecords)

Alice.bb0::birthdayRecords

bb0.birthdayRecords [Alice]

19

transpose

19

transpose

for relation r: (S,T)
~r

contains (b,a) w
henever r contains (a,b)

~r
has type (T,S)

19

transpose

for relation r: (S,T)
~r

contains (b,a) w
henever r contains (a,b)

~r
has type (T,S)

a theorem
for set s and binary relation r,

r.s = s.~r

20

override

20

override

for relations p,q: (S,T)
p++q

contains (a,b) w
henever

q contains (a,b), or

p contains (a,b) and q does not m
ap a

20

override

for relations p,q: (S,T)
p++q

contains (a,b) w
henever

q contains (a,b), or

p contains (a,b) and q does not m
ap a

givenAlice = {(ALICE)}, M
arch3 = {(M

AR3)}

birthday = {(ALICE,M
AY1), (BOB,JAN4), (CAROL,DEC9)}

20

override

for relations p,q: (S,T)
p++q

contains (a,b) w
henever

q contains (a,b), or

p contains (a,b) and q does not m
ap a

givenAlice = {(ALICE)}, M
arch3 = {(M

AR3)}

birthday = {(ALICE,M
AY1), (BOB,JAN4), (CAROL,DEC9)}

we have
birthday ++ Alice->M

arch3 =

{(ALICE,M
AR3), (BOB,JAN4), (CAROL,DEC9)}

21

closure

21

closure

for relation r: (T,T)
^r

= r + r.r + r.r.r + r.r.r.r + …

is sm
allest transitive relation p containing r

*r
= iden[T] + r + r.r + r.r.r + r.r.r.r + …

is sm
allest reflexive & transitive relation p containing r

21

closure

for relation r: (T,T)
^r

= r + r.r + r.r.r + r.r.r.r + …

is sm
allest transitive relation p containing r

*r
= iden[T] + r + r.r + r.r.r + r.r.r.r + …

is sm
allest reflexive & transitive relation p containing r

exam
ples

ancestor = ^parent

reaches = *connects

precedes = ^~next

22

operator types

then …
if …

p+q, p-q, p&q: (T1,…
,Tn), p in q

p,q: (T1,…
,Tn)

none[p], univ[p]: (T1,…
,Tn)

p: (T1,…
,Tn)

iden[p]: (T,T)
p: (T)

*p, ^p: (T,T)
p: (T,T)

~p: (T,S)
p: (S,T)

p.q: (S1,…
,Sn-1,T2,…

,Tm
)

p: (S1,…
,Sn), q: (T1, …

,Tm
), Sn = T1

23

navigation expressions

23

navigation expressions

from
 2-relations and the operators

. + ^ * ~

23

navigation expressions

from
 2-relations and the operators

. + ^ * ~

interpret as path-sets
p.q

follow
 p then q

p+q
follow

 p or q

^p
follow

 p once or m
ore

*p
follow

 p zero or m
ore tim

es

~p
follow

 p backw
ards

23

navigation expressions

from
 2-relations and the operators

. + ^ * ~

interpret as path-sets
p.q

follow
 p then q

p+q
follow

 p or q

^p
follow

 p once or m
ore

*p
follow

 p zero or m
ore tim

es

~p
follow

 p backw
ards

exam
ple

cousin = parent.sibling.~parent

23

navigation expressions

from
 2-relations and the operators

. + ^ * ~

interpret as path-sets
p.q

follow
 p then q

p+q
follow

 p or q

^p
follow

 p once or m
ore

*p
follow

 p zero or m
ore tim

es

~p
follow

 p backw
ards

exam
ple

cousin = parent.sibling.~parent

daniel
tim

em
ily

claudia

spouse

sibling

sibling

daniel.spouse.sibling =
daniel.sibling.spouse

24

a navigation exam
ple

24

a navigation exam
ple

Link
Queue

Node
M

sg

queue

source,
target

elts

from
,

to

24

a navigation exam
ple

to say
›all m

essages queued on links
em

anating from
 a node have a

‘from
’ field of that node

Link
Queue

Node
M

sg

queue

source,
target

elts

from
,

to

24

a navigation exam
ple

to say
›all m

essages queued on links
em

anating from
 a node have a

‘from
’ field of that node

we can write
all n: Node | n.~source.queue.elts.from

 = n

Link
Queue

Node
M

sg

queue

source,
target

elts

from
,

to

24

a navigation exam
ple

to say
›all m

essages queued on links
em

anating from
 a node have a

‘from
’ field of that node

we can write
all n: Node | n.~source.queue.elts.from

 = n

or equivalently
~source.queue.elts.from

 in iden[Node]

Link
Queue

Node
M

sg

queue

source,
target

elts

from
,

to

25

logical operators

25

logical operators

standard connectives
! F

not F

F && G
F and G

{ F G }

F || G
F or G

F => G , H
F im

plies G else H

F <=> G
F iff G

25

logical operators

standard connectives
! F

not F

F && G
F and G

{ F G }

F || G
F or G

F => G , H
F im

plies G else H

F <=> G
F iff G

if-then-else expressions
if F then e else e’

25

logical operators

standard connectives
! F

not F

F && G
F and G

{ F G }

F || G
F or G

F => G , H
F im

plies G else H

F <=> G
F iff G

if-then-else expressions
if F then e else e’

negated operators
e !in e’ , e != e’

26

set declarations

26

set declarations

formvar : [set | option] setexpr

26

set declarations

formvar : [set | option] setexpr

m
eaning

v : e
v in e and #v = 1

v: set e
v in e

v : option e
v in e and #v ≤ 1

26

set declarations

formvar : [set | option] setexpr

m
eaning

v : e
v in e and #v = 1

v: set e
v in e

v : option e
v in e and #v ≤ 1

exam
ples

p : Person
p is a scalar in Person

Em
ployee: set Person

Em
ployee is a subset of Person

bb : Person -> Date
not unary, so no scalar constraint

26

set declarations

formvar : [set | option] setexpr

m
eaning

v : e
v in e and #v = 1

v: set e
v in e

v : option e
v in e and #v ≤ 1

exam
ples

p : Person
p is a scalar in Person

Em
ployee: set Person

Em
ployee is a subset of Person

bb : Person -> Date
not unary, so no scalar constraint

sam
e m

eaning as
Em

ployee: P P Person
in a other languages,
but first order

27

relation declarations

27

relation declarations

formvar : expr [m
ult] -> [m

ult] expr

27

relation declarations

formvar : expr [m
ult] -> [m

ult] expr

m
ultiplicity sym

bols
?

zero or one
!

exactly one
+

one or m
ore

27

relation declarations

formvar : expr [m
ult] -> [m

ult] expr

m
ultiplicity sym

bols
?

zero or one
!

exactly one
+

one or m
ore

m
eaning

r: e0 m
 -> n e1

m
eans

r in e0 -> e1

and
n e1’s for each e0,
m

 e0’s for each e1

27

relation declarations

formvar : expr [m
ult] -> [m

ult] expr

m
ultiplicity sym

bols
?

zero or one
!

exactly one
+

one or m
ore

m
eaning

r: e0 m
 -> n e1

m
eans

r in e0 -> e1

and
n e1’s for each e0,
m

 e0’s for each e1

exam
ples

r: A ->? B

r is a partial function

r: A ->! B

r is a total function

r: A ?->? B

r is an injective

r: A !->! B

r is a bijection

28

object m
odels

28

object m
odels

what is an object m
odel?

›set of declarations drawn as graph
›boxes denote sets, arcs relations
›parentless box has im

plicit type

28

object m
odels

what is an object m
odel?

›set of declarations drawn as graph
›boxes denote sets, arcs relations
›parentless box has im

plicit type

Person

Em
ployee

Com
pany

w
orksFor

!

Person: set PERSON
Com

pany: set COM
PANY

Em
ployee: set Person

w
orksFor: Em

ployee ->! Com
pany

29

com
prehensions

29

com
prehensions

general form
{ var : setexpr ,…

 | form
ula }

29

com
prehensions

general form
{ var : setexpr ,…

 | form
ula }

m
eaning

{ v0: e0, v1: e1, …
 | F }

is the relation containing tuples (a0,a1, …
)

such that F holds w
hen v0 = {(a0)}, v1 = {(a1)}, etc

and {(a0)} in e0, {(a1)} in e1, etc

29

com
prehensions

general form
{ var : setexpr ,…

 | form
ula }

m
eaning

{ v0: e0, v1: e1, …
 | F }

is the relation containing tuples (a0,a1, …
)

such that F holds w
hen v0 = {(a0)}, v1 = {(a1)}, etc

and {(a0)} in e0, {(a1)} in e1, etc

exam
ple

sibling = {a, b: Person | a.parents = b.parents && a != b}

30

quantification

30

quantification

universal quantification
all var : setexpr ,…

 | form
ula

30

quantification

universal quantification
all var : setexpr ,…

 | form
ula

m
eaning

all v0: e0, v1: e1, …
 | F

holds iff F holds w
henever v0 = {(a0)}, v1 = {(a1)}, etc

and {(a0)} in e0, {(a1)} in e1, etc

30

quantification

universal quantification
all var : setexpr ,…

 | form
ula

m
eaning

all v0: e0, v1: e1, …
 | F

holds iff F holds w
henever v0 = {(a0)}, v1 = {(a1)}, etc

and {(a0)} in e0, {(a1)} in e1, etc

exam
ple

all a: Person | a !in a.parents

31

other quantifiers

31

other quantifiers

quantifiers
all x: e | F

F holds for all x in e

som
e x: e | F

F holds for som
e x in e

no x: e | F
F holds for no x in e

sole x: e | F
F holds for at m

ost one x in e

one x: e | F
F holds for exactly one x in e

31

other quantifiers

quantifiers
all x: e | F

F holds for all x in e

som
e x: e | F

F holds for som
e x in e

no x: e | F
F holds for no x in e

sole x: e | F
F holds for at m

ost one x in e

one x: e | F
F holds for exactly one x in e

noteall v0: e0, v1: e1,…
 | F

is equivalent to

all v0: e0 | all v1: e1 | …
 | F

one v0: e0, v1: e1,…
 | F

is not equivalent to

one v0: e0 | one v1: e1 | …
 | F

32

quantified expressions

32

quantified expressions

for quantifier Q
 and expression e, m

ake form
ula

Q e

32

quantified expressions

for quantifier Q
 and expression e, m

ake form
ula

Q e

m
eaning

som
e e

e is non-em
pty

#e > 0

no e
e is em

pty
#e = 0

sole e
e has at m

ost one tuple
#e ≤ 1

one e
e has one tuple

#e = 1

32

quantified expressions

for quantifier Q
 and expression e, m

ake form
ula

Q e

m
eaning

som
e e

e is non-em
pty

#e > 0

no e
e is em

pty
#e = 0

sole e
e has at m

ost one tuple
#e ≤ 1

one e
e has one tuple

#e = 1

exam
ple

no M
an & W

om
an

no person is both a m
an and a w

om
an

33

sam
ple quantifications

33

sam
ple quantifications

biological constraints
all p: Person | one p.m

other

no p: Person | p in p.parents

33

sam
ple quantifications

biological constraints
all p: Person | one p.m

other

no p: Person | p in p.parents

cultural constraints
all p: Person | sole p.spouse

no p: Person | som
e p.spouse & p.siblings

33

sam
ple quantifications

biological constraints
all p: Person | one p.m

other

no p: Person | p in p.parents

cultural constraints
all p: Person | sole p.spouse

no p: Person | som
e p.spouse & p.siblings

biblical constraints
one eve: Person | Person in eve.*~m

other

34

sum
m

ary: doing m
ore w

ith less

34

sum
m

ary: doing m
ore w

ith less

everything’s a relation
a->b in r

for (a, b) Œ
 r and a ¥ b Õ

 r

34

sum
m

ary: doing m
ore w

ith less

everything’s a relation
a->b in r

for (a, b) Œ
 r and a ¥ b Õ

 r

first-order operators
r : A -> B

m
eans

r Õ
 A ¥ B

replaces r Œ
 P P(A ¥ B)

34

sum
m

ary: doing m
ore w

ith less

everything’s a relation
a->b in r

for (a, b) Œ
 r and a ¥ b Õ

 r

first-order operators
r : A -> B

m
eans

r Õ
 A ¥ B

replaces r Œ
 P P(A ¥ B)

dot operator
›plays m

any roles

34

sum
m

ary: doing m
ore w

ith less

everything’s a relation
a->b in r

for (a, b) Œ
 r and a ¥ b Õ

 r

first-order operators
r : A -> B

m
eans

r Õ
 A ¥ B

replaces r Œ
 P P(A ¥ B)

dot operator
›plays m

any roles

tractable
intractable

34

sum
m

ary: doing m
ore w

ith less

everything’s a relation
a->b in r

for (a, b) Œ
 r and a ¥ b Õ

 r

first-order operators
r : A -> B

m
eans

r Õ
 A ¥ B

replaces r Œ
 P P(A ¥ B)

dot operator
›plays m

any roles

tractable
intractable

expressive
inexpressive

34

sum
m

ary: doing m
ore w

ith less

everything’s a relation
a->b in r

for (a, b) Œ
 r and a ¥ b Õ

 r

first-order operators
r : A -> B

m
eans

r Õ
 A ¥ B

replaces r Œ
 P P(A ¥ B)

dot operator
›plays m

any roles

tractable
intractable

expressive
inexpressive

35

a challenge

35

a challenge

write a constraint
›on an undirected graph
›that says it is acyclic

35

a challenge

write a constraint
›on an undirected graph
›that says it is acyclic

35

a challenge

write a constraint
›on an undirected graph
›that says it is acyclic

36

a solution

36

a solution

sig Edge[t] {links: t->t}
{som

e a,b: t | links = a->b + b->a}

sig Graph[t] {edges: set Edge[t]}

fun Acyclic [t] (g: Graph[t]) {
no e: Edge[t] |

let adj = g.edges.links, adj’ = (g.edges-e).links |
*adj = *adj’

}

37

sam
ple graph

38

higher-order quantifiers

38

higher-order quantifiers

general form
quantifier decl ,…

 | form
ula

38

higher-order quantifiers

general form
quantifier decl ,…

 | form
ula

m
odified set expressions

all s: set S | F
F holds for all s = S’ w

here S’ in S

all o: option S | F
F holds for all o = S’ w

here sole S’, S’ in S

38

higher-order quantifiers

general form
quantifier decl ,…

 | form
ula

m
odified set expressions

all s: set S | F
F holds for all s = S’ w

here S’ in S

all o: option S | F
F holds for all o = S’ w

here sole S’, S’ in S

relational expressions
all x: R | F

F holds for all x = R’ w
here R’ in R

38

higher-order quantifiers

general form
quantifier decl ,…

 | form
ula

m
odified set expressions

all s: set S | F
F holds for all s = S’ w

here S’ in S

all o: option S | F
F holds for all o = S’ w

here sole S’, S’ in S

relational expressions
all x: R | F

F holds for all x = R’ w
here R’ in R

exam
ples

all p, q, r : T -> T | p.(q.r) = (p.q).r

all p : S -> T, s : set S | s.p = ~p.s

39

m
odel checking

39

m
odel checking

only low-level datatypes
›m

ust encode in records, arrays
›no transitive closure, etc

39

m
odel checking

only low-level datatypes
›m

ust encode in records, arrays
›no transitive closure, etc

built-in com
m

unications
›not suited for abstract schem

es
›fixed topology of processes

39

m
odel checking

only low-level datatypes
›m

ust encode in records, arrays
›no transitive closure, etc

built-in com
m

unications
›not suited for abstract schem

es
›fixed topology of processes

m
odularity

›m
issing at operation level

39

m
odel checking

only low-level datatypes
›m

ust encode in records, arrays
›no transitive closure, etc

built-in com
m

unications
›not suited for abstract schem

es
›fixed topology of processes

m
odularity

›m
issing at operation level

culture of m
odel checking

›em
phasizes finding showstopper flaws

›but in software, essence is increm
ental m

odelling
›keep counters, discard m

odel or vice versa?

