
design by 
concept

9th Summer School on Formal Techniques · Menlo College, CA · May 19-24, 2019

Daniel Jackson · CSAIL, MIT

lecture 
one

how this 
project started

a simple task: sign and return

November 7, 2008

acrobat to the rescue?

adobe photoshop: cropping surprises

any idea what’s going on here?

adobe lightroom: easy cropping

i’m not alone

from http://amplicate.com

http://amplicate.com

what’s the essence of the problem?
not the user interface!
polished and organized

complex concepts 
cropping vs. resizing

task-oriented design 
no unifying concepts

adobe fixes acrobat

task-oriented design 
no unifying concepts

Version 9 (2008)

improved interface 
but still no concepts

Version 10 (2010)

unifying concepts 
text/image object

Version 11 (2012)

a research & teaching program
designing software with concepts

a design theory design case studies design patterns code platform

Gitless 
[Perez De Rosso, 

Onward 13, 
OOPSLA 16]

concept structure 
& design rules 
[Onward 15]

about 30 so far Deja Vu 
[Perez De Rosso]

how bugs 
led us astray

the software problem

need 
the motivation for 
building the system

implementation 
the mechanisms 
of the system

separating concerns

specification 
the planned behavior 
of the system

need 
the motivation for 
building the system

implementation 
the mechanisms 
of the system

pleasantness

correctness
what we
devoted

ourselves to

what
mattered

more?

correct ⇒ useful ?

any gmail users who can explain?

correct ⇒ safe ?

Airbus A320, Warsaw 1993

¬WheelPulse ⇔ disabled

specification

airborne ⇔ disabled

requirement

airborne ⇔ ¬WheelPulse

environment ∧ ⇒?

correct ⇒ secure ?

From: "TIG" <help@MIT.EDU>
Date: October 13, 2008 11:04:08 AM EDT
To: "'Daniel Jackson'" <dnj@csail.mit.edu>
Subject: your password

We recently ran a password checker to evaluate passwords of
all CSAIL users, and your password was readily broken. Please
choose a new password ASAP…

8 char limit: passwd utility silently truncated rest

my password: 
sergeantpepper1967

Aydal [2009] 
Analyzed Tokeneer for security 
Found 9 anomalous scenarios

eg, new configuration file silently
ignored if one exists on disk

mailto:dlevenso@MIT.EDU
mailto:dnj@mit.edu

what’s a
concept?

apps characterized by their concepts

Microsoft Word Twitter

Paragraph
Format

Style
Tweet

Hashtag
Following

Photoshop

PixelMap
Layer/Mask
Adjustment

what’s the difference between a text
editor and a word processor?

app classes characterized by concepts too

text editor
line buffer 

paragraph
format

style

word processor

stylesheet
text flow

page template

desktop publishing app

the conventional view

concepts are invented, not just out there

Tim Mott visits Ginn in 1974 
brings idea of styles to PARC

Charles Simonyi’s team 
implements style in 

Bravo text editor

Simonyi brings style 
to Microsoft in 1983

the rewards of inventing a good concept

who is this and what is he doing?

concepts have purpose

Apple Keynote 
adds style concept 

(2017?)

purpose of style: enable consistent formatting

concept structure is designed not discovered

Element style Style

rules

Rule

Property

Value
value

property

!

!

There is no problem  
in computer science 

that cannot be solved
by introducing another

level of indirection. 
David Wheeler

concepts are reusable

Powerpoint color schemes Indesign swatches

Keynote image styles

not an instance of style

what crucial action is missing?

explaining concepts

how to explain the style concept?

If you create a style and assign to two 
elements, then when you modify the 
style, both elements will change…

If you assign Heading to two paragraphs 
and then you change the style from bold to italic, 
both paragraphs will be changed in concert

not ontological: “a style is a mapping…”

not redundant: unlike full spec, 
shows how concept meets purpose

Johnson-Laird: 
constructive semantics

Michael Polanyi 
operational principle

if you have a full spec of the
behavior of a concept, is the tactic

redundant?

when concepts don’t fulfill purpose

can be left blank

cannot be blank

Alexander’s misfits: 
not bugs but bad specs

concepts: modules of behavior

behavioral

inventive

purposeful

self-contained

reusable

concept 
models

a reservation concept

make access to shared resource reliablepurpose

name reservation

tactic if create(o,s); reserve(u,o.s); … no cancel(u,s) … then can use(u,o,s)

structure slots: Owner -> Slot 
holds: User -> Slot

behavior create (o: Owner, s: Slot) 
 no slots.s => slots += o -> s

reserve (u: User, o: Owner, s: Slot) 
 no holds.s and o -> s in slots => holds += u -> s

cancel (u: User, s: Slot) 
 u -> s in holds => holds -= u -> s

use (u: User, o: Owner, s: Slot) 
 u -> s in holds and o -> s in slots =>

a relational diagram

Slot

Taken

Owner slots

User
holds

!

!

box represents
set of atomic

things

arrow
represents

binary relation
Taken is a subset

of Slot

multiplicity:
each Taken has
one user that

holds it

alloy expressions in one slide
set operators 
+ union, - difference, & intersection, in subset

Slot - Taken = {(s4)} 
holds’ - holds = {(u2,s3)}

relation operators 
-> product 
. join

product examples 
u -> s = {(u2,s3)} 
u -> Taken = {(u2,s1), (u2,s2), (u2,s3)}

join examples 
u.holds’ = {(s3)} 
holds’.s = {(u2)} 
holds.Slot = {(u1)}

formula examples 
holds’ = holds + u -> s 
(also written holds += u -> s 
User.holds = Taken 
holds in User -> Slot

a -> b = { (a0,..., an, b0,…, bm) | (a0,..., an) ∈ a ∧ (b0,..., bm) ∈ b}

u: User 
s: Slot 
holds: User -> Slot  
Taken: set Slot

a relation is a table of rows 
holds = {(u1,s1), (u1,s2)} 
holds’ = {(u1,s1), (u1,s2), (u2,s3)}

a set is a relation with one column 
Slot = {(s1), (s2), (s3), (s4)} 
Taken = {(s1), (s2), (s3)}

a scalar is a set with one row 
u = {(u2)} 
s = {(s3)}

a.b = { (a0,..., an-1, b1,..., bm) | (a0,..., an) ∈ a ∧ (an, b1,..., bm) ∈ b}

a reservation concept

make access to shared resource reliablepurpose

behavior

tactic

name reservation

structure

if create(o,s); reserve(u,o.s); … no cancel(u,s) … then can use(u,o,s)

slots: Owner -> Slot 
holds: User -> Slot

create (o: Owner, s: Slot) 
 no slots.s => slots += o -> s

reserve (u: User, o: Owner, s: Slot) 
 no holds.s and o -> s in slots => holds += u -> s

cancel (u: User, s: Slot) 
 u -> s in holds => holds -= u -> s

use (u: User, o: Owner, s: Slot) 
 u -> s in holds and o -> s in slots =>

checking a tactic with electrum

see: https://github.com/haslab/Electrum

https://github.com/haslab/Electrum

a book draft

design by concept
a new way to think

about software

Daniel Jackson

design by concept / a new
 w

ay to think about softw
are / jackson

Design by concept is a new approach to creating
software. A software product—whether an app, a
service or a system—is viewed as a collection of
interacting concepts, each with its own purpose,
structure and behavior. Concepts can be invented
afresh, but they can also be reused, exploiting
the knowledge embodied in previous successful
designs.

This book explains what concepts are and why they
are central to software design; shows examples of
concepts (from the most effective and ingenious to
the most flawed and frustrating) taken from well-
known applications; and presents design principles
that can identify and eliminate flaws in existing and
new designs.

Daniel Jackson is Professor of Computer Science,
a MacVicar fellow, and Associate Director of the
Computer Science and Artificial Intelligence Lab
at MIT. His past research focused on software
modeling and analysis; he is the creator of the Alloy
language, and author of Software Abstractions: Logic,
Language, and Analysis (MIT Press; second ed.
2012). His current interests include software design
for improved usability, security and safety, and new
programming paradigms. He was a recipient of the
2016 ACM SIGSOFT Impact Award, the 2017 ACM
SIGSOFT Outstanding Research Award, and is an
ACM Fellow.

a rather different book

http://portraitsofresilience.com

http://portraitsofresilience.com

studio 1

identifying concepts: resy
here’s a typical reservation app. what concepts can you identify?

identifying concepts: stack exchange
another example: a typical Q&A app

gmail 
surprises

organizing messages

automating filtering

slightly surprising behavior #1

slightly surprising behavior #2

slightly surprising behavior #3

slightly surprising behavior #4

slightly surprising behavior #5

exercise
find a partner so you can work in a pair

pick one of the Gmail surprises
all slides at https://tinyurl.com/ssft9a

analyze it in term of concepts
what are the key concepts involved?

which concept(s) is responsible for the surprise?
is the surprise a bug, a conceptual flaw or a user misunderstanding?

can you explain precisely what’s going wrong?
can you generalize your observation?

design a fix
propose a modification that eliminates the surprise

https://tinyurl.com/ssft9a

lecture 
two

three 
design

problems

gmail 
categories

gmail’s categories

category tab settings

some reactions

how google explains labels (!)

what you can’t do
associate tabs with labels

feature available only for categories

create new categories
only new labels

use tabs outside inbox
tabs disappear when you filter on a label

fuji 
aspect 
ratio

my camera fuji x100s

image quality setting

aspect ratio

image size setting

non-standard ratio + raw?

what you can’t do
non-standard aspect ratio + raw

even though raw images get nice nondestructive crop!

indesign 
styles

what’s a font?

what you can’t do
define a style that italicizes
Arno Regular to Arno Italic

Futura Book to Futura Book Oblique
Magma Light to Magma Light Italic

introducing a concept

Keynote 6: gone again!

Keynote ’09: has subfamilies

what’s going on?
gmail

one purpose :: two concepts 
organizing messages :: label + category

camera
two purposes :: one concept 

aspect ratio + image resolution :: image size

style
one purpose :: no concept 

specify a font-independent styling :: ?

the 
singularity 

rule

Mitchell and Webb: “Unity of Purpose”

one-to-one mapping

P1 C1

P2 C2

purposes concepts

Nam Suh: 
Axiomatic Design

four ways to fail

P1 C1

P2

P1 C1

C2

P1 C1

C2

P1 C1

P2

unfulfilled purpose

unmotivated concept

overloaded concept

redundant concepts

kinds of
overloading

overloaded concepts

4 forms of overloading:
piggybacking new purpose hacked onto old concept

false convergence two purposes looked the same
emergent purpose second purpose emerged with use
denial designer believes second purpose unnecessary

No one can serve two masters. Either you will hate the one and love the other, 
or you will be devoted to the one and despise the other. [Matthew 6:24]

P1 C1

P2

piggybacking fuji camera
new purpose hacked onto old concept

image size 
aspect ratio piggybacked 

on JPEG dimensions

piggybacking epson driver

result: can’t create custom size for front loading 
also, page size presets in Lightroom hold feed setting

false convergence facebook friend
two purposes looked the same

filter incoming posts 
control access to my posts 

distinct purposes

2011: Facebook added
subscribe/follow

emergent purpose email subject
users find second purpose for concept

initial purpose: summarize content 

emergent purpose: show sender  
if you bcc a list, subject reveals to-address

thanks to Shriram Krishnamurthi

emergent purpose: group by conversation  
can’t label reservations from Expedia by trip

thanks to Eunsuk Kang

denial commit
designer believes second purpose unnecessary

feature setup

feature completion

backup just in case

the 
uniformity 

rule

what makes a usable concept?
operational principle is uniform

always the same actions, irrespective of context

concept: Group (Keynote) 
purpose: treat set as one 
OP: … select(objs); group(); mutate()… quantified over state & args

unless objs contains a text body object

non-uniformity range

concept: Range (Numbers)  
purpose: define formula over adjustable group of cells 
OP: … define formula over range… select(c) in range… add(direction)…formula updated
unless range cell c is at top of range and dir is above or….

non-uniformity conversation

action applied to every message in conversation unless message in other folder or action is reply …

kinds of non-uniformity

unless set to raw only mode

unless folder is ancestor or descendant of shared folder

unless working directory contains uncommitted file or…

unless mention includes first character of tweet

Fuji aspect ratio setting

Dropbox share folder

Git branch

Twitter mention

varies over
mode

varies
over arg

unless objs contains a text body object
varies

over type Keynote grouping

varies
over state

varies
over state

the 
genericity 

rule

how concepts get applied

upvote

notification

related

comments

NY Times StackExchange Amazon

breaking news

answers

articles

replies

questions items

when shipped

reviews

why reuse a concept?
familiarity

users will get it

save work
design options known

no surprises
misfits anticipated

options for upvote?

misfit of notification?

the genericity rule

in Powerpoint

Powerpoint commands

in Keynote

reusing a well-known generic concept is usually preferable to inventing one

what would you call
this concept?

what role does slide
selection play in add?

concept 
composition

example: reservation

make access to shared resource reliablepurpose

behavior

tactic

name reservation

structure

if reserve() and no cancel then can use()

reserved: bool = false

reserve() 
 reserved := true 
use () 
 reserved => reserved := false 
cancel () 
 reserved => reserved := false

structure
defines 

state space

actions 
give a labeled transition relation

defining a trace set

{<>, 
<reserve>, 
<reserve, cancel>,  
<reserve, use>, 
<reserve, use, cancel>, 
… 
}

tactic defines a
property of the

trace set

example: authentication

identify participant in interactionpurpose

behavior

tactic

name authentication

structure

if login() and no logout() then can auth()

ok: bool = false

login() 
 ok := true  
logout () 
 ok => ok := false  
auth () 
 ok =>

{<>, 
<login>, 
<login, auth>, 
<login, auth, auth>, 
<login, logout>, 
<login, auth, logout>, 
… 
}

what are the traces?

composing concepts

reservation, authentication

behavior

application

includes

MyReservationApp

login 
 authentication.login

logout 
 authentication.logout

reserve: 
 reservation.reserve 
 authentication.auth

cancel: 
 reservation.cancel 
 authentication.auth

use: 
 reservation.use

concepts 
used

action of app is
binding of

concept actions

{(login, authentication, login), 
(logout, authentication, logout), 
(reserve, reservation, reserve), 
(reserve, authentication, auth), 
(cancel, reservation, cancel), 
(cancel, authentication, auth), 
(use, reservation, use)}

binding: Action -> Concept -> Action

semantics of composition

{<>,  
<reserve>, 
<reserve, cancel>,  
<reserve, use>, 
<reserve, use, cancel>, 
… 
}

traces of reservation

{<>, 
<login>, 
<login, auth>, 
<login, auth, auth>, 
<login, logout>, 
<login, auth, logout>, 
… 
}

traces of authentication binding: Action -> Concept -> Action

{(login, authentication, login), 
(logout, authentication, logout), 
(reserve, reservation, reserve), 
(reserve, authentication, auth), 
(cancel, reservation, cancel), 
(cancel, authentication, auth), 
(use, reservation, use)}

let map(t, C, B) =
map (<>, C, B) = <>
map (append(t, a), C, B) =
 if no C.(a.B) then map(t, C, B) 
 else append(map(t,C, B), C.(a.B))

map trace t onto concept C with binding B

traces = {t in action* | all C: includes | map(t, C, B) in traces(C)}

traces are all those consistent with concept traces

{<>, 
<login>, 
<login, logout>, 
<login, reserve>, 
<login, reserve, use>,  
… 
}

reservation (again)

make access to shared resource reliablepurpose

behavior

tactic

name reservation

structure

if create(o,s); reserve(u,o.s); … no cancel(u,s) … then can use(u,o,s)

slots: Owner -> Slot 
holds: User -> Slot

create (o: Owner, s: Slot) 
 no slots.s => slots += o -> s

reserve (u: User, o: Owner, s: Slot) 
 no holds.s and o -> s in slots => holds += u -> s

cancel (u: User, s: Slot) 
 u -> s in holds => holds -= u -> s

use (u: User, o: Owner, s: Slot) 
 u -> s in holds and o -> s in slots =>

authentication (again)

identify participant in interactionpurpose

behavior

tactic

name authentication

structure

if register(u,p), login(u,p), no logout(u) then can auth(u)

password: User -> Password  
sessions: set User

register (u: User, p: Password) 
 no u.password => password += u -> p

login (u: User, p: Password) 
 u.password = p => sessions += u

logout (u: User) 
 u in sessions => sessions -= u

auth (u: User) 
 u in sessions =>

rating

identify participant in interactionpurpose

behavior

tactic

name rating

structure

if user(u,i), rate(u,i,r)… for multiple u… and show(i):r then r is avg of user’s ratings

used: User -> Item 
rated: User -> Item -> Int 
rating: Item -> Int = {i: Item, r: Int | avg (User, rated)}

use (u: User, i: Item) 
 used += u -> i

rate (u: User, i: Item, r: Int) 
 u -> i in used => u.rated ++= i -> r

show (i: Item): Int 
 result = i.rating

reservation app (again)

reservation, authentication, rating

behavior

application

includes

MyReservationApp

register(u,p) 
 authentication.register(u,p)

login(u,p) 
 authentication.login(u,p)

logout(u) 
 authentication.logout(u)

reserve(u,o,s) 
 reservation.reserve(u,o,s) 
 authentication.auth(u)

use(u,o,s) 
 reservation.use(u,o,s) 
 rating.use(u,o)

cancel(u,s)  
 reservation.cancel(u,s) 
 authentication.auth(u)

rate(u,o,r) 
 authentication.auth(u) 
 rating.rate(u,o,r)

showRating(o) 
 rating.show(o)

ratings are
authenticated

can’t rate 
until you’ve used

reservation

the 
integrity 

rule

looking at sent messages in gmail

can’t see  
which messages 

were sent

interpreting composite behavior
each action in composite system

interpreted as zero or more actions in each concept

concept A

concept B

composite 
system

code icon by Freepik from www.flaticon.com

R

http://www.flaticon.com

the integrity rule
 

a simple criterion
projected behavior must satisfy concept spec:
∀ c: concept | ∀ t: traces(sys) | Rc(t) ∈ traces(c)

concept A concept B

system

when concepts are combined, each concept’s behavior and OP should still apply

the label concept

purpose organize items for easy retrieval

structure labels: X -> Label

tactic if mark(x,p); find(p):xs then x in xs
if no mark(x,P); find(p):xs then x !in xs

behavior mark (x: X,p: Label) 
 labels += x -> p

 unmark (x: X, p: Label) 
 p in x.labels => labels -= x -> p

 find (ps: set Label): set X 
 result = {x | ps in x.labels}

name label

conversation breaks label

when message m is sent 
Label.mark(m, ’sent’) 

occurs implicitly

when Sent link is clicked 
Label.find(‘sent’):ms 

occurs

but ms includes
messages never marked

integrity violations trash

interaction of Trash and Volume (Apple Finder)
unmount of Volume removes files from Trash

not expressible in terms of Trash actions
a solution: one trash/volume?

what happens when
you unmount a drive?

deja vu

reversing the process
the same concepts, again & again

post, comment, upvote, notification, …

hard work to build
libraries often just client- or server-side

easy in a CMS, but structure hard-wired

idea: concept cliches
full stack implementation

app-specific assembly
in HTML, no JS or backend code

action synchronization
build app action by joining cliche actions

post

comment

upvote

architecture of deja vu

gateway

post

comment

upvote

serverclient

app 
action

client-side 
library

a sample app
auth

comment

scoring 
(x2)

property

{

 "name": "hackernews",

 "usedCliches": {

 "authentication": {},

 "comment": {},

 "property": {…},

 "scoringposts": {"name": "scoring"}  
 "scoringcomments": {"name": "scoring"}  
 },

 "routes": [

 { "route": "", "action": "home" },

 { "route": "news", "action": "home" },

 { "route": "post", "action": "post-detail" },

 { "route": "login", "action": "login" },

 { "route": "submit", "action": "submit-post" }

]

}

home action

<dv.action name="home">

 <hackernews.navbar />

 <div class="main">

 <scoringposts.show-targets-by-score
 noTargetsText="No posts yet"

 showAscending=false

 showScores=false

 showTarget=<hackernews.show-post post=$target id=$id />

 </scoringposts.show-targets-by-score>

 </div>

</dv.action>

submit post action

<dv.action name=“submit-post”>

<hackernews.navbar />

<div class=“main"> <dv.tx>

 <dv.gen-id />

 <property.create-object

 id=dv.gen-id.id

 initialValue={ author: hackernews.navbar.user.username }

 showExclude=["author"]

 buttonLabel="submit"

 newObjectSavedText="Post submitted" />

 <scoringposts.create-score

 targetId=dv.gen-id.id

 value=0

 hidden=true />

 <authentication.authenticate id=hackernews.navbar.user hidden=true />

 <dv.link href="/item" params={ id: dv.gen-id.id } />

 </dv.tx> </div> </dv.action>

transaction
generate id

id used

id used

set param

redirect

rebuilding class projects

other aspects of deja vu

WYSIWYG designer 
(Barry McNamara)

gateway

security: stop 
request forgeries

make it easier  
to author cliches 

(Czarina Lao)

cliche 
support

cliche library 
for social apps 

(Maryam Archie)

closing
thoughts

bringing two fields together

user-centered design: conceptual model should be designed
formal methods: software defined by its behavior

both originating around 1974

https://tinyurl.com/dbctouch
to keep in touch and be notified about publication of book

https://tinyurl.com/postcard-get
to sign up for monthly resilience postcards

https://tinyurl.com/dbctouch
https://tinyurl.com/postcard-get

studio 2

facebook

construct concept models in this order 
post, friend, comment, upvote, tag

for each concept, give 
purpose: informally stated 
structure: text or diagram 
behavior: actions specified formally 
tactic: informal scenario

hints: make each concept 
minimal: only essential functionality 
free-standing: makes sense alone 
orthogonal: avoid overlap

specify application binding

what issues came up?

reminder: a reservation concept

make access to shared resource reliablepurpose

name reservation

tactic if create(o,s); reserve(u,o.s); … no cancel(u,s) … then can use(u,o,s)

structure slots: Owner -> Slot 
holds: User -> Slot

behavior create (o: Owner, s: Slot) 
 no slots.s => slots += o -> s

reserve (u: User, o: Owner, s: Slot) 
 no holds.s and o -> s in slots => holds += u -> s

cancel (u: User, s: Slot) 
 u -> s in holds => holds -= u -> s

use (u: User, o: Owner, s: Slot) 
 u -> s in holds and o -> s in slots =>

reminder: alloy expressions in one slide
set operators 
+ union, - difference, & intersection, in subset

Slot - Taken = {(s4)} 
holds’ - holds = {(u2,s3)}

relation operators 
-> product 
. join

product examples 
u -> s = {(u2,s3)} 
u -> Taken = {(u2,s1), (u2,s2), (u2,s3)}

join examples 
u.holds’ = {(s3)} 
holds’.s = {(u2)} 
holds.Slot = {(u1)}

formula examples 
holds’ = holds + u -> s 
(also written holds += u -> s 
User.holds = Taken 
holds in User -> Slot

a -> b = { (a0,..., an, b0,…, bm) | (a0,..., an) ∈ a ∧ (b0,..., bm) ∈ b}

u: User 
s: Slot 
holds: User -> Slot  
Taken: set Slot

a relation is a table of rows 
holds = {(u1,s1), (u1,s2)} 
holds’ = {(u1,s1), (u1,s2), (u2,s3)}

a set is a relation with one column 
Slot = {(s1), (s2), (s3), (s4)} 
Taken = {(s1), (s2), (s3)}

a scalar is a set with one row 
u = {(u2)} 
s = {(s3)}

a.b = { (a0,..., an-1, b1,..., bm) | (a0,..., an) ∈ a ∧ (an, b1,..., bm) ∈ b}

