
towards a 
theory of
software 

design

Daniel Jackson · MIT CSAIL

UIUC · November 7, 2016



my
mid-life

crisis



a traditional view
quality = code correctness

my career so far
lightweight formal models

design ≫ code
exploration ≫ certification

but now I’m wondering
do details matter?

are these the wrong details?
are we looking under the lamppost?

rethinking my assumptions



dropbox
woes



a sad dropbox tale





alyssa & ben plan a party



alyssa spoils everything



survey of MIT dropbox users

0%

20.0%

40.0%

60.0%

80.0%

good knowledge average knowledge poor knowledge

correctly predicting behavior

delete shared folder results in leaving
delete shared subfolder removes it

Kelly Zhang



the
software
problem



design
checking

verification

validationelicitation,
analysis

design,
architecture

implementation

requirements

needs

specifications

code

necessarily
informal

possibly
formal

behavioral
constraint

behavioral
constraint



example: museum ticketing



needs

requirements
“everyone inside holds a ticket”
“every ticket has been paid for” 

specifications
buy: charge, record, issue ticket

enter: if ticket is valid

code

DATABASE

TICKET
DESK

ENTRY
STILE

CARD
ISSUER

charge

re
co

rd

validate
forgot staff, press 

passes, family 
tickets

visitor gets to 
stile before 

database update

charge/record
not atomic



needs

requirements
“everyone inside holds a ticket”
“every ticket has been paid for” 

specifications
buy: charge, record, issue ticket

enter: if ticket is valid

code

forgot staff, press 
passes, family 

tickets

visitor gets to 
stile before 

database update

charge/record
not atomic

scalping: no 
tickets available, 

prices rocket 

forgery: people 
enter with fake 

tickets

database lost:
all issued tickets

now invalid

must get 
these right

but these
matter more

this is a 
design!



the
software
problem,
revisited



purposes

needs

concepts

code

concept
purposes

Ticket Button Queue

get visitors to 
pay

limit
crowds

Balance budget
Grow attendance

Customer satisfaction



purposes

needs

concepts

code

concept
purposes

Ticket Button Queue

get visitors to 
pay

limit
crowds

Balance budget
Grow attendance

Customer satisfaction

this is a 
design!

not a 
design! scalping: no 

tickets available, 
prices rocket 

forgery: people 
enter with fake 

tickets

database lost:
all issued tickets

now invalid

these are 
misfits of the 
ticket concept



aside: misfits
Such a list of requirements is 

potentially endless... But if we think of 
the requirements from a negative 

point of view, as potential misfits, there 
is a simple way of picking a finite set. 

This is because it is through misfit that 
the problem originally brings itself to 

our attention. We take just those 
relations between form and context 
which obtrude most strongly, which 

demand attention most clearly, which 
seem most likely to go wrong. We 

cannot do better than this.



so how to prevent misfits?

avoid premature design
eg, conventional requirements

analyze concept design
articulate purpose & mechanism

learn from the past
most concepts used before!



concept
parts



the data model
what the concept is about

Ticket

Customer

validity Date

Resourceholder
for

Currency
price

Used



the purpose

get visitors to paymotivating 
purpose

what the concept is for

separate use of resource from 
granting of use

refined
generic 
purpose



the actions

issue: exchange money for ticket
validate: check that ticket is valid

use: customer uses resourcea user 
action

a system 
action

a joint 
action

what the concept does



the operational principle
how the concept works

“user requests that system 
issue ticket; user presents ticket 

for validation; if successful, 
user can then use resource” wider span if 

congestion control 
too

“you insert some money and 
the machine gives you a ticket; 
then you insert the ticket into 
the turnstile, and it lets you in”

generic
OP

specific
OP

an archetypal 
scenario

explains how 
to use the 
concept

shows how 
purpose if 

fulfilled



aside: science vs. engineering

Engineering includes the 
operational principles of 
machines... Physics and 
chemistry, on the other 

hand, include no knowledge 
of the operational principles 

of machines. Hence a 
complete physical and 

chemical topography of an 
object would not tell us 

whether it is a machine, and 
if so, how it works, and for 

what purpose. 

Michael Polanyi



ticket concept

name Ticket

purpose separate use of resource from granting of use

sample uses event sales; software licensing; road pricing; flights

mechanism data, actions, operational principle

variants transferable, one-time/repeating, open/expiring

misfits forgery, scalping, transfers

related to Reservation, Coupon, Credit



dropbox
revisited



folder

organize files with 
localized namespaces

purpose

if you create a folder 
with a name N in a 

folder that has a 
pathname P, and put 
objects inside it, you 
can then access them 

at the name P/N

operational principle

delete is not destroy
new name, new file

misfits

data model

File Folder

Object

entries

Entry

Name

name

links



synchronized folder

keep copies of files 
consistent across 

machines

purpose

if you say two drives 
should be synced, 

then changes in one 
are copied to the 

other

operational principle

propagated deletion
propagated temps

misfits

data model

Folder

Drive

root
sync



shared folder

allow users to share
files and folders

purpose

if a user who owns a 
folder shares it with 

another user, that user 
can mount the folder 

in a folder of theirs and 
then read and write it

operational principle

can’t share subfolder
misfits

File Folder

Object

entries

Entry

Name

namelinks,
mounts

User

owns,
shares

data model



how to
evaluate

a concept



the fundamental principle
in a well-designed system

each concept is motivated by one purpose



the ideal mapping

P1 C1

P2 C2

purposes concepts



4 bad smells

P1 C1

P2

P1 C1

C2

P1 C1

C2

P1 C1

P2

unfulfilled purpose

unmotivated concept

overloaded concept

redundant concepts



happy
concepts



trash

concept: trash

operational principle: if you delete a file, it moves to a 
special folder; you can restore from there, but emptying it 
removes contents for good (and makes space on disk)

purpose: allow undo of deletions

misfit: if you delete a file on an external drive, you cannot 
reclaim the space until you empty the trash, but then you’ll 
lose the ability to restore files deleted from the main drive

misfit: if you delete an old file and change your mind, you 
may not be able to find it again in the trash (if there are 
many deleted files and you forgot the file’s name)



selection

slides in
Keynote

messages in Apple Mail
photos in Adobe Lightroom

objects in OS X Finder

thumbnails in Preview

notes in Evernote



subtlety selection scope

subset of selection in scope

subset of selection out of scope



subtlety active element

Adobe Lightroom: brightest thumbnail is the “active photo”



subtlety continuous selection

Photoshop: outline shown with 
“marching ants”

Photoshop: selection shown in 
Quick Mask mode



subtlety folder selection

Google Drive: selecting folder = 
selecting children

CrashPlan: selecting folder = 
selecting all future children



selection: concept parts

name Selection

purpose apply operation in aggregate to many elements

sample uses text formatting in word processors (eg Word); 
styling in CSS; color themes in Powerpoint.

mechanism data, actions, operational principle

variants scope, active element, continuous, hierarchy

misfits accidental deletion?

related to Group, Folder



sad
concepts



email categories



gmail’s categories



category tab settings



some reactions



how google explains labels (!)



what you can’t do

associate tabs with labels
feature available only for categories

use tabs outside inbox
tabs disappear when you filter on a label



P1 C1

C2

redundant concepts

category in Gmail
a redundant concept

label
classify

messages
category



camera settings



my camera fuji x100s



image quality setting



aspect ratio



image size setting



non-standard ratio + raw?



what you can’t do

non-standard aspect ratio + raw
even though raw images get nice nondestructive crop!



overloaded concepts

3 forms of overloading:
piggybacking new purpose hacked onto old concept

false convergence two purposes looked the same
emergent purpose users found second purpose for concept

No one can serve two masters. Either you will hate the one and love the other,
or you will be devoted to the one and despise the other. [Matthew 6:24]

P1 C1

P2



piggybacking fuji camera

image size
aspect ratio piggybacked

on JPEG dimensions

new purpose hacked onto old concept



piggybacking epson driver

result: can’t create custom size for front loading
also, page size presets in Lightroom hold feed setting



false convergence

evaluation & goal setting
incompatible purposes

two purposes looked the same



false convergence
two purposes looked the same

filter incoming posts
control access to my posts

distinct purposes

2011: Facebook added 
subscribe/follow



emergent purpose
users find second purpose for concept

initial purpose: summarize content

emergent purpose: show sender 
if you bcc a list, subject reveals to-address

thanks to Shriram Krishnamurthi

emergent purpose: group by conversation
can’t label reservations from Expedia by trip

thanks to Eunsuk Kang



fonts & styles



what’s a font?



what you can’t do

define a style that italicizes
Arno Regular to Arno Italic

Futura Book to Futura Book Oblique
Magma Light to Magma Light Italic



unfulfilled purposes

P1 C1

P2 C2

Adobe Indesign:
an unfulfilled purposesubfamily

allow 
typeface 

independent 
styling



introducing a concept

Keynote ’09: has subfamilies

Keynote 6: gone again!



rethinking Git















conceptual problems in Git

P1 C1

C2

P1 C1

P2

unmotivated concept overloaded concept

pseudo purpose: 
overcome misfits in 
branching concept

example: stash

P1. group logically 
related changes 

P2. save files to protect 
against loss

example: commit





gitless: a reworking of git

Santiago
Perez De Rosso



example: branch

concept: branch

operational principle: when you switch branches, your 
working directory is synchronized with the new branch, 
and you can make and commit changes which will be 
invisible on other branches; when you’re done, you can 
merge the branch into the master branch...

purpose: support independent line of development

misfit: can’t switch branches with uncommitted changes;
can stash, but only if no conflicts...

fix: give branch its own working directory; when you switch 
branches, the working directory changes too, and the 
working directory associated with the previous branch is 
preserved



user study

within-subjects
two hour long sessions

six tasks per session
observation + surveys

experiment design

11 = 3 industry + 3 research + 5 student
Git: 4 novices, 3 regular, 4 experts

Gitless: none used before

subjects

commit staged modified file
create and switch to branch

switch with changes that conflict
switch leaving changes behind
switch in the middle of merge

undo commit

tasks



results of a user study

18%

0%

9%

36%

73%

64%

64%

55%5% 9% 27% 18%

14% 27% 27% 9%

18% 27% 18% 18%

5% 36% 9% 27%

5%18%18%

14%9%

18%

5%9%9%

I would continue using
Gitless if I could

I found Gitless to be
easier to use than Git

I found Gitless to be
easier to learn than Git

I enjoyed using Gitless

100 50 0 50 100
Percentage

Strongly Disagree Disagree Disagree Somewhat Neutral Agree Somewhat Agree Strongly Agree

Git Gitless

1
2

3
4

5
6

7
8

Ta
sk

 c
o
m

p
le

tio
n
 t
im

e
 (

m
in

u
te

s)

Git Gitless

4
5

6
7

8
9

Ta
sk

 c
o
m

p
le

tio
n
 t
im

e
 (

m
in

u
te

s)

Git Gitless

4
6

8
1
0

1
2

Ta
sk

 c
o
m

p
le

tio
n
 t
im

e
 (

m
in

u
te

s)

Git Gitless

5
1
0

1
5

Ta
sk

 c
o
m

p
le

tio
n
 t
im

e
 (

m
in

u
te

s)

Git Gitless

5
1
0

1
5

2
0

Ta
sk

 c
o
m

p
le

tio
n
 t
im

e
 (

m
in

u
te

s)

Git Gitless

4
6

8
1
0

1
2

1
4

Ta
sk

 c
o
m

p
le

tio
n
 t
im

e
 (

m
in

u
te

s)



all subjects



git experts



git regulars



git novices



conclusion



concepts: the key inventions

Microsoft Word Twitter

Paragraph
Format

Style
Tweet

Hashtag
Following

Photoshop

PixelMap
Layer/Mask
Adjustment



concepts: define app classes

text editor
line

buffer

paragraph
format

style

word processor

stylesheet
text flow

page template

desktop publishing app



concept catalog (so far)

instantiate organize relate resource save communicate personalize

stylesheet selection friend access token history message account
master folder clique notification buffer posting karma
stencil group invitation reservation cursor OOBA
style buffer label REST sync rating

layer cart export status
stack subscription
alias purchase order
preset RMA
cursor coupon
filter catalog
property ticket
metadata



a common view of software design

UI design
soft & human

about presentation

programming
hard & technical
about content



a better view of software design

conceptual design:
essential concepts

& behavior

representation design:
organization & performance

Layer

Adjustment

Mask

PixelMap

Brush


