
how topreventdisasters
Daniel Jackson, MIT
Siren//NL, Veldhoven · November 2, 2010

a civil engineering disaster

kansas city hyatt regency, 1981

New York Times

the design beam supports
one walkway

illustrations from Matthys Levy and Mario Salvadori, Why Buildings Fall Down

how it failed

as designed as implemented what happened

beam supports
two walkways

therac 25
no argument for success
› AECL fault tree (1983) did not include software
› P(computer selects wrong energy) = 10-11

hard to extract any lessons
› Leveson & Turner (1993): so many flaws, nothing clear

so doomed to fail again
› 17 deaths from similar machine in Panama (2001)
› 621 target/dose/patient errors (2001-9, NY state)

[2001-2009, New York Times, January 22, 2010]

my conclusions

civil engineers
› argue why structure should stand
› failure occurs when argument is flawed

software engineers
› build and hope for the best
› when failure occurs, no story
› can’t assign blame or learn for future

a new approach

write down
critical properties R

write down
domain

assumptions A

design a
specification S

check that
A∧S⇒R

build machine M
check that M⇒S

yes

no

reduce goal

rely on more

fix design

DEPENDABILITY CASE:
claimed properties

assumptions
design & specs

correctness argument
write down

domain
assumptions A

write down
critical properties R

design a
specification S

the door interlock problem

a textbook problem
› see, eg, Engineering a Safer World [Leveson, 2010]

problem: design an interlock

actually, a real problem
The Worlds First Microwave Test Oven

Here's a picture of the world's first
commercial microwave during its first field
test. I am on the left, my brother on the
right. We used to defeat the door interlock
and point it at the end of the countertop
where we left a plate of eggs. They exploded
like little hand grenades. Drove my mom
nuts!

http://www.thescubalady.com/Keith%20Lamb
%20History.htm

Statistics indicate that five to ten
arc-flash accidents that involve a
fatality or serious injury to an
employee occur every day in the
United States.

http://www.iaei.org/magazine/?p=1163

http://www.thescubalady.com/Keith%20Lamb%20History.htm
http://www.thescubalady.com/Keith%20Lamb%20History.htm
http://www.thescubalady.com/Keith%20Lamb%20History.htm
http://www.thescubalady.com/Keith%20Lamb%20History.htm
http://www.iaei.org/magazine/?p=1163
http://www.iaei.org/magazine/?p=1163

step 1: requirement

SafeSafeOperators

Power
Source

touch

Safe: touch event does not occur in state Live

no touching live power source

SafeOperators

Power
Source

touch

SafeOperators

Door Power
Source

open,
close

touch

Exposed

Safe: touch event does not occur in state Live

step 2: domain assumptions

SafeOperators

Door Power
Source

open,
close

touch

Sensor Switch

open,
close Live

Exposed
when close occurs,
Exposed becomes false

no touch unless Exposed is true

when open occurs
Closed becomes false when off occurs, Live becomes false

step 3: machine specification

Controller

SafeOperators

Door Power
Source

open,
close

touch

on, off

Sensor Switch

Closed

open,
close Live

Exposed

SafeOperators

Door Power
Source

open,
close

touch

Sensor Switch

open,
close Live

Exposed

Safe: touch event does not occur in state Live

when close occurs,
Exposed becomes false

no touch unless Exposed is true

when open occurs
Closed becomes false when off occurs, Live becomes false

every step, send off if Closed became false

send on only when Closed is true

step 4: checking the system argument
machine specdomain assumptions ∧ ⇒ requirement

one sig Sensor extends Domain {
 Closed: set Time
 }

one sig PowerSource extends Domain {
 Exposed, Live: set Time
 }

sig Open extends Event { } {
 not Sensor.Closed.after
 }

one sig Controller extends Domain { } {
 all t: Time - (first + last) |
 not Sensor.Closed.at [t]
 and Sensor.Closed.at [t.prev]
 implies Off.happensAt [t]
 } one sig Safe extends Requirement {} {

 all t: Touch |
 not PowerSource.Live.before [t]
 }

counterexample!
problem:
forgot initial
conditions

solution:
record them

one sig PowerSource extends Domain {
 Exposed, Live: set Time }
 {
 not Live.initially
 not Exposed.initially
 }

counterexample again!
problem:
controller
turns power
off too late

solution:
new domain
assumption

sig Touch extends Event { } {
 PowerSource.Exposed.before
 no o: Open | this.follows [o]
 }

no more counterexamples

Alloy’s analysis is
› fully automatic
› large bounded space
› here, analyzed 2366 cases

Controller

SafeOperators

Door Power
Source

open,
close

touch

on, off

Sensor Switch

Closed

open,
close Live

Exposed

summary

every step, send off if Closed became false

send on only when Closed is true

when open occurs, Closed becomes false

when close occurs, Exposed becomes false

when off occurs, Live becomes false

no touch unless Exposed is true

Live is initially false

Exposed is initially false

touch does not follow within 1 step of open Safe: touch event does not occur in state Live

dependability cases we’ve worked on

Burr Proton Therapy Center
› correct dose [Robert Seater]

› emergency stop [with Andrew Rae]

› treatment door interlock [Eunsuk Kang, Joe Near, Aleks Millicevic]

Voting systems
› Pret a Voter [Robert Seater]

› Scantegrity [Eunsuk Kang]

Tokeneer
› ongoing analysis [Eunsuk Kang]

tokeneer

tokeneer

› commissioned by NSA as exemplar
› built by Praxis using Z and SPARK-Ada
› not just open source!

problem diagram

Controller

Users

Latch

Card
Reader

Fingerprint
Reader Door

Enclave

access enclave
=> have privilege

privilege access

attach, detach

insert, remove
open, close accessible, blocked

locked, unlocked

access

read token
read fingerprint

lock, unlock

analyzing the design
what Praxis did
› formal spec in Z (about 120 pages); informal reasoning
› code verification with SPARK-Ada

defects found to date
› 5 code-level defects
› requirements issues (using Alloy for test case generation)

[Aydal & Woodcock 2009]
› no defects yet found in design

what we’re doing
› translating design to Alloy (about 1000 lines so far)
› automatic analysis: design ∧ assumptions ⇒ security

sample argument fragments

sample screenshot

results so far

bug in security property
› if door is opened, user must hold token with recently

validated fingerprint or valid authorization certificate

bug in spec for UnlockDoor
› timer not checked if token withdrawn after timeout

proton therapy

proton therapy treatment room

correct dose requirement

!"#

!$%&'(%)'#

"&)&*%$

+,

-$%./$01'02)

+&'&3&.%

456

6)'%$7&/%
!8%$&10.'

-&'0%)'

9:

,%&(#

;<=01(%)'

"%..&*%.#2)#

>%'?2$@

.%A%/'02)

<=%$B+2.%.C%<=%.'

<=%$B+2.%.C%.=A'

<=%$BD0.'C%.=A'

.%''0)*.

0)'%1%'&'02)
E2.%

$%&E6+(.*

.%)ED6F!(.*

.%)E6+(.*

$%&ED6F!(.*

)&(%6)72

!"#$%&'()*'$(+$
,-..),'/0$+)/),')1

)&(%6)72#G#.%A%/'02)

!23#$(1$(+$(*').%.)')1$&*1$+)*'

(&1H.%A%/'02)#G#.%)E6+(.*

!4#$5)++&6)$&.)$'.&*+5('')1$$
&7'8)*'(,&//0

.%)ED6F!(.*#G#$%&ED6F!(.*

.%)E6+(.*#G#$%&E6+(.*

!9&#$:7).()+$.)!),'$13

<=%$BD0.'C%.=A'#G

)&(%.6)72#I#0)&/'0J%

<=%$B+2.%.C%.=A'#G#

<=%$B+2.%.C%<=%.'HE2.%.

!;3#$(1$<.-5$5)++&6)$
(+$+)*'$'-$13

<=%$B+2.%.C%<=%.'#G#

$%&E6+(.*

!;,#$:7).()1$1-+)$(+$7+)1$
'-$+)'$):7(%5)*'

.%''0)*.H0)'%1%'&'02)#G#

<=%$B+2.%.C%.=A'
!=#$1-+)$1)/(>).0

K)&(%.6)72H)&(%6)72LHE2.%.#

G#E2.%

!2&#$(*').%.)'&'(-*$.)!),'+$5+6

(&1#G#$%&ED6F!(.*

!;&#$/(+'$(*<-$(+$+)*'

<=%$BD0.'C%.=A'#G#

.%)ED6F!(.*

!?#$@A$-%).&'(-*

.%''0)*.H0)'%1%'&'02)#G#E2.%

&AA#)M#>=(3%$#N

##2)%#)H0)'%1%'&'02)

!93#$'8).)$(+$-*/0$-*)$(1$<-.$
)&,8$*&5)

&AA#)M#F'$0)*#N#2)%#)&(%.6)72H)

)&(%.6)72

E2.%.

)&(%6)72

E2.%

Figure 4-5: Argument diagram for the patient identity subproblem.

117

correct dose case

extraction of models
› Alloy models of messaging infrastructure
› C code translated to Java, then to Alloy using Forge

resulting insights
› very long message delay might cause bad dose
› patient identification relies on distinct patient names
› SQL injection attack vulnerability

door interlock requirement

Beam
Manager

Treatment
Manager

Safety
Control Unit Beam

Control Unit

DataDaq

RTWorks

TCP/IP
RPC

Door

DoorOpen
signal

msg

frameOut

callback(rtdaqinDoorOpen)

insertBeamStop

Nozzle

RPC(nsertBeamStop)

BeamStop signal

callback(inhibitBeam)

ACT_INHIBIT_BEAM

frameIn

Door Safety
Requirement

opening door causes
DoorOpen signal

signal causes (frame : Frame)
where
frame = signalFrameMap[signal] and
TCP_IP.frameIn = frame

frameIn causes (frameOut : Frame)
where
frameOut = frameIn

frameOut causes (msg : RTWorks.msgs)
where
msg.type = RTMsgTypeMap[frameOut] and
msg.dest = RTMsgDestMap[frameOut]

(rtdaqinDoorOpen : callbacks) causes (msg : RTWorks.msgs)
where
msg.dest = BeamManager and
msg.type = ACT_INHIBIT_BEAM

(msg : msgs) causes (cb : dest.callbacks)
where
dest = msg.dest and
cb = CallbackMap[msg.type]

(inhibitBeam : callbacks) causes
req : RPC.reqs
where
req.dest = BCU and
req.type = InhibitBeamStop

(req : reqs) causes call: dest.calls
where
dest = req.dest and
call = RPCCallMap[req.type]

BCU.beamInsert causes
BeamStop signal

BeamStop signal causes
beam stop being inserted

opening door causes
beam stop being inserted

System Manager
logEvent causes
req : RPC.reqs
where
req.dest = TCU and
req.type = evtReport

logEvent

Treatment
Control Unit

evtReport returns True

evtReport

RPC(evtReport)

door interlock case

high level analysis in Alloy
› by modelling each component
› simple chain of events

code analysis
› to identify side conditions
› to extract control paths
› but hard due to missing code

approach
› lightweight extraction of control flow
› abstract interpretation of state
› user provides specs for library calls

tracing call paths

tool and analysis by Aleks Millicevic

tracing calls within a component

results so far

entanglement
› door safety entangled with logging
› if logging fails, safety action is aborted
› (but hardware safety system...)

how to cheat

Controller

SafeOperators

Door Power
Source

open,
close

touch

on, off

Sensor Switch

Closed

open,
close Live

Exposed

identifying the trusted base

every step, send off if Closed became false

send on only when Closed is true

when open occurs, Closed becomes false

when close occurs, Exposed becomes false

when off occurs, Live becomes false

no touch unless Exposed is true

Live is initially false

Exposed is initially false

touch does not follow within 1 step of open Safe: touch event does not occur in state Live

Controller

SafeOperators

Door Power
Source

open,
close

touch

on, off

Sensor Switch

Closed

open,
close Live

Exposed

reducing the trusted base

Controller

SafeOperators

Door Power
Source

open,
close

touch

on, off

Sensor Switch

Closed

open,
close Live

Exposed

SafeOperators

Door Power
Source

open,
close

touch

on, off

Switch

Live

Exposed

simpler design ⇒ simpler argument

analysis with trusted bases
one sig Sensor extends Domain {
 Closed: set Time
 }

sig Open extends Event { } {
 Sensor in OK implies
 not Sensor.Closed.after
 }

one sig Controller extends Domain { } {
 this in OK implies
 all t: Time - (first + last) |
 not Sensor.Closed.at [t]
 and Sensor.Closed.at [t.prev]
 implies Off.happensAt [t]
 }

one sig Safe extends Requirement {} {
 this in OK iff
 all t: Touch | not PowerSource.Live.before [t]
 trustedBase = Switch + Controller + Sensor + Door + Operators
 }

assert BaseSufficient {
 all r: Requirement | r.trustedBase in OK implies r in OK
 }

reducing the trusted base: examples

designing emergency stop

pendant with emergency stop button

existing design

File
System

UI Agent

Hand
Pendant

Beam
Block

Emergency
Stop works

ControllerEvent
Queue

Operating
System

Event
 Registration

File
System

UI Agent

Hand
Pendant

Beam
Block

Emergency
Stop works

ControllerEvent
Queue

Operating
System

Event
 Registration

redesign

File
System

UI Agent

Hand
Pendant

Beam
Block

Emergency
Stop works

ControllerEvent
Queue

Operating
System

Event
 Registration

Emergency
Stop Unit

File
System

UI Agent

Hand
Pendant

Beam
Block

Emergency
Stop works

ControllerEvent
Queue

Operating
System

Event
 Registration

Emergency
Stop Unit

alarm clock

Most other alarm clock applications choose

to play the alarms/music via iTunes (via AppleScript). I
deliberately decided against this... Consider...

• The alarm is set to play a specific song, but the song was
deleted.

• The alarm is set to play a specific playlist, but you renamed
the playlist, or deleted it.

• The alarm is set to play a radio station, but the

internet is down.

• iTunes was recently upgraded, and requires you to

reagree to the license next time you launch it.
The alarm application launches it for the alarm...

• You had iTunes set to play to your airTunes speakers, but you
left your airport card turned off.

• You had the iTunes preference panel open.
(Which prevents AppleScript from working)

• You had a "Get Info" panel open. (Which also prevents
AppleScript from working)

From Alarm Clock, http://www.robbiehanson.com/alarmclock/faq.html

... It’s only job is to wake you up in
the morning, and I believe you'll find
that it does it’s job perfectly.

http://www.robbiehanson.com/alarmclock/faq.html
http://www.robbiehanson.com/alarmclock/faq.html

alarm clock

From Alarm Clock, http://www.robbiehanson.com/alarmclock/faq.html

iTunes
Alarm

Controller

alarm

goes

o!

request to play

song

generated

song

played

Settings

Internet

Basic

Song

Player

Alarm

Controller

alarm

goes

o!

request to play

song

generated

song

played

http://www.robbiehanson.com/alarmclock/faq.html
http://www.robbiehanson.com/alarmclock/faq.html

example: voting

Check-in

Desk

Optical

Scanner

Election

O!cial

All cast ballots

are counted

reports tally

from scanner

to public

accurately

records choice

on a ballot

computes tally

based on

records

gives one

ballot per

voter

scanner

computes tally

based on

ballots

Voters

standard design,
relying on scanner

Tabulator
Check-in

Desk
Optical

Scanner
Voters

Election

O!cial

All cast ballots

are counted

Auditor

gives one

ballot per

voter

voters checks

their receipts

independent

tallies match

auditor checks

independent

tallies

computes

independent

tally

Scantegrity design,
relying on voters
and 3rd party
tabulators

conclusions

what’s typically (not) done

Controller

SafeOperators

Door Power
Source

open,
close

touch

on, off

Sensor Switch

Closed

open,
close Live

Exposed

every step, send off if Closed became false

send on only when Closed is true

when open occurs, Closed becomes false

when close occurs, Exposed becomes false

when off occurs, Live becomes false

no touch unless Exposed is true

Live is initially false

Exposed is initially false

touch does not follow within 1 step of open Safe: touch event does not occur in state Live

critical properties
not made explicit

phenomena
not designated

domain
assumptions
not recorded

specification
references
inaccessible
phenomena

no systematic
analysis

initialization
missed

observations

on dependability cases
› if you can’t say why it works, it probably doesn’t

on design
› a principle: design for simple argument

on formal methods
› two benefits: clarity of requirements, mechanical checks

on cost
› key to low cost is upfront investment, non-uniformity

too hard to argue, unsafe to build

The direction and amount of the complicated strains
throughout the trussing [would] become incalculable as far as
all practical purposes are concerned...
Stephenson, explaining why he rejected a suspension design

Brittania Bridge (Robert Stephenson, 1850)

Controller

SafeOperators

Door Power
Source

open,
close

touch

on, off

Sensor Switch

Closed

open,
close Live

Exposed

every step, send off if Closed became false

send on only when Closed is true

when open occurs, Closed becomes false

when close occurs, Exposed becomes false

when off occurs, Live becomes false

no touch unless Exposed is true

Live is initially false

Exposed is initially false

touch does not follow within 1 step of open Safe: touch event does not occur in state Live

a research question

when close occurs, Closed becomes true

send on when Closed becomes true

‘redundant’ properties
should they be included?
if so, how?

acknowledgments

joint work with my students
› Eunsuk Kang, Joe Near, Aleks Millicevic

phenomenology
› Michael Jackson, Problem Frames (2001)

dependability cases study
› ‘Sufficient Evidence’ (NAS, 2007)

related work by many
› van Lamsweerde, Kelly, etc (goal structuring)
› Rushby, Knight, Bloomfield (assurance cases)
› ...

support from NSF, Northrop Grumman, Mass General

a paper about this approach

A Direct Path to Dependable Software, CACM, March 2009
wordle thanks to Jonathan Feinberg, IBM Research, Cambridge

backup slides

designations
events
open: operator opens door fully or partially
close: operator closes door fully
touch: operator touches power
on: controller issues command to switch to turn on
off: controller issues command to switch to turn off

states
Exposed: power source is exposed
Live: power in live state
Closed: sensor is in state that reports door closed

Controller

Operators

Door Power
Source

open,
close

touch

on, off

Sensor Switch

Closed

open,
close Live

Exposed

what if analysis finds no flaws?

informal problems
› wrong domain assumption
› missing phenomena or interactions
› wrong or badly expressed requirement

formal problems
› scope not large enough
› inconsistent axiomatization
› analysis tool is broken
› ... or system is actually safe

machine specdomain assumptions ∧ ⇒ requirement

generic modules: domains

module domains

abstract sig Domain {}

abstract sig Property {}

abstract sig Requirement extends Property {
 trustedBase: set Domain
 }

sig OK in Domain + Property {}

assert BaseSufficient {
 all r: Requirement | r.trustedBase in OK implies r in OK
 }

generic modules: events

module events

open util/ordering[Time] as time

sig Time {}

abstract sig Event {
 pre, post: Time
 }

fact Traces {
 all t: Time - last | some e: Event | e.pre = t and e.post = t.next
 all t: Time - last | lone e: Event | e.pre = t
 }

examining side conditions

on software risks

“We have become dangerously
dependent on large software systems
whose behavior is not well understood
and which often fail in unpredicted ways.”
President's Information Technology Advisory Committee, 1999

“The most likely way for the world to be destroyed,
most experts agree, is by accident.
That’s where we come in. We’re computer
professionals. We cause accidents.”
Nathaniel Borenstein, Programming as if People Mattered, Princeton University Press, 1991

on accidents

“Accidents are signals sent from
deep within the system
about the vulnerability and
potential for disaster that lie within”
Richard Cook and Michael O’Connor
Thinking About Accidents And Systems (2005)

on design

“There probably isn’t a best way to build the system,
or even any major part of it; much more important is
to avoid choosing a terrible way, and to have a clear
division of responsibilities among the parts.”
Butler Lampson
Hints for computer system design (1983)

