how to
reve
1sasters

Daniel Jackson, MIT /_E\d{l]
Siren//NL, Veldhoven - November 2, 2010 CSAIL

a civil engineering disaster

kansas city hyatt regency, 1981

New York Times

the design

beam supports
one walkway

NN

b———4 TH FLOOR
WALKWAY

FUNCTION
BLOCK, ’

|| «— wesr ¢

NN

OF ATRIUM
ARD FlLook i)
WAL WAY ~——+> J
/ NP FLOOR
WALKHAY

VIEW OF ATRIUM LooKIN&G SUTH

illustrations from Matthys Levy and Mario Salvadori, Why Buildings Fall Down

how it failed

beam supports
two walkways

[—

MIT AP WASHER

e HANGER. ROL T2 L
" i ZANP FLOOR RALKIAY

e LOWER HAMGER ROD

as designed as implemented what happened

therac 25

no argument for success
> AECL fault tree (1983) did not include software
> P(computer selects wrong energy) = 10-11

hard to extract any lessons
> Leveson & Turner (1993): so many flaws, nothing clear

so doomed to fail again
> 17 deaths from similar machine in Panama (2001)
> 621 target/dose/patient errors (2001-9, NY state)

my conclusions

civil engineers
> argue why structure should stanc
> failure occurs when argument is flawed

software engineers

> build and hope for the best

> when failure occurs, no story

> can't assign blame or learn for future

W

| SOFIWARE

SIANDS
P

The Strength |
of Architectore.

| m}mo snmoom

a new approach

write down reduce goal
critical properties R

rely on more
fix design
check that no build machine M
AAS=R » check that M=S§

yes

the door interlock problem

problem: design an interlock

a textbook problem
> see, eg, Engineering a Safer World [Leveson, 2010]

actually, a real problem

The Worlds First Microwave Test Oven

Here's a picture of the world's first
commercial microwave during its first field
test. | am on the left, my brother on the
right. We used to defeat the door interlock
and point it at the end of the countertop
where we left a plate of eggs. They exploded
like little hand grenades. Drove my mom
nuts!

http://www.thescubalady.com/Keith%20Lamb
%20History.htm

Statistics indicate that five to ten
arc-flash accidents that involve a
fatality or serious injury to an
employee occur every day in the
United States.

http://www.iaei.org/magazine/?p=1163

http://www.thescubalady.com/Keith%20Lamb%20History.htm
http://www.thescubalady.com/Keith%20Lamb%20History.htm
http://www.thescubalady.com/Keith%20Lamb%20History.htm
http://www.thescubalady.com/Keith%20Lamb%20History.htm
http://www.iaei.org/magazine/?p=1163
http://www.iaei.org/magazine/?p=1163

step 1: requirement

no touching live power source

Safe: touch event does not occur in state Live

Operators | _ _ _ _ _ @

Source

step 2: domain assumptions

open,
close

when close occurs,
Exposed becomes false

Door

Safe: touch event does not occur in state Live

Operators

Exposed

open,

close
when open occurs

Closed becomes false
SEensor

, /e
Power
Source

no touch unless Exposed is true

Live

when off occurs, Live becomes false

Switch

step 3: machine specification

Safe: touch event does not occur in state Live

Operators | _ _ _ _ _ @

open, touch /
close /
when close occurs, /
Exposed becomes false Exposed Power
Door
Source
no touch unless Exposed is true
open, .
close Live

when open occurs '
P when off occurs, Live becomes false

Closed becomes false .
Sensor Switch |
Closed on, off
every step, send off if Closed became false
H‘ Controller

send on only when Closed is true

step 4: checking the system argument

domain assumptions A machine spec = requirement

one sig Sensor extends Domain {
Closed: set Time

}

one sig PowerSource extends Domain {

Exposed, Live: set Time , :
1 one sig Controller extends Domain { } {

all t: Time - (first + last) |

not Sensor.Closed.at [t]

and Sensor.Closed.at [t.prev]
} implies Off.happensAt [t]
}

sig Open extends Event { } {
not Sensor.Closed.after

one sig Safe extends Requirement {} {
all t: Touch |

not PowerSource.Live.before [t]

}

counterexample!

F |

ioninterlock) Check BaseSufficient for 2
iz

g E @ Projected over events/Time |

Tree Close Apply Magic Layout

S —
) -
)

1L

> Dot XM

I

Sensor

Operators PowerSource ‘

Controller | Door

(Exposed, Live)

Switch

Touch

| . A ./ \‘
events/Time0 | ,] \ >> ‘

one sig PowerSource extends Domain {
Exposed, Live: set Time }
{
not Live.inmtially
not Exposed.initially

}

(pre)

problem:
forgot initial
conditions

solution:
record them

counterexample again!

problem:
controller
turns power
off too late

~ solution:

new domain
assumption

sig Touch extends Event { } {

no o: Open | this.follows [0]

e N A (levesoninterlock) Check BaseSufficient for 3
= = e 4 B
dgb - = %I_ E E g Projected over events/ Time
Viz Dot XML Tree Theme Magic Layout Evaluator Next
On Sensor .
Controller ‘ Operators PowerSource (Closed) \ 5wnch\
I o & ."f '\,.
| events /Timel | 5] ! > |
;s mno (levesoninterlock) Check BaseSufficient for 3
== e > d
dgb - = %I_ @ ﬁ E Projected over events/Time
Viz Dot XML Tree Theme Magic Layout Evaluator MNext
Open PowerSource Sensor .
Controller ‘ Door fe Operators flive) (Closed) Switch
il A | = = i b 1
| =) | events /Timel | 5] i ?i} J
;o (levesoninterlock) Check BaseSufficient for 3
=5 k B L
.:."51;, = = %I_ ﬁ ﬁ g Projected over events /Tirme |
Viz Dot XML Tree Theme Magic Layout Ewvaluator Next
‘ PowerSource . \ Touch
‘Euntruller Door Operators (Exposed, Live) Switch (post, pre)
“ N | . =
| o] events/Time2 | ¥] h‘- =

no more counterexamples

Executing "Check BaseSufficient for 8"

Solver=minisatprover(jni) Bitwidth=4 MaxSeq=7 SkolemDepth=4 Symmetry=20
7453 vars. 366 primary vars. 14874 clauses. 427ms.

No counterexample found. Assertion may be valid. 933 ms.

Core reduced from 25 to 11 top-level formulas. 2460ms.

Alloy’s analysis is

> fully automatic

> large bounded space

> here, analyzed 2366 cases

summary

touch does not follow within 1 step of open Safe: touch event does not occur in state Live
‘ Operators | - - — _ _ Safe
Open, touch /
close //
when close occurs, Exposed becomes false Exposed POWGIP no touch unless Exposed is true
Door L
Exposed is initially false ~ SOUICE
open, [
close Ve
when open occurs, Closed becomes false when off occurs, Live becomes false
|
Sensor | Syitch Liveis initially false
Closed on, off

every step, send off if Closed became false
H‘ Controller

send on only when Closed is true

dependability cases we've worked on

Burr Proton Therapy Center
> correct dose

> emergency stop

> treatment door interlock

Voting systems
> Pret a Voter
> Scantegrity

Tokeneer
> ongoing analysis

tokeneer

tokeneer

Secure Enclave

Card

Authentication

Enrolment
nrolmen Authority

Certificate
Authority
Station
ID Station
Workstation

/ T\

Door

Fingerprint Card
Reacer Display Reader

> commissioned by NSA as exemplar
> built by Praxis using Z and SPARK-Ada
> not just open source!

problem diagram

Users

—
—

-

/

~

Ty - - - =<

privilege

s
7

Card
Reader

\

read token

\

insert, remove
attach, detach

Controller

-~ access enclave \
\ =>have privilege
N e

dCCesS

open, close

Fingerprint
Reader

read fingerprint

. lock, unlock ——— |

—_—
—

~

_—
—

N

dCCessS

N

Enclave

I

accessible, blocked

l

Door

locked, unlocked

Latch

analyzing the design

what Praxis did

> formal spec in Z (about 120 pages); informal reasoning
> code verification with SPARK-Ada

defects found to date
> 5 code-level defects

> requirements issues (using Alloy for test case generation)
[Aydal & Woodcock 2009]

> no defects yet found in design

what we're doing
> translating design to Alloy (about 1000 lines so far)
> automatic analysis: design A assumptions = security

sample argument fragments

sig DoorlatchAlarm {

H

currentTime : Time,
currentDoor : Door,
currentlLatch : Latch,
doorAlarm : Alarm,
latchTimeout : Time,
alarmTimeout : Time

-~ latch is locked when timed out

currentlatch = Locked iff gte[currentTime, latchTimeout]

-- door alarm goes off when the door is open but the latch is locked

doorAlarm = Alarming iff
(currentDoor = Open and
currentLatch = Locked and

gte[currentTime, alarmTimeout])

-- property 2 : unlock at allowed time (pg. 10, Doc 40_4)
assert UnlockAtAllowedTime {
all s : Step |
let s' = s.next,
ut = IDStation.userToken.s,
config = IDStation.config.s,
curr = IDStation.time.s |
-~ if the latch is unlocked, then
(some w, w' : ControlledWorld | latchUnlocked[w, w', s']) implies {
-~ the user must have a token that has "recently” been validated for an entry
let token = ut.currentUserToken.t {
validToken[token]
some recentTime : timesRecentTo[curr, config.tokenRemovalDuration] |
recentTime in
config.entryPeriod[token.privCertrrole][token.privCert.clearance]

sample screenshot

TimeO
(this/ZeroTime)

Config
alarmSilentDuration: Timel
latchUnlockDuration: Time2

config

Internalé

DoorlLatchAlarm2
alarmTimeout: Time0
currentDoor: Closed
currentTime: TimeO

doorAlarm: Silent
latchTimeout: Time0

~us erToken
\

\\

\

FingerState0

fingerPresence: Present

UserTokenStatel
userTokenPresence: Present

Timeb

AuthCert
clearance: Restricted
role: Guard

7

/

FingerPrintl

landACert

template: FingerPrintTemplate
validityPeriod: Timel

authCert

IDCert
subject: Userl
subjectPubK: KeyPart2
validityPeriod: Timel

\\Z//

privCert

/c urrentUserToken

| /
n
fp t
’

TokenO
tokeniD: TokenlD

A

PrivCert
clearance: Secret
role: Guard
validityPeriod: Timel

\V/

results so far

bug in security property

> if door is opened, user must hold token with recently
validated fingerprint or valid authorization certificate

bug in spec for UnlockDoor
> timer not checked if token withdrawn after timeout

proton therapy

proton therapy treatment room

correct dose requirement

{(1) patient is
correctly selected

namelnfo = selection

’
]
1
1

(2a) interpretation reflects msg

———
-
S

map = readLISTmsg

a,

(2b) id is interpreted and sent

map.selection = sendIDmsg

g

4
.
0

D a’
Therapist selection GUI
Interface
sendIDmsg
readLISTmsg
namelnfo Messages on
Network
readlIDmsg
sendLISTmsg
A/
s settings i
Patient <— dose Beam . 9s Treatment [©----------
Equi interpretation
quipment Manager
/
/ \ p :
.I dose (6) HW operation
namelnfo | queryDosesRequest
‘\ | settings.interpretation = dose queryDosesResult
el queryListResult
— o~ all n: Number |
e . N one n.interpretation
/ (0) dose delivery \
(nameslInfo.namelnfo).doses J-— — — — _ _ | namesinfo DB
= dose doses T T T T ——— Prescription
{ Database [-----.
i (5b) there is only one id for S

}
i each name
:

all n: String | one namesinfo.n

. sendIDmsg = readIDmsg

(3) message are transmitted
authentically

sendLISTmsg = readLISTmsg

(4a) list info is sent

queryListResult =
sendLISTmsg

B

(4b) id from message

is sent to db

queryDosesRequest =
readlDmsg

———e

(4c) queried dose is used
to set equipment

settings.interpretation =
queryDosesResult

IR

(5a) queries reflect db

queryListResult =
namesinfo - inactive

queryDosesResult =

queryDosesRequest.doses

correct dose case

extraction of models
> Alloy models of messaging infrastructure
> C code translated to Java, then to Alloy using Forge

resulting insights

> very long message delay might cause bad dose

> patient identification relies on distinct patient names
> SQL injection attack vulnerability

door interlock requirement
lﬁﬁiﬂfl?o?&iﬁ?iiiined |

Door Safety
Requirement

opening door causes
DoorOpen signal

AN

AN
\ s
-

Nozzle

BeamStgpp signal

signal causes (frame : Frame)
where

frame = signalFrameMap[signal] and
TCP_IP.frameln = frame

(evtReport returns True)
Safety Treatment Beam

BCU.beamlinsert causes
_____ Control Unit Control Unit Control Unit it BeamStop signal

(req : regs) causes call: dest.calls
where

dest =req.dest and

call = RPCCallMap[req.type]

frameln causes (frameOut : Frame)
where L _______
frameOut = frameln

frampOut

frameOut causes (msg : RTWorks.msgs)
where

msg.type = RTMsgTypeMap[frameOut] and
msg.dest = RTMsgDestMap[frameOut] Manager

(inhibitBeam : callbacks) causes

______ DataDaq req : RPC.reqs
______________________ where

req.dest = BCU and

req.type = InhibitBeamStop

RPC(evtReport)

ibitBeam)

RTWorks

Treatment
Manager

logEvent causes

req : RPC.reqs
------------ where
5 . req.dest = TCU and
/ AN req.type = evtReport

logEvent
System Manager

(rtdaginDoorOpen : callbacks) causes I(msg : RTWorks.msgs) -

where (msg : msgs) causes (cb : dest.callbacks)
msg.dest = BeamManager and where

msg.type = ACT_INHIBIT_BEAM dest = msg.dest and

cb = CallbackMap[msg.type]

door interlock case

high level analysis in Alloy
> by modelling each component
> simple chain of events

code analysis

> to identify side conditions

> to extract control paths

> but hard due to missing code

approach

> lightweight extraction of control flow
> abstract interpretation of state

> user provides specs for library calls

tracing call paths

anNnon Tracer

ExpandAll) [Collapse All) (Find) (Load

@ ndaqginDoorOpen (657)
o rtvarCetBoolRTValue (0
v @ evemsSafetyEvent (64)
@ urmgrGerCurrentTRMgr (0)
v @ eventsPerformSafetyEvent (62)
@ rmgrGetCurremTRMgr (0)
¥ @ msgowBeamActon (60)
trmgrGetRoomid (0
trmgrieteamDelveryTechnique (0)
sockmsgCreateMsg (S)
TipcMsgAppendintd (0)
TipcMsgAppendint2 (0)
TipcMsgAppendStr (0)
sockmsgSendMsqg (45)

1 COCCOC@O® 0 C

@ bmConnMsgBeamAction(b (47)

< TipcMsgSetCurrent (0)
bmRisMsgOfMype (2)
TipcMsgRead (0
beamMgriogEvent (9)
bmToolGetBeamAllocation (0)
bmStatelsRequestvald (0)
bmConnService TrmgRequest (29)
@ bmStopinhibsBeaminiR (28

v
1« e9CCeC6e

strcat (0

bmControlinhibitActions (15)

@ bmToolLowerBeamStop2 (1)
Yo inser)

@ bmToolSet30And4 58endingPs

@ bmToolSet30And4 5BendingPs

@ bmToolSet30And4SBendingPs

bmSendRefreshBeamComtrolforTr

-
41 v ¢ C

v
CeO VY Vv Y

bmSendSendToTreatmentManage
> @ evemsinterruption (590)

Symbolic State Side Conditions

Var Sy
conn 0 m
cur... BE
no... “Inh .
- —- - — —— — — — — — = R “«» '
. state TR
rtdagqinDoorOpen data be

roo
mu 1) v

(*) rnvarGetBoolRTValue
evenmsSafetyEvenm

« S

tool and analysis by Aleks Millicevic

Show Component Interaction

——

tracing calls within a component

1OOO
Inter-rank cell spacing Intra-cell spacing
DataDaq {V} —C}
0 100 200 300 0 100 200 300

Treatment —
2 -)
Manager O I

TCP/IP

1 |
Q o (&)

Beam
3 Manager
o o o

RTWorks
O ’ 13, sprintt

results so far

entanglement

> door safety entangled with logging

> if logging fails, safety action is aborted
> (but hardware safety system...)

how to cheat

identifying the trusted base

touch does not follow within 1 step of cnen

Safe: touch event does not occur in state Live

<

touch unless Exposed is true

when off occurs, Live becomes false

Operators | - _ _ _ _
open, touch
close /

dh f D e
when close occurs, Exposed become< false Exposed ST
Door
bosed is initially false Source
open, :
close Live
when open occurs, Closed becomes false

Sensor Switch
Closed on, off

every step, send off if Closed became fals

send on only when Closed is tr

Controller

ive is initially false

reducing the trusted base

Operators | - — _ _ Operators | - - - — _
open, touch open, touch /
close close /

P P
Exposed Power Exposed Power
Door Door
Source Source
open, , :
close Live Live
on, off
Sensor Switch Switch
Closed on, off
Controller

simpler design = simpler argument

analysis with trusted bases

one sig Sensor extends Domain {
Closed: set Time

}

sig Open extends Event { } {
Sensorin OK implies
not Sensor.Closed.after

}

-one sig Safe extends Requirement {} {
this in OK iff
all t: Touch | not PowerSource.Live.before [t]
trustedBase = Switch + Controller + Sensor + Door + Operators

}

reducing the trusted base: examples

designing emergency stop

pendant with emergency stop button

existing design

Emergency
| Stop works

Hand
Pendant

UI Agent

Event Beam
Registration Block
tvent Controller
Queue
Operating

File
System

System

redesign

Hand

Pendant

UI Agent

Emergency
Stop works
Emergency
Stop Unit
R
Event Beam
Registration Block
Event Controller
Queue
Operating

File
System

System

alarm clock

... It’s only job is to wake you up in
~ the morning, and | believe you'll find
e Al that it does it’s job perfectly.

" Time = Alarm |

Most other alarm clock applications choose
to play the alarms/music via iTunes (via AppleScript). |

Source: | I[F Library

4k

Song Artist Time deliberately decided against this... Consider...

Grieg: Halling (Morwegian Balazs Szokolay 0:49 ™y . .

Grieg: Melodie, Op. 38/3 Balazs Szokolay 1:43 * The alarm is set to play a specific song, but the SONZ WaS$
Grieg: Halling (Morwegian Balazs Szokolay 116

Grieg: Canon, Op. 38/8 Balazs Szokolay 4:33 deleted .

Grieg: Smatrold (Puck), C Balazs Szokolay 146 . L. .

Grieg: Walzer, Op. 38/7 Balazs Szokolay 1:03 « The alarm is set to play a specific playlist, but you renamed
Grieg: Matrosernes Opse Balazs Szokolay 108 the playllst or deleted]t

Grieg: Halling (Norwegian Balazs Srokolay 247 ¢ ’

Grieg: Volksweise (Folk £ Balazs Szokolay 1:34 . 1 1

oodr EWARE e s Janas Teoney oo * The alarm is set to play a radio station, but the

internet is down.
* jTunes was recently upgraded, and requires you to

| h Q 465 songs

'E‘ Use Easy Wake

DieFauk Alsem reagree to the license next time you launch it.
The alarm application launches it for the alarm...
| Enable Alarm Cancel) (oK e You had iTunes set to play to your airTunes speakers, but you

left your airport card turned off.

* You had the iTunes preference panel open.
(Which prevents AppleScript from working)

e You had a "Get Info" panel open. (Which also prevents
AppleScript from working)

From Alarm Clock, http://www.robbiehanson.com/alarmclock/faq.html

http://www.robbiehanson.com/alarmclock/faq.html
http://www.robbiehanson.com/alarmclock/faq.html

alarm clock

Alarm

Controller ITunes / Settings
| Internet I .

Alarm

Controller

From Alarm Clock, http://www.robbiehanson.com/alarmclock/faq.html

http://www.robbiehanson.com/alarmclock/faq.html
http://www.robbiehanson.com/alarmclock/faq.html

example: voting

=S

standard design,
relying on scanner

‘ Check-in
Desk Voters
——

Optlcal Election
Scanner ‘ Official I
q Scantegrity design,

relying on voters
and 3rd party
tabulators

‘ Check-in I ‘ I ‘H Optical I ‘H I ‘ . I ‘ Election I
Desk Voters Scanner Tabulator Auditor Official

conclusions

what's typically (not) done

touch does not follow within 1 step of open

Safe: touch event does not occur in state Live

h Operators | _ — — _ _ Safe .
phehomena critical properties
not designated open, touch ~ not made explicit

close //
when clo:c,e occurs, Exposed becomes false Exposed POWG? no touch unless Exposed is true
domain Door | ~ — Source
] . T
assumptlons xposed is initially false N .
close missed
when open occurs, Closed becomes false when oft occurs, Live becomes false
|
Sensor I SWltCh Live is |n|t|a||y false
‘ no systematic
Closed on, off analysis
every step, send off if Closed became false SpECiﬁC&tiOﬂ
m Controller | references
send on only when Closed is true inaccessible

phenomena

observations

on dependability cases
> if you can't say why it works, it probably doesn't

on design

> a principle: design for simple argument

on formal methods

> two benefits: clarity of requirements, mechanical checks

on cost
> key to low cost is upfront investment, non-uniformity

too hard to argue unsafe to bmld

N :
2
: =

¥
-

a,C‘

; - a 7§
Brlttanla Bridge (Robert Stephenson 1850)

The direction and amount of the complicated strains
throughout the trussing [would] become incalculable as far as

all practical purposes are concerned...
Stephenson, explaining why he rejected a suspension design

every step, send off if Closed became false

a research question

touch does not follow within 1 step of open

Safe: touch event does not occur in state Live

‘ Operators | - - — _ _ Safe
open, touch /
close /
when close occurs, Exposed becomes false Exposed POWGIP no touch unless Exposed is true
Door !
Exposed is initially false; | Source

open, [
close ve

when open occurs, Closed becomes false

Sensor
when close occurs, Closed becomes true

Closed

when oft occurs, Live becomes false

‘ Switch L'ive is initially false

I

on, off

Controller

‘redundant’ properties

should they be included?

send on only when Closed is true

if so, how?

acknowledgments

joint work with my students
> Eunsuk Kang, Joe Near, Aleks Millicevic

phenomenology
> Michael Jackson, Problem Frames (2001)

dependability cases study
> ‘Sufficient Evidence' (NAS, 2007)

related work by many
> van Lamsweerde, Kelly, etc (goal structuring)
> Rushby, Knight, Bloomfield (assurance cases)

) L X X J

support from NSF, Northrop Grumman, Mass General

operating Safety
[}nnference

llftEI] usel\l;lﬁ:hael B

S work =

somponents imputant Pess &
hased Programming

a paper about this approach
o sulbsetion = N ree 2

m a nu I‘Epﬂl‘l S t chain [I e

tupe pI’UIJEI‘tU assumptluns Symposium Ievels & Code
mau process surtware fﬂllil‘l‘ﬁ valéi‘tles a00roa Gh htl'p Ef?eiﬁ\g = 2 perhaps

program £ functluns 5

dah |It m'gmm@u)(ﬂmplﬂjé:: ;testm mﬂgmerequwements
develupmen 2 = < ependable <&, e ufeaturesﬂ\"dence

| decisions ({evelopers &= €3 Sustems B Eﬂ!{!ﬂ?\!ﬂl‘ claims

Engineering 55 using
ﬂ[}Mana USIS made problem 5 Sl?{!lillgGTUW e
ONEgilure e
confidence = establish

particular g - certlflcatmn s must
National t I G a I = techniques (€51 GUde errglrs

article & quah[u another

p roof

Many

co
=1
()
=3

(1epe

level

programmin

mu
-— g
i1

appn
Gomputer

A Direct Path to Dependable Software, CACM, March 2009
wordle thanks to Jonathan Feinberg, IBM Research, Cambridge

backup slides

designations

Operators
open, touch
close
Exposed Power
Door
Source
open, .
close e
Sensor Switch
Closed on, off

Controller

events

open: operator opens door fully or partially

close: operator closes door fully

touch: operator touches power

on: controller issues command to switch to turn on

off: controller issues command to switch to turn off

states
Exposed: power source is exposed
Live: power in live state

Closed: sensor is in state that reports door closed

what if analysis finds no flaws?

domain assumptions A machine spec = requirement

informal problems

> wrong domain assumption

> missing phenomena or interactions

> wrong or badly expressed requirement

formal problems

> scope not large enough

> Inconsistent axiomatization
> analysis tool is broken

> ... orsystem is actually safe

generic modules: domains

module domains
abstract sig Domain {}

abstract sig Property {}

abstract sig Requirement extends Property {
trustedBase: set Domain

}
sig OK'in Domain + Property {}

assert BaseSufficient {
all r: Requirement | r.trustedBase in OK implies rin OK

}

generic modules: events

module events
open util/ordering[Time] as time
sig Time {}

abstract sig Event {
pre, post: Time

}

fact Traces {
allt: Time - last | some e: Event | e.pre =t and e.post =t.next

allt: Time - last | lone e: Event | e.pre=t

}

examining side conditions

(€xpandall) (Collapse Al) (Find) (Load) (Show Component Interaction)

@ rndaqinDoorOpen (657)
@ rvarGetBoolRTValue (0)
¥ @ eventsSafenyEvent (64)
@ rmgrGetCurremTRMgr (0)
¥ @ cventsPerformSafetyEvent (62)
@ trmgrCetCurrentTRMgr (0)
¥ @ msigoutBeamAction (60)

@ rmgrCeRoomid (0)
rmgrGetBeamDeliveryTechnique (¢
sockmsgCreateMsg (5)
TipcMsgAppendint4 (0)
TipcMsgAppendint (0)
TipcMsgAppendStr (0)
sockmsgSendMsg (48)
@ bmConnMsgBeamactionCd (47 :
TipeMsgSerCurremt (0)
bmRUsMsgOfType (2)
TipcMsgRead (0)
beamMgriLogEvem (9)
bmToolGetBeamAliocaton (|
bmStatelsRequestvalid (0) |
bn’(orm&mtchmgaequeez’
@ bmStopinhibitBeaminTR ‘

@ streat (0) |

|
bmControlinhibrActic)

-
X
¥ @ bmToollowerBea)
@ bsinsert (0) ‘
@ bmToolSet30And |
@ bmToolSet30And |
@ bmToolSer30And|
bmSendRe!reshSem;
@ bmsSendSendToTreat
> @ eventsimerrupton (590)

1« 90CCCOCeO 0

v
1900 0CO00COC

v

@evYVYy

F ————™ Yeaini

rtdaginDoorOpen ' 0
v

(*) rivarGetBoolR TValue
eventsSafetyEvent

AMMCH ¢ x ibit) (BEAMCR TR roomid)
(balnsert |
beaxMyrlogEve { EAMM ' ’
(fiestError APF ERROF MM
ginsert |
be axd ogEve { AN i3

(f tEr \FI R tEx E A
Symbolic State Side Conditions
Var name Sym Value Function Name Condeion
conn 0 rtdaqinDoorOpen rtvarCetBoolRTValue(RTVAR_DOOR_CLOSED, &do
currentRequest BEAMMCR _TMCR_INMHIBI evertsSafetyEvent true
infoMsg “Inhibit beam has beenr eventsPerformSafetyEvent true
state TRMCR _IRRADIATING msgoutBeamAction (and (not (or (ACT_INMHIBIT_BEAM < ACT_FIRST_A
data beamActionMsg sockmsgSendMsg true
roomid 1 bmConnMsgBeamActionCb fand (not (beamActionMsg = 0)) TipcMsgSetCurre
mustCaliPCy 0 bmConnService TrmgRequest true
screenid SCR_MAIN_CONTROL_R bmS:opinhibtBeaminTR true
id MSC_BEAM_ACTION * bmControlinhibtActions true
arg 0 f
currentRoom bmToolCurrentRocom
deviceName "8BSI
Sret$ 1
hostName “mer_ecubteul”
pTRMgr Tuple
actionRequest BEAMMCR _TMCR _INMIBI
mustCaliBM 1
requestValid 1
safetyEvent TRMCR DOOR 1S OPEN

on software risks

“We have become dangerously
dependent on large software systems
whose behavior is not well understood
and which often fail in unpredicted ways."

President’s Information Technology Advisory Committee, 1999

“The most likely way for the world to be destroyed,
most experts agree, is by accident.

That's where we come in. We're computer
professionals. We cause accidents.”

Nathaniel Borenstein, Programming as if People Mattered, Princeton University Press, 1991

on accidents

“Accidents are signals sent from
deep within the system

about the vulnerability and
potential for disaster that lie within”

Richard Cook and Michael O'Connor
Thinking About Accidents And Systems (2005)

on design

“There probably isn't a best way to build the system,
or even any major part of it; much more important is
to avoid choosing a terrible way, and to have a clear
division of responsibilities among the parts.”

Butler Lampson
Hints for computer system design (1983)

