
analyzable models
for software design

Daniel Jackson, MIT
University of York · February 4, 2004

2

why analyzable models?

why models?
› figure out what problem you’re solving
› explore invented concepts
› communicate with collaborators

why analyzable?
› not just finding errors early
› analysis breathes life into models!

software based on simple, strong models tends to have cleaner
interfaces, fewer bugs, and is easier to use and to maintain.

3

an inspiration (POPL, 1980)

4

desiderata

language must be
› small and simple
› expressive, esp. for structure
› declarative (for partiality)

analysis must be
› fully automatic
› semantically deep

5

alloy: a structural, analyzable logic

a notation inspired by Z
› just (sets and) relations
› everything’s a formula
› but not easily analyzed

an analysis inspired by SMV
› billions of cases in second
› counterexamples, not proof
› but not declarative

Oxford, home of Z

Pittsburgh, home of SMV

6

formal specification

model checking

object-oriented methods

logical foundations
Tarski
1941

ZF
1908

VDM
1973

Larch
1983

OCL
1998

Z
1988

SMV
1989

BMC
1999

Kautz
1992

Ernst
1997planning

OMT
1991

Codd
1970

Chen
1976relational databases

UML
1995

RelSAT
1997

Chaff
2001SAT solvers

DP
1962

Berkmin
2002

Alloy
1997

Zhang
1994

alloy’s origins

7

demo

8

ideas behind alloy

language
› every value’s a relation
› everything else is a constraint
› no hard-wired idioms

analysis
› it’s all constraint solving
› bounding the scope
› exploiting SAT

9

every value’s a relation

set

function relation

scalar

sequence

Alloy

tuple

is-a

setfunction relation

scalar

sequence

Z tuple binding

10

signatures: making structure first order

problem: how to get composite structures, but stay first order

traditional viewpoint
› member of set Book is a record
› addr component is a (binary) relation

alloy’s viewpoint
› member of set Book is an atom
› addr component is a ternary relation

sig Book { addr: Name -> Addr}
addr: Book -> Name -> Addr

11

relational operators

all values are represented as relations
{(a),(b)} for a set
{(a)} for a scalar
{(a,b)} for a tuple

operators
p + q, p - q, p & q, ~p, *p, ^p, p in q
p . q = {(p1, … pn-1, q2, … qm) | (p1,… pn)  p . (pn,q2,… qm)  q}
p -> q = {(p1, … pn, q1, … qm) | (p1,… pn)  p . (q1,… qm)  q}

example
b’.addr = b.addr + n->a
b = {(B0)}, b’ = {(B1)}, n = {(N0)}, a = {(A0)}, addr = {(B1,N0,A0)}

12

why relations are nice

easy to understand
› binary relation is a graph
› ternary relation is a graph/atom

easy to implement
› first order, so tractable
› relational kernel like compiler’s IL

uniformity
set of addresses associated with name n in set of books B
Alloy: n.(B.addr)
Z: ∪ { b: B • b.addr (| {n} |)}
OCL: B.addr[n]->asSet()

13

everything else is a constraint

predicates
› invariants

pred Init (s: State) {…}
› operations

pred Op (s, s’: State) {…}
› traces

pred Traces () {
Init (first ()) and all s: State - last () | Op (s, next(s)) }

assertions
› invariants are preserved

assert Safe {all s,s’: State | Safe(s) and Op(s,s’) => Safe(s’)}
› undo works

assert UndoOK {all s,s’,s”: State | Op(s,s’) and Undo(s’,s”) => s”= s}

14

no hard-wired idioms

what’s hard-wired?
› relational structure
› facts/predicates/functions/assertions
› subtypes and parametric polymorphism
› … but not: state machines, traces, attributes/associations, etc

idioms of Alloy usage
› refinement of Z-style operations (security, Bolton)
› asynchronous processes (key management, Taghdiri)
› transitions based on history (Rendezvous, Jazayeri)
› global synchronized events (Firewire, Jackson)
› recursive lookup function (Intentional Naming, Khurshid)
› object-oriented heap (Java views, Waingold)
› flat data model (access control, Zao)
› …

15

sample idioms: change of state

› ‘established strategy’
sig Book {addr: Name -> Addr}
pred Clear (b, b’: Book) {no b’.addr}

› object-oriented heap
sig State {deref: Ref -> Book}
pred Clear (s, s’: State, br: Ref) {no s’.deref[br]}

› asynchronous processes
sig BookProcess {addr: Name -> Addr -> Time}
pred Clear (t, t’: Time, bp: BookProcess) {no bp.addr.t’}

› explicit events
sig Event {t: Time}
sig ClearEvent extends Event {bp: BookProcess}
pred trans (e: Event) {e in ClearEvent => no e.bp.addr.t ,…}

16

sample idioms: analysis

› refactoring
pred lookup (b: Book, n: Name): set Target {…}
pred lookup’ (b: Book, n: Name): set Target {…}
assert same {all b: Book, n: Name | lookup(b,n) = lookup’(b,n)

› abstraction
pred abs {c: Concrete, a: Abstract) {…}
pred opC (c, c’: Concrete) {…}
 pred opA (a, a’: Abstract) {…}
assert refines {all a, a’: Abstract, c, c’: Concrete |

opC(c,c’) and abs(c,a) and abs(c’,a’) => opA(a,a’) }
› machine diameter

pred noRepeats () {no disj b, b’: Book | b.addr = b’.addr}
-- when noRepeats is unsatisfiable, trace is long enough

17

all constraint solving

‘show me some relations satisfying these constraints’

simulation
sig Book { addr: Name -> Addr}
pred add (b, b’: Book, n: Name, a: Addr) {…}
run add
relations: b, b’, n, a, Book, Name, Addr, addr
constraint: decl constraints, facts, add

checking
assert lookupYields {all b: Book, n: b.names | some lookup(b,n)}
check lookupYields
relations: b, n, Book, Name, Addr, addr, ord/next
constraint: decl constraints, facts, axioms of next, not lookupYields

18

scope

language is undecidable
› so no sound & complete algorithm

“try all small tests”
› model proper is unbounded
› user defines scope in command
› scope bounds each basic type

small scope hypothesis
› many bugs have small counterexamples
› … and models often have many bugs

19

small scope hypothesis

consequences
› sound: no false alarms
› incomplete: can’t prove anything

cumulative invalid assertions 90%

smallest
revealing

scope

5

misscatch

20

engine: reduction to SAT

space is huge
› in scope of 5, each relation has 225 possible values
› 10 relations gives 2250 possible assignments

will SAT help?
› SAT is hard (Cook, 1971)
› SAT is easy (Kautz, Selman et al, 1990’s)
› Chaff, Berkmin: thousands vars, millions clauses

translating to SAT
› view relation as a graph
› space of possible values: each edge is present or not
› label edge with boolean variable
› compositional translation

21

analyzer architecture

translate
formula

translate
modelmapping

boolean
formula

boolean
 instance

SAT
solver

alloy
formula

alloy
instance

scope

symmetry
breaking,
template
detection,

optimizations

customized
visualization

22

what I haven’t told you about…

scalability: dancing around the intractability tarpit
› implemented: symmetry, sharing, atomization
› prototyped: circuit minimization

overconstraint: the dark side of declarative models
› unsat core prototype
› highlights contradicting formulas

new type system: real subtypes
› makes semantics fully untyped
› still no casts, down or up
› catches more errors, more flexible, better performance

23

experience: design analyses

case studies
› about 30 completed
› serious flaws in published designs found

distinguishing features
› complex data structures (eg, file synchronization)
› network protocol over all topologies (eg, firewire, chord)
› partial model; only some operations (eg, intentional naming)
› not state machine (eg, ideal address translation)

typically
› a few hundred lines of Alloy
› longest analysis time: 10 mins to 1 hour

24

sample application: intentional naming

› a resource discovery scheme
› database and queries are attribute/value trees

Balakrishnan et al, SOSP99

building

camera

service

ne43

query

n1n0

building

camera

service

ne43 printer

database

n0

n1

n0

n0

25

sample application: intentional naming

what we did
› built Alloy model from SOSP description
› checked paper’s claims: none held
› checked code fixes: they didn’t work either
› formulated and checked more basic claims

assert Monotone {
all db: DB, q: Query, r: Rec | lookup(db,q) in lookup(add(db,r),q)

› developed notion of conformance
› fixed algorithm & code

900 lines of testing code vs. 100 lines of Alloy
Khurshid & Jackson, ASE 2000

26

sample application: beam scheduler

Northeast Proton Therapy Center
› 4 treatment rooms, multiplexed beam
› beam requests from treatment control rooms
› allocated by master control room
› beam scheduler automates de/allocation

what we did
› translated developer’s OCL model into Alloy
› analyzed for small flaws (simulation, invariants, etc)
› checked commutativity for all operation pairs

Request ; Alloc = Alloc ; Request
› found many non-commuting pairs, strange behaviours

Dennis, Jackson, Rayside, Seater

27

experience: education

helps teach modelling
› abstract descriptions, concrete cases
› closest useable modelling language to logic?

where’s it’s been used
› taught in about 20 courses worldwide
› mostly masters courses on modelling

how long to learn?
› undergraduate, no formal methods background
› can build and analyze small models in 2 weeks

28

applications: code analysis

procedure
specification

procedure
source code

alloy formula
instance is

execution trace

alloy formula
instance is

counter trace
NOT AND

unroll loops,
bound heap

applied to small, complex algorithms
› Schorr-Waite garbage collection
› red-black trees

Mandana Vaziri’s doctoral thesis

29

applications: test case generation

why?
› easier to write invariant than test cases
› all test cases within scope give better coverage
› symmetry breaking gives good quality quite

applied to Galileo, a NASA fault tree tool
› generated about 50,000 input trees, each less than 5 nodes
› found unknown subtle flaws

Sarfraz Khurshid’s doctoral thesis

invariant,
precondition

Alloy
instances

Alloy
Analyzer

Concretizer test cases

30

new views on old questions

mathematical or informal models?
› not about Greek symbols (but removing them helps)
› mathematical means simple & analyzable
› real challenge for novices is abstraction

executable or abstract?
› alloy: you can have your cake and eat it (slowly)
› compromise higher order, not declarative features

simulation or verification?
› really the same: show me a good (bad) state
› it’s not about subtle bugs

31

tool impact

developing a tool
› sanity check on language design
› complexity is intolerable
› good for implementation = good for users?
› visualization is crucial

using a tool
› amazing how many errors are exposed
› raises the bar, gives sense of confidence
› simulation is under-rated: it works!

32

some research based on alloy

› automatic analysis of action diagrams
-- R. Venkatesh, TCS India

› discovery of refinements
-- Christie Bolton, Oxford

› Ag: Alloy with dynamic logic
-- Marcelo Frias (U. Buenes Aires)

› justifying object model transforms
-- Paulo Borba (Pernambuco, Brazil)

› web ontology analysis
-- Jin Sing Dong (Singapore)

33

acknowledgments

current developers
Ilya Shlyakhter
Emina Torlak
Sam Daitch
Jonathan Edwards
Vincent Yeung
Edmond Lau
Greg Dennis
Robert Seater
Julie Pelaez

former developers
Manu Sridharan
Andrew Yip
Ning Song
Sarfraz Khurshid
Mandana Vaziri
Jesse Pavel
Ian Schechter
Li-kuo Lin
Joseph Cohen
Uriel Schafer
Arturo Arizpe

early adopters
Michael Huth
John Hatcliff
Matt Dwyer
Christie Bolton
Juergen Dingel
Cesare Tinelli
Jin Song Dong
Laura Dillon
Alain Wegmann
Marcelo Frias
Chris Wallace
Andreas Schaad
Maria Nelson
Torsten Nelson

34

alloy.mit.edu

› downloads for OS X, windows, linux
› courses, talks, case studies, papers, tutorial
› book in preparation: Analyzable Models of Software
› coming soon: Alloy 3.0

