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: Logic

At the core of every modeling language is a logic that provides the fun-
damental concepts. It must be small, simple, and expressive. A “working 
logic,” designed for expressing abstractions, unlike a logic designed for 
theoretical investigations, cannot be completely minimal, but must be 
flexible enough to allow the same idea to be expressed in different ways.
!is chapter introduces a relational logic that combines the quantifiers 
of first-order logic with the operators of the relational calculus. It’s easy 
to learn—especially if you’re familiar with basic set theory, or with rela-
tional query languages—and surprisingly powerful.
Although designed for software abstractions, the logic has been kept 
free of any notions that would tie it to a particular programming lan-
guage or execution model. Its key characteristic, which distinguishes 
it from traditional logics, is a generalization of the notion of relational 
join. As in a relational database, a relation is a set of tuples. Sets are 
represented as relations with a single column, and scalars as singleton 
sets. Consequently, the same join operator can be applied to scalars, 
sets, and relations, and changing the “multiplicity” of a relation (that is, 
whether it maps an element to a scalar or a set) in its declaration does 
not require a change to the constraints in which it appears. Dispensing 
with the distinction between sets and scalars also makes constraints 
more uniform and easier to write, and eliminates the problem of partial 
function application, so there’s no need for special “undefined” values. 
!ere are a few other novelties too, such as the ability to nest multiplici-
ties in declarations.

. #ree Logics in One
Our logic supports three different styles, which can be mixed and var-
ied at will. In the predicate calculus style, there are only two kinds of 
expression: relation names, which are used as predicates, and tuples 
formed from quantified variables.
In this style, the constraint that an address book, represented by a rela-
tion address from names to addresses, maps each name to at most one 
address might be written
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all n: Name, d, d’: Address |
 n -> d in address and n -> d’ in address implies d = d’

In the navigation expression style, expressions denote sets, which are 
formed by “navigating” from quantified variables along relations. In this 
style, the same constraint becomes

all n: Name | lone n.address

In the relational calculus style, expressions denote relations, and there 
are no quantifiers at all. Using operators we’ll define shortly, the con-
straint can be written

no ~address.address - iden

!e predicate calculus style is usually too verbose, and the relational 
calculus is often too cryptic. !e most common style is therefore the 
navigational one, with occasional uses of the other styles when appro-
priate.

Discussion

Which choice would you actually make for this constraint?
None of these. Multiplicity constraints of this kind are so common that 
the Alloy logic has some special syntax for them. In this case, you could 
say that each name is mapped to at most one address by writing

address in Name -> lone Address

Where is the predicate calculus style used?
A common use is in comprehension expressions, which allow you to 
construct a set or relation from a constraint. For example, if you have a 
relation r that relates three elements from sets A, B and C, and you want 
the columns instead in the order B, A, C, you can define a new relation 
by comprehension:

r’ = {b: B, a: A, c: C | a -> b -> c in r}

!e predicate calculus style can also be appealing when writing a very 
subtle constraint, because it’s so concrete and straightforward, and the 
quantifications often match a formulation of the constraint in natural 
language.
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Where is the relational calculus style used?
Experienced modelers find it useful for some commonly recurring con-
straints that can be expressed more concisely this way, writing, for ex-
ample, no ^r & iden to say that the relation r is acyclic. Also, you might 
write a constraint in the navigation style and notice that a quantified 
variable can be “cancelled out.” For example, the constraint

all p: Person | p.uncle = p.parent.brother

can be written more concisely as
uncle = parent.brother

(so long as uncle and parent only map members of the set Person).

Do the styles have equivalent expressive power?
No. !e navigational style is the most expressive. Predicate calculus 
lacks transitive closure, so reachability properties can’t be expressed. 
!e relational calculus has no quantifiers, and not all occurrences of 
the quantifiers of predicate calculus can be expressed purely relationally.

Does the style have an impact on the performance of the analysis?
Not in general. Basic modeling decisions about how many relations to 
use, and how many columns each relation has, have a far bigger impact.

. Atoms and Relations
All structures in our models will be built from atoms and relations, cor-
responding to the basic entities and the relationships between them.

.. Atoms
An atom is a primitive entity that is
· indivisible: it can’t be broken down into smaller parts;
· immutable: its properties don’t change over time; and
· uninterpreted: it doesn’t have any built-in properties, the way num-

bers do, for example.
Elementary particles aside, very few things in the real world are atomic; 
this is a modeling abstraction. So what do you do if you want to model 
something that is divisible, or mutable, or interpreted? You just intro-
duce relations to capture these properties as additional structure.
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.. Relations
A relation is a structure that relates atoms. It consists of a set of tuples, 
each tuple being a sequence of atoms. You can think of a relation as a 
table, in which each entry is an atom. !e order of the columns matters, 
but not the order of the rows. Each row must have an entry in every 
column.
A relation can have any number of rows, called its size. Any size is pos-
sible, including zero. !e number of columns in a relation is called its 
arity, and must be one or more. Relations with arity one, two, and three 
are said to be unary, binary, and ternary. A relation with arity of three 
or more is a multirelation.
A unary relation corresponds to a table with one column; it represents 
a set of atoms. A unary relation with only one tuple, corresponding to a 
table with a single entry, represents a scalar.

Example. A set of names, a set of addresses, each of size 3, and a 
set of address books of size 2:

Name = {(N0), (N1), (N2)}
Addr = {(D0), (D1), (D2)}
Book = {(B0), (B1)}

Example. Some scalars:
myName = {(N0)}
yourName = {(N1)}
myBook = {(B0)}

Example. A binary relation from names to addresses, for modeling 
a world in which there is only one address book (and therefore no 
need to model address books explicitly), with size 2:

address = {(N0, D0), (N1, D1)}

Example. A ternary relation (as used in chapter 2) from books to 
names to addresses, for modeling a world in which there are mul-
tiple address books, each with its own name to address mapping:

addr = {(B0, N0, D0), (B0, N1, D1), (B1, N1, D2), (B1, N2, D2)}

Book B0 maps name N0 to address D0, and name N1 to address D1; 
book B1 maps name N1 and name N2 to address D2. Fig. 3.1 shows 
this relation as a table.
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A relation with no tuples is empty. A unary relation with at most one 
tuple—that is, a relation that is either a scalar or empty—is called an 
option.

Example. An email application might store the user’s email ad-
dress, and, optionally, a distinct address used for the “reply-
to” field of messages. !e former might be modelled as a scalar 
userAddress, and the latter as an option replyAddress, which either 
contains an address or is empty.

In the Alloy logic, all values are relations, so a tuple will be represented 
by the relation containing it, in the same way that a scalar is represented 
by a singleton set. We’ll therefore use the term tuple to describe a sin-
gleton relation—a relation containing exactly one tuple.

Example. Two scalars, and the tuple that associates them:
myName = {(N0)}
myAddress = {(A1)}
myLink = {(N0, A1)}

.. Expressing Structure with Relations
With relations, you can express structures in space and time, overcom-
ing the apparent limitations of atoms as a modeling construct.

. .  A ternary relation viewed as a table.

B0 N0

B0 N1 D1

B1 N1 D2

B1 N2 D2

D0

Book Name Addr

arity = 3

si
ze

 =
 4
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Although the only objects in the logic are indivisible atoms, you can 
model a composite object with atoms for the components and a relation 
to bind them together.

Example. To say that directories can contain files, you could in-
troduce a relation contents that maps directories to the files they 
contain, which would include the tuples (D0, F0) and (D0, F1) when 
directory D0 contains the files F0 and F1.
Example. Hotel key cards, each holding two cryptographic keys, 
can be modeled as a set Card of cards, a set Key of keys, and two 
relations fst and snd from Card to Key. If a card C1 has K11 and K12 as 
its first and second keys respectively, and a card C2 has K21 and K22, 
the relations would have these values:

fst = {(C1, K11), (C2, K21)}
snd = {(C1, K12), (C2, K22)}

!is is illustrated, for card C1, in fig. 3.2.
When the content of an object is itself a relation, a multirelation is used 
to model containment.

Example. !e relation addr mentioned above (and shown in fig. 
3.1) associates address books, names and addresses. Each address 
book can be viewed as containing a name/address table.

Although atoms are immutable, you can model mutation, in which the 
value of an object changes over time, by separating the identity of the 

C1

K11 K12

sndfstK11

K12

C1

. .  A key card containing two keys (left) 
represented with atoms and relations (right).
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object and its value into separate atoms, and relating identities, values 
and times.

Example. !e history of values of some stocks might be represent-
ed by a relation value that includes the tuple (S0, V0, T0) if stock S0 
has value V0 at time T0, and (S0, V1, T1) if it has value V1 at time T1.
Example. An address book’s changing contents could be modeled 
with a relation addrT on names, addresses and times, with a value 
such as

addrT = {(N0, D0, T0), (N0, D1, T0), (N2, D2, T1)}

if the book maps name N0 to addresses D0 and D1 at time T0, and 
N2 to D2 at time T1.

When a model concerns only a single object and its changing value, a 
set of atoms can be used for that object to represent its value at differ-
ent times.

Example. !e addr relation of chapter 2 associated books, names 
and addresses. It could be used to model a static world in which 
there are several address books, each containing its own name/ad-
dress table. In fact, however, it was used to represent the changing 
value of a single address book, with the book atoms playing the 
same role as the time atoms of addrT.

Finally, although atoms are uninterpreted, you can give them properties 
by introducing relations between them.

Example. !e sequence numbers in a network protocol might be 
represented by atoms of a set SeqNumber = {(N0), (N1), …}, and 
ordered by a relation precedes, which contains the tuple (N0, N1) 
when sequence number N0 comes before sequence number N1.
Example. !e book atoms in the model of section 2.4 were ordered 
Book0, Book1, … with Book0 representing the value of the book ini-
tially, Book1 the value after one step, and so on. !e ordering was 
imposed by importing a library module that includes a relation 
next mapping Book0 to Book1, Book1 to Book2, etc.
Example. Image-editing programs such as Adobe Photoshop al-
low you to apply color transformations to images. To explore the 
particular properties of one transformation, one would need a de-
tailed model of colors and transformation functions. But to ex-
plore the abstractions underlying such a scheme, application of 
transformations to partial image selections, combining transfor-
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mations with layers, undoing and redoing transformations, and so 
on, it may be sufficient to take a more abstract view, in which an 
image is just a mapping from pixel locations to RGB values, and a 
color transformation is a function from RGB values to RGB values. 
A relation

transform = {(RGB0, RGB1), (RGB1, RGB0)}

might model the transformation that exchanges the RGB values 
RGB0 and RGB1.

Discussion

Are the names of the atoms significant?
No. Atom names never appear in models; they’re only used to describe 
instances produced by simulation or checking. !e Alloy Analyzer lets 
you assign your own names to the atoms of each set, but by default uses 
the full name of the set. So the atoms of Book will be Book0, Book1, and so 
on, rather than B0, B1, and so on.

What does an expression such as {(N0, D0), (N1, D1)} mean?
It’s an expression in the language of traditional mathematics. In this 
case, it denotes the set consisting of two tuples, the first tuple having N0 
as its first element and D0 as its second element, and the second tuple 
having N1 as its first element and D1 as its second element. !e terms N0, 
N1, D0, and D1 are names for atoms. None of this belongs to the logic it-
self; I’m using it just to explain the meaning of the fundamental notions. 
In Alloy, you can’t refer to atoms explicitly at all. You could, however, 
declare scalar variables N0, N1, D0, and D1, and then, as we shall see, this 
relation could be denoted by the expression N0 -> D0 + N1 -> D1.

Why the extra parentheses in a set expression such as {(N0)}?
In Alloy, all structures are relations, and a set is simply a relation all of 
whose tuples contain only one element. !e set {N0} would be modeled 
as this relation in Alloy; it cannot be represented directly. Because this 
kind of expression never appears in a model, the extra syntax of the 
parentheses is not inconvenient. In fact, on the contrary, the unification 
of sets and relations makes the syntax simpler, since there is no need to 
convert between sets and relations, or between scalars and sets.



 

Can relations contain relations?
No. Our relations are flat, or first order, meaning that entries are always 
atoms, and never themselves relations. Take the relation addr, from the 
example of section 3.2.2, which we used to model the idea that address 
books contain name/address mappings. In our flat representation, the 
relation’s value was a ternary relation associating books, names and ad-
dresses:

addr = {(B0, N0, D0), (B0, N1, D1), (B1, N1, D2), (B1, N2, D2)}

More conventionally, this might be represented as a function from ad-
dress books to a function from names to sets of addresses:

addrC = {
 (B0, {(N0, {D0}), (N1, {D1})}),
 (B1, {(N1, {D2}), (N2, {D2})})
 }

!e relation addrC is not directly representable in Alloy. We’ll see later 
in this chapter (in subsection 3.4.3) that the name/address mapping for 
book b, which would conventionally be written addrC(b), can be written 
b.addr in Alloy.

Why not admit higher-order relations?
!e restriction to flat relations makes the logic more tractable for analy-
sis. Flat relations, as the relational database community has discovered, 
are expressive enough for almost all applications, and their simplicity 
and uniformity is appealing. !e lack of symmetry in addrC (above), for 
example, means that it cannot be accessed from the right as easily as 
from the left. !e expression addr.a denotes the mapping from address 
books to the names they use for address a, and addr.Addr.n denotes the 
set of address books that have an entry for name n; for addrC, both would 
require a more complex construction.

Is there a loss of expressive power in the restriction to flat relations?
Yes, there is, but it can usually be worked around. Almost always, a situ-
ation that seems to call for a higher-order relation can be reformulated 
without one. Suppose we’re modeling the prerequisite structure of a 
university course catalog, in which each course has a set of prerequi-
sites, and, for admission to a course, a student is required to have taken 
all the courses in at least one of the course’s prerequisites. In a higher-
order setting, this structure could be represented as a relation from 
courses to sets of courses. For example, the relation
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prereqC = {(C3, {(C0), (C1)}), (C3, {(C0), (C2)})}

would indicate that a student wanting to take course C3 must have taken 
either C0 and C1, or C0 and C2. Simply flattening this relation to

prereqBad = {(C3, C0), (C3, C1), (C3, C2)}

won’t work, because it loses the grouping of the prerequisites. !e so-
lution is to introduce a new set of atoms to model prerequisites, along 
with a relation mapping prerequisites to their constituent courses:

prereq = {(C3, P0), (C3, P1)}
courses = {(P0, C0), (P0, C1), (P1, C0), (P1, C2)}

!is retains the essential structure: course C3 now has two possible 
prerequisites, P0, consisting of course C0 and C1, and P1, consisting of 
course C0 and C2.
!ere is another respect, by the way, in which a higher-order relation is 
more expressive than a flat relation. A function that maps atoms drawn 
from a set A to sets of atoms drawn from a set B can include a map-
ping from an atom to the empty set, thus distinguishing an atom be-
ing mapped to nothing and an atom not being mapped at all. A binary 
relation from atoms in A to atoms in B cannot make such a distinction. 
Instead, you’d declare an additional set: the address books with empty 
mappings, for example, would belong to the set Book but would not be 
mapped by addr.

Why not include composite objects as a language construct?
Traditional specification languages such as VDM and Z allow you to 
model composite objects directly with composite mathematical objects. 
For example, an address book might be represented not as an atom, 
but as a relation from names to addresses. A relationship between an 
address book and another object would then be expressible only with 
a higher-order relation. !e reasons for excluding composite objects 
in their own right are thus the reasons we’ve already given for prefer-
ring flat relations. Also, mathematical objects have no identity distinct 
from their value; if you want to talk about the values of different address 
books at different times, you need to introduce atoms representing the 
identities of the books anyway.

Can you really work without interpreted atoms such as the integers?
Yes, almost all the time. And it turns out that on most occasions that 
you might think you need integers, it’s cleaner and more abstract to use 
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atoms of an uninterpreted type with some relations to give whatever 
interpretation is needed. Alloy does actually support integers, albeit in 
a restricted way (due to the limitation of finite bounds). !e treatment 
of integers is explained in sections 3.7 and 4.8.

Can relations have infinite size and arity?
Nothing in our logic precludes relations of infinite size, but for all the 
models we’ll look at, it’s sufficient to consider only finite instantiations. 
A relation must have a finite arity, though.

Are multirelations useful in practice?
Yes, because relations are flat rather than nested, arities greater than two 
are very common. To model execution traces of a system whose state 
involves relationships will require ternary relations: two columns for 
the relationship at a given time, and an additional column for the time. 
Relations of arity four are less common; as an example, the states of a 
network routing table might relate the host at which the table resides 
(1), a second host that is the desired destination of an incoming packet 
(2), the port to be used in forwarding the message (3), and the time at 
which this table entry is present (4). Arities of five or greater are rare.

Why don’t the columns in a relation have names?
If you’re more familiar with relational databases than relational logic, 
you may find it odd that the columns of a relation are identified by their 
position rather than by name. In modeling, relations tend to have much 
smaller arities than relations in a database; it’s rare for a relation to have 
more than four columns. Moreover, in the constraints of a model, joins 
tend to be applied to a relation on particular columns, in a particular 
order. By arranging the columns carefully, almost all joins can be made 
to be on the first or last column of a relation. Consequently, treating col-
umns positionally rather than by name is more convenient, and results 
in more succinct and natural expressions.

If the order of columns matters, how do you represent an unordered re-
lationship?
An unordered relationship can be represented in different ways. !e 
simplest way is to use a relation r (ordered, as always), and add a con-
straint r = ~r that makes it symmetric—the same forward and backward. 
For example, spouse = ~spouse says that if you’re my spouse, I’m your 
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spouse. !is trick may be philosophically dubious, but in practice it’s 
fine, and much easier than introducing additional constructs.

Is the idea of treating scalars and sets as relations new?
No. It goes back to Tarski’s foundational work on the relational calculus 
[72]. All of Tarski’s relations were binary, however, so his encoding was 
a bit less natural: a set was a relation that mapped each atom in the set 
to every possible atom. Rick Hehner’s “bunches” [29] have a similar fla-
vor, but unify scalars and sets in a new kind of algebraic structure.

Isn’t it confusing to treat scalars as sets?
On first encountering this idea, some people are disturbed. After all, 
isn’t the distinction between a set and its elements the very founda-
tion of set theory? In a first-order logic, however, in which sets of sets 
are never used, no confusion arises. And in practice, breaking down 
the distinction between sets and scalars brings a nice uniformity. When 
writing a navigation expression, you don’t have to worry about whether 
an expression represents a set or a scalar. !e grandfathers of person p, 
for example, can be written p.parents.father, in which the dot operator is 
applied to a scalar such as p in exactly the same way it is applied to a set 
such as p.parents.
Combined with the treatment of partiality, this allows us to write p’s 
mother-in-law as p.wife.mother + p.husband.mother (or equivalently as 
p.(wife + husband).mother), without worrying that if p has no wife the ex-
pression p.wife may be undefined.

Which terms are Alloy specific, and which are standard in logic and set 
theory?
All the terms introduced so far are standard, with the exception of mul-
tirelation (for a relation with more than two columns) and option (for a 
set that is empty or singleton).

Is Alloy’s option like the option of the ML programming language?
Rather than treating options as singleton or empty sets, most model-
ing and programming languages use a union type. ML’s option is such 
a union: a tagged value that is either a scalar or some special null value. 
For modeling, this is less convenient, because the tagging wraps the 
value and changes its type. Consider, for example, a model of an email 
application with a scalar userAddress representing the user’s address, and 
an option replyAddress representing a separate address to be used in the 
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“reply-to” field of messages. In Alloy, these variables have the same type, 
and can be combined and compared with set operators;

userAddress = replyAddress

for example, is true if replyAddress is defined and equal to userAddress. In 
the traditional approach, the two variables have distinct types, and can-
not be compared without projecting replyAddress first.

So there aren’t really any scalars in Alloy?
Not in the standard sense. Whereas a conventional language would 
distinguish a (a scalar), {a} (a singleton set containing a scalar), (a) (a 
tuple), and {(a)} (a relation), Alloy treats them all as the same, and rep-
resents them as {(a)}.

Why is the term “option” useful? Isn’t an option either a scalar or empty?
!e term is used to describe a variable whose value is unknown, rather 
than a particular value, in the same way that you might refer to a “ve-
hicle” without knowing whether it’s a car or a truck. By definition, every 
scalar is also an option; both are sets; and every set is a relation. Typi-
cally you want to use the term that tells you most about a relation, so 
you don’t call it a “relation” if you know it’s a set, or a “set” if you know 
it’s a scalar.
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.. Functional and Injective Relations
A binary relation that maps each atom to at most one other atom is said 
to be functional, and is called a function. A binary relation that maps at 
most one atom to each atom is injective.

Example. Here are four possible values of a relation mapping 
names to addresses, illustrated in figs. 3.3–3.6:

address1 = {(N0, D0), (N1, D1), (N2, D1)}
address2 = {(N0, D0), (N1, D1), (N1, D2)}
address3 = {(N0, D0), (N1, D1), (N2, D2)}
address4 = {(N0, D1), (N1, D1), (N1, D2)}

!e first is functional but not injective; the second is injective but 
not functional; the third is both functional and injective; and the 
fourth is neither. An empty binary relation is functional and injec-
tive.

Discussion

Where does the idea of treating functions as relations come from?
!e idea of treating functions as relations has been pioneered in mod-
eling by the specification language Z [67]. Its use goes back at least to 
Zermelo and Fraenkel’s set theory (hence the “Z” in Z). Alloy is actually 
more minimalist than Z. Although Z doesn’t distinguish functions and 
relations, it does distinguish scalars, sets, and tuples from each other. In 
Alloy, everything’s a relation.

. .  Functional 
but not injective.

N0

N1

N2

D0

D1

D2

N0
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N2
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N1

N2
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D1

D2

N0

N1
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D0
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D2

. .  Injective 
but not functional.

. .  Functional 
and injective.

. .  Neither 
functional nor 

injective.
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Is it standard to treat functions as relations?
No. Most other modeling languages distinguish functions from other 
relations. In UML’s constraint language OCL [57], for example, navigat-
ing through an association can either produce an empty set or an unde-
fined value, depending on the multiplicity of the association.

Is an injective relation an injection?
!e term “injection” is traditionally applied only to a relation that is 
both functional and injective, so I try to avoid using it. Unfortunately, 
there isn’t a common name for an injective relation.

.. Domain and Range
!e domain of a relation is the set of atoms in its first column; the range 
is the set in the last column.

Example. A relation with its domain and range:
address = {(N0, D0), (N1, D1), (N2, D1)}
domain (address) = {(N0), (N1), (N2)}
range (address) = {(D0), (D1)}

A relation of higher arity has a domain and range too.
Example.

addr = {(B0, N0, D0), (B0, N1, D1), (B1, N2, D2)}
domain (addr) = {(B0), (B1)}
range (addr) = {(D0), (D1), (D2)}

Discussion

Are domain and range special operators?
No, but they are predefined for binary relations as functions in the Alloy 
library. !ey’re easily expressed with the other operators (introduced 
later): the domain and range of a binary relation r are r.univ and univ.r 
respectively.

Are the domain and range functions commonly used?
!ey are used less frequently than in languages such as Z, because of 
Alloy’s rich declaration syntax (see section 3.6), which encourages you 
to introduce sets that explicitly represent a relation’s domain and range.
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What about total and partial functions?
!e term “domain” is often used to refer to the set of atoms that might 
be mapped by a relation or function. In that case, a total function is one 
that maps every member of its domain. !is notion requires that a set 
be associated implicitly with a relation. (Alternatively, a total function 
relation might be one that maps every atom in the universe, but this is 
a very rare case.) Our logic is simpler than this: the relation is just its 
tuples, and the domain and range of the relation are determined by this 
set of tuples. I do occasionally use the terms “total” and “partial” infor-
mally, referring to whether a relation is total or partial over the set that 
appears in its declaration.

. Snapshots
Particular values of sets and binary relations can be shown graphically 
in a snapshot. You create a node for each atom, and draw an arc for each 
tuple connecting the nodes corresponding to the first and second atoms 
in the tuple. To show several relations, you label each tuple arc with the 
relation it belongs to. Sets can be shown in two ways: either by an extra 
label in a node naming a set it belongs to, or by drawing a labelled con-
tour around some nodes.

Example. A multilevel address book modeled by a relation address 
mapping names to targets, where targets are names or addresses, 
and names are aliases or groups, might be represented textually by

address = {(G0, A0), (G0, A1), (A0, D0), (A1, D1)}
Target = {(G0), (A0), (A1), (D0), (D1), (D2)}
Name = {(G0), (A0), (A1)}
Alias = {(A0), (A1)}
Group = {(G0)}
Addr = {(D0), (D1), (D2)}

or graphically by the snapshot of fig. 3.7.
Multirelations can be shown as graphs by projecting out one or more 
columns. Projection takes two steps. Suppose just one column is being 
projected out. In the first step, the column is moved to the front, so 
that it becomes the first column of the relation; each tuple is permuted 
accordingly. In the second step, the relation is split into an indexed col-
lection of relations. For each atom that appears in the first column, we 
associate the relation consisting of all those tuples that begin with that 
atom, but with the atom removed. For an atom a and relation r, this new 
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relation is given by the expression a.r (using the join operator defined 
in subsection 3.4.3).

Example. A world of several multilevel address books modeled by 
the relation addr mapping books to names to targets, where targets 
are names or addresses, and names are aliases or groups, might be 
represented textually by

addr = {(B0, G0, A0), (B0, G0, A1), (B0, A0, D0), (B0, A1, D1),
 (B1, A0, D1)}
Book = {(B0), (B1)}

(and with appropriate assignments to the other sets as in the pre-
vious example). Its projection onto the first column gives

B0.addr = {(G0, A0), (G0, A1), (A0, D0), (A1, D1)}
B1.addr = {(A0, D1)}

which could be shown visually as two graphs, the one for B0 being 
that of fig. 3.7 (but with addr for address).
Examples. All of the diagrams generated by the Alloy Analyzer in 
chapter 2 are snapshots. !e analyzer lets you customize how in-
stances are displayed; you can select a set and project all relations 
in the instance onto the columns associated with that set. In this 
case, a projection using the set Book was chosen. Under projection, 
a binary relation becomes a set; this is why, for example, the rela-

. .  A sample snapshot.
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tion names from books to the names they map appears as a label in 
fig. 2.13. !e analyzer can show sets only by labeling nodes; it can’t 
currently draw contours.

. Operators
!e language of arithmetic consists of constants (such as 0, 1, 2 …) and 
operators (such as +, -, ×). Likewise, the language of relations has its own 
constants and operators.
Operators fall into two categories. For the set operators, the tuple struc-
ture of a relation is irrelevant; the tuples might as well be regarded as at-
oms. For the relational operators, the tuple structure is essential: these 
are the operators that make relations powerful.

.. Constants
!ere are three constants:

none  empty set
univ  universal set
iden  identity

Note that none and univ, representing the set containing no atom and 
every atom respectively, are unary. To denote the empty binary rela-
tion, you write none -> none, and for the universal relation that maps ev-
ery atom to every atom, univ -> univ (using the arrow operator defined in 
subsection 3.4.3). !e identity relation is binary, and contains a tuple 
relating every atom to itself.

Example. For a model in which there are two sets
Name = {(N0), (N1), (N2)}
Addr = {(D0), (D1)}

the constants have the values
none = {}
univ = {(N0), (N1), (N2), (D0), (D1)}
iden = {(N0, N0), (N1, N1), (N2, N2), (D0, D0), (D1, D1)}

Note that iden relates all the atoms of the universe to themselves, not 
just the atoms of some subset.
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Discussion

Are these constants implicitly parameterized by type?
No. In some modeling languages, these constants are actually indexed 
collections of constants, and the appropriate instance must be selected 
by some means, either implicit or explicit. In Z, for example, the identity 
relation takes an explicit type parameter, and the empty relation is poly-
morphic. In Alloy, these constants are just three simple constants, with 
the values of iden and univ determined by the values of all the declared 
sets. Consequently, it’s rare to use iden and univ without qualification; 
you’ll usually write s <: iden, for example, to give the identity relation on 
the set s (using the restriction operator defined in subsection 3.4.3.6). If 
you forget to do this, you may get some surprises. For example, iden in 
r not only says that the relation r is reflexive but also that it maps every 
atom in the universe, which is likely to be inconsistent with r’s declara-
tion.

Are these constants useful?
!e identity relation is essential to the relational calculus style. For ex-
ample, the constraint no ^r & iden says that the relation r is acyclic. A 
common use for the empty relation is for instantiating predicates (see 
subsection 4.5.2) that take sets as arguments, as in the frame conditions 
of section 6.2.
Aside from these cases, the constants are rarely used. To say a relation 
is empty or non-empty, it’s easier to use the expression quantifiers (ex-
plained in subsection 3.5.2) than the constant none, writing no r, for ex-
ample, rather than r = none -> none. Universal relations are usually limited 
to particular sets, so instead, you’d write Name -> Addr, for example, for 
the relation that maps all names to all addresses.

Do the constants add any expressive power?
A subtle point for those interested in language design issues: You might 
think that these constants could be omitted, and defined instead in a 
library module. But the universal set can’t be defined in this way, since 
all quantifiers and comprehensions require explicit bounds. You could 
define the universal set explicitly as the union of all the free set variables 
(the top-level signatures; see subsection 4.2.1), but then you’d have to 
change the definition whenever a new set is introduced.
!e other two constants can in fact be defined. !e identity relation, 
for example, can be expressed as the comprehension {x, y: univ | x = y}. 



 

But they were included because it’s more convenient to use constants 
than library functions, and because the analyzer can exploit their spe-
cial properties more readily this way.

.. Set Operators          
!e set operators are

+  union
&  intersection
 -  difference
in  subset
 =  equality

and here is what they mean:
· a tuple is in p + q when it is in p or in q (or both);
· a tuple is in p & q when it is in p and in q;
· a tuple is in p - q when it is in p but not in q;
· p in q is true when every tuple of p is also a tuple of q;
· p = q is true when p and q have the same tuples.

!ese operators can be applied to any pair of relations so long as they 
have the same arity. Because scalars are just singleton sets, the braces 
used to form sets from scalars in traditional mathematical notation 
aren’t needed. For scalars a and b, for example, the expression a + b de-
notes the set containing both a and b.

Examples. Given the following sets
Name = {(G0), (A0), (A1)}
Alias = {(A0), (A1)}
Group = {(G0)}
RecentlyUsed = {(G0), (A1)}

· Alias + Group = {(G0), (A0), (A1)}
 gives the set of atoms that are aliases or groups;

· Alias & RecentlyUsed = {(A1)}
 gives the set of atoms that are aliases and have been recently 

used;
· Name - RecentlyUsed = {(A0)}
 gives the set of atoms that are names but have not been recently 

used;
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· RecentlyUsed in Alias
 says that every thing that has been recently used is an alias, and is 

false, because of the tuple {(G0)}, which is recently used but not 
an alias;

· RecentlyUsed in Name
 says that every thing that has been recently used is a name, and is 

true;
· Name = Group + Alias
 says that every name is a group or an alias, and conversely every 

group or alias is a name, and is true.
Examples. Given the following relations, representing portions of 
an address book cached in memory and stored on disk,

cacheAddr = {(A0, D0), (A1, D1)}
diskAddr = {(A0, D0), (A1, D2)}

· cacheAddr + diskAddr = {(A0, D0), (A1, D1), (A1, D2)}
 is the relation that maps a name to an address if it’s mapped in 

the cache or on disk;
· cacheAddr & diskAddr = {(A0, D0)}
 is the relation that maps a name to an address if it’s mapped in 

the cache and on disk;
· cacheAddr - diskAddr = {(A1, D1)}
 is the relation that maps a name to an address if it’s mapped in 

cache but not on disk;
· cacheAddr = diskAddr
 says that the mappings in the cache are the same as those on disk, 

and is false, because of the tuple (A1, D1) in cacheAddr and (A1, D2) 
in diskAddr.

Examples. Given the following scalars,
myName = {(N0)}
yourName = {(N1)}

· myName + yourName = {(N0), (N1)}
 is the set of atoms that are either my name or your name;

· myName = yourName
 says that my name is the same as your name, and is false;

· yourName in none
 says that there is no name that is your name, and is false also.
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Discussion

Is the set operator equals sign the one you used before?
No. Statements like cacheAddr = {(A0, D0), (A1, D1)} are used in this 
chapter alone to explain the meaning of the logic, and always have an 
Alloy expression on the left, and a description of a relation (in conven-
tional mathematical notation) on the right. In this case, the equals sign 
is a special definitional symbol, and is not symmetric: it would make no 
sense to write {(A0, D0), (A1, D1)} = cacheAddr.
A statement like Name = Group + Alias, on the other hand, is a constraint 
in the Alloy logic, and the equals sign is the set operator defined in this 
section. !is equality notion is symmetric, and the statement is equiva-
lent to Group + Alias = Name. I could have used a different symbol for the 
definitional equals, but that seemed a bit pedantic.

Is equality structural equality or reference equality?
A relation has no identity distinct from its value, so this distinction, 
based on programming notions, doesn’t make sense here. If two rela-
tions have the same set of tuples, they aren’t two relations: they’re just 
one and the same relation. An atom is nothing but its identity; two at-
oms are equal when they are the same atom. If you have a set of atoms 
that represent composite objects (using some relations to map the at-
oms to their contents), you can define any notion of structural equality 
you want explicitly, by introducing a new relation. (And for those C++ 
programmers out there: no, you can’t redefine the equals symbol in Al-
loy.)

Aren’t there type constraints on these operators?
Not the conventional ones. In some simply typed languages, such as Z, 
the two arguments to a set operator must have the same type. So an ex-
pression such as Book + Addr, representing the union of the set of address 
books and the set of addresses, would be illegal. In Alloy, such expres-
sions are not in general illegal, and can be put to good use. In modeling 
the value of a Java variable v of type C, for example, you might introduce 
a singleton set Null containing the null reference, and then declare

v: C + Null

to say that v is either null or a reference in the set C. In type systems that 
don’t allow unions of this form, it can be hard to express this constraint 
with a declaration, and it may be necessary to weaken it to allow a refer-
ence to any class, or to distinguish null values of different types.
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Alloy does impose some constraints, though. !e arities of the argu-
ments must match, so an expression like addr + Name is illegal. And if 
it can be shown, from declarations of variables alone, that an expres-
sion can be replaced by an empty relation without affecting the value 
of the constraint in which it appears, that expression is deemed to be 
ill-formed, even though its meaning is clear. For example, both Name 
& Book and Name & (Alias + Book) would be ill-typed because the occur-
rences of Book in both (and also Name in the first) could be replaced by 
none without affecting their meaning.

Why the keyword in?
!e keyword in was carefully chosen for its ambiguity. Because scalars 
are represented as singleton sets, in will sometimes denote membership 
(between a scalar and a set, or a tuple and a relation), conventionally 
written Ӈ, and sometimes subset (between two sets or two relations), 
conventionally written Ի.

.. Relational Operators
!e relational operators are

->  arrow (product)
 .  dot (join)
[]  box (join)
~  transpose
 ̂   transitive closure
 *  reflexive-transitive closure
<:  domain restriction
:>  range restriction
++  override

... Arrow Product   
!e arrow product (or just product) p -> q of two relations p and q is the 
relation you get by taking every combination of a tuple from p and a 
tuple from q and concatenating them.
When p and q are sets, p -> q is a binary relation. If one of p or q has arity 
of two or more, then p -> q will be a multirelation.
When p and q are tuples, p -> q will also be a tuple. In particular, when p 
and q are scalars, p -> q is a pair.
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Example. Given the following names, addresses, and address book 
mapping

n = {(N0)}
n’ = {(N1)}
d = {(D0)}
d’ = {(D1)}
address = {(N0, D0), (N1, D1)}

we have
· n -> d = {(N0, D0)}
 is the tuple mapping name n to address d;

· address = n -> d + n’ -> d’
 says that address maps n to d and n’ to d’ (and maps nothing else), 

and is true.
Example. Given the following sets of names, addresses, and ad-
dress books

Name = {(N0), (N1)}
Addr = {(D0), (D1)}
Book = {(B0)}

we have
· Name -> Addr = {(N0, D0), (N0, D1), (N1, D0), (N1, D1)}
 is the relation mapping all names to all addresses;

· Book -> Name -> Addr =  
 {(B0, N0, D0), (B0, N0, D1), (B0, N1, D0), (B0, N1, D1)}

 is the relation associating books, names and addresses in all pos-
sible ways.

Example. Given the following address book mappings and address 
books

address = {(N0, D0), (N1, D1)}
address’ = {(N2, D2)}
b = {(B0)}
b’ = {(B1)}

b -> address + b’ -> address’ = {(B0, N0, D0), (B0, N1, D1), (B1, N2, D2)} 
is the relation that associates book b with the name-address map-
ping address, and b’ with address’.
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... Dot Join   
!e quintessential relational operator is composition, or join. Let’s see 
how to combine tuples before we combine relations. To join two tuples

s1 -> … -> sm

t1 -> … -> tn

you first check whether the last atom of the first tuple (that is, sm) match-
es the first atom of the second tuple (that is, t1). If not, the result is 
empty—there is no join. If so, it’s the tuple that starts with the atoms of 
the first tuple, and finishes with the atoms of the second, omitting just 
the matching atom:

s1 ->… -> sm-1 -> t2 -> … -> tn

Examples. Here are some example of joins of tuples:
{(N0, A0)} . {(A0, D0)} = {(N0, D0)}
{(N0, D0)} . {(N0, D0)} = {}
{(N0, D0)} . {(D1)} = {}
{(N0)} . {(N0, D0)} = {(D0)}
{(N0, D0)} . {(D0)} = {(N0)}
{(B0)} . {(B0, N0, D0)} = {(N0, D0)}

!e dot join (or just join) p.q of relations p and q is the relation you get by 
taking every combination of a tuple in p and a tuple in q, and including 
their join, if it exists. !e relations p and q may have any arity, so long 
as they aren’t both unary (since that would result in a relation with zero 
arity).
When p and q are binary relations, p.q is their standard relational com-
position.  

Example. Given a relation to that maps a message to the names it’s 
intended to be sent to, and a relation address that maps names to 
addresses

to = {(M0, N0), (M0, N2), (M1, N2), (M2, N3)}
address = {(N0, D0), (N0, D1), (N1, D1), (N1, D2), (N2, D3), (N4, D3)}

the relation to.address maps a message to the addresses it should 
be sent to:

to.address = {(M0, D0), (M0, D1), (M0, D3), (M1, D3)}

and is illustrated in fig. 3.8 overleaf.
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If p and q are functions, p.q will be a function too, and in this case dot is 
equivalent to functional composition.

Examples. Given a function address mapping names to addresses, 
a function user mapping an address to its username portion, and a 
function host mapping an address to its hostname portion

address = {(N0, D0), (N1, D0), (N2, D2)}
user = {(D0, U0), (D1, U1), (D2, U2)}
host = {(D0, H0), (D1, H1), (D2, H2)}

the expressions address.user and address.host are the functions that 
map a name to the corresponding user and host respectively:

. .  A snapshot illustrating a dot join of two relations: feint 
arcs for the relation to; dashed arcs for address; and solid arcs for 

their join to.address.
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address.user = {(N0, U0), (N1, U0), (N2, U2)}
address.host = {(N0, H0), (N1, H0), (N2, H2)}

When s is a set, and r is a binary relation, s.r is the image of the set s un-
der the relation r; this image is the set you get if you follow the relation 
r for each member of s, and collect together in a single set all the sets 
that result. !is is perhaps the most common use of dot, and is called 
navigation in object modeling parlance. 
When x is a scalar, and r is a binary relation, x.r is the set of atoms that x 
maps to. For a function f and a scalar x in its domain, x.f is the scalar that 
f maps x to. So in this case, join is like function application, but note that 
x.f will be the empty set when x is not in the domain of f. Traditionally, a 
function applied outside its domain gives no result at all, and an expres-
sion involving such an application may therefore be undefined. In our 
logic, there are no undefined expressions.
You can navigate in both directions; s.r is the image of the set s going 
forward through r, and r.s is the image going backward.

Example. Given a multilevel address book represented by a rela-
tion address, and sets of aliases, groups, and addresses

address = {(G0, A0), (G0, A1), (A0, D0), (A1, D1)}
Alias = {(A0), (A1)}
Group = {(G0)}
Addr = {(D0), (D1), (D2)}

we have the following expressions:
· Alias.address = {(D0), (D1)}
 the set of results obtained by looking up any alias in the address 

book;
· Group.address = {(A0), (A1)}
 the set of results obtained by looking up any group in the address 

book;
· address.Group = {}
 the set of names that when looked up in the address book yield 

groups;
· address.Alias = {(G0)}
 the set of names that when looked up in the address book yield 

aliases.



 

Joins of relations of higher arity are common too, especially the forms 
x.q and q.x, where x is a scalar, and q is a multirelation.

Example. Given a particular address book b, and a ternary relation 
addr associating books, names, and addresses

b = {(B0)}
addr = {(B0, N0, D0), (B0, N1, D1), (B1, N2, D2)}

the expression b.addr is the name-address mapping for book b:
b.addr = {(N0, D0), (N1, D1)}

Example. Given a time t, and a ternary relation addr that contains 
the triple n -> a -> t when name n maps to address a at time t

t = {(T1)}
addr = {(N0, D0, T0), (N0, D1, T1), (N1, D2, T0), (N1, D2, T1)}

the expression addr.t is the name-address mapping at time t:
addr.t = {(N0, D1), (N1, D2)}

Example. Given a relation addr of arity four that contains the tuple 
b -> n -> a -> t when book b maps name n to address a at time t, and a 
book b and a time t

addr = {(B0, N0, D0, T0), (B0, N0, D1, T1), (B0, N1, D2, T0),
 (B0, N1, D2, T1), (B1, N2, D3, T0), (B1, N2, D4, T1)}
t = {(T1)}
b = {(B0)}

the expression b.addr.t is the name-address mapping of book b at 
time t:

b.addr.t = {(N0, D1), (N1, D2)}

Note that b.addr.t doesn’t need parentheses to indicate the or-
der in which the joins are applied. !e expressions b.(addr.t) and 
(b.addr).t are equivalent: you can project onto a particular book, 
and then onto a particular time, or you can first select the time, 
and then the book.

Discussion

Is dot join associative?
Not in general. If the arguments are binary relations, it is. But in gener-
al, the expressions (a.b).c and a.(b.c) are not equivalent. Moreover, one 
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may be ill-formed and the other well-formed. Because of the dropped 
column, the arity of a join is always one less than the sum of the arities 
of its arguments. If s and t are unary, and r is ternary, for example, the 
expression t.r will be binary, and s.(t.r) will be unary. !e expression s.t, 
however, would have zero arity, and is thus illegal, so (s.t).r is likewise 
illegal, and is certainly not equivalent to s.(t.r).

Is dot join the same as a database join?
Not quite. In relational database query languages, the join operator 
matches columns by name rather than position, and the matching col-
umn is not dropped. You can define a more database-like join as follows. 
Let id3 be the ternary identity relation

id3 = {a, b, c: univ | a = b and b = c}

and define
p�Վ�q = p.id3.q

!en p�Վ�q concatenates matching tuples like dot join, but retains the 
matching elements like database join. It also provides a nice shorthand 
for restrictions (introduced in section 3.4.3.6): s <: r and r :> s can be 
written s�Վ�r and r�Վ�s. (!anks to Butler Lampson for this insight.)

... Box Join  
!e box operator [] is semantically identical to join, but takes its argu-
ments in a different order, and has different precedence. !e expression

e1 [e2]

has the same meaning as
e2.e1

Example. Given a relation address from names to addresses, and a 
scalar n representing a name, the expression address[n] is equiva-
lent to n.address, and denotes the set of addresses that n is mapped 
to.

Dot binds more tightly than box, however, so
a.b.c [d]

is short for
d.(a.b.c)
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!e rationale for this operator is that it allows a syntactic distinction to 
be made between dereferencing a field of a composite object (with dot 
join) and performing an indexed lookup (with box join), even though 
there is no semantic distinction between the two.

Example. Given a ternary relation addr associating books, names, 
and addresses, the expression b.addr[n] denotes the set of address-
es associated with name n in book b, and is equivalent to n.(b.addr).

!e choice of the box is motivated by analogy to array notation.
Example. In a model of a class C that has an array-valued field f, the 
result of dereferencing x with field f, and then retrieving the object 
at index i can be denoted x.f[i], just as in Java, or equivalently as 
i.(x.f).

... Transpose 
!e transpose ~r of a binary relation r takes its mirror image, forming a 
new relation by reversing the order of atoms in each tuple.

Example. Given a relation representing an address book that maps 
names to the addresses they stand for

address = {(N0, D0), (N1, D0), (N2, D2)}

its transpose is the relation that maps each address to the names 
that stand for it:

~address = {(D0, N0), (D0, N1), (D2, N2)}

A binary relation r is symmetric if, whenever it contains the tuple a -> b, 
it also contains the tuple b -> a, or more succinctly as a relational con-
straint:

~r in r

Taking the transpose of a symmetric relation has no effect. !e symmet-
ric closure of r is the smallest relation that contains r and is symmetric, 
and is equal to r + ~r.

Examples. A relation connects mapping hosts to the neighbors they 
are connected to in a network would be symmetric if the connec-
tions were bidirectional. !e transpose of a relation wife mapping 
men to their wives is the relation husband mapping women to their 
husbands, and its symmetric closure is the relation spouse map-
ping each person to his or her spouse.
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Some useful facts about transpose:
· s.~r is equal to r.s, and is the image of the set s navigating backward 

through the relation r;
· r.~r is the relation that associates two atoms in the domain of the rela-

tion r when they map to a common element; when r is a function, r.~r 
is the equivalence relation that equates atoms with the same image.

· r.~r in iden therefore says that r is injective, and ~r.r in iden says that r 
is functional.
Example. If mother is the relation that maps a child to its mother, 
the expression mother.~mother is the sibling relation that maps a 
child to its siblings (and also to itself ).

Discussion

Why did you write ~r in r to say that r is symmetric?
You might have expected ~r = r instead. !e two conditions are equiva-
lent, but I prefer the first because (1) it matches the informal statement 
more closely; (2) it follows the pattern of the conditions for reflexivity 
and transitivity; and (3) it’s a good habit from an analysis perspective to 
write constraints in their weakest form. Admittedly, this is a bit pedan-
tic, and it’s not unreasonable to expect a definition of symmetry to be 
symmetric.

... Transitive Closure  
A binary relation is transitive if, whenever it contains the tuples 
a -> b and b -> c, it also contains a -> c, or more succinctly as a relational 
constraint:

r.r in r

!e transitive closure ^r of a binary relation r, or just the closure for 
short, is the smallest relation that contains r and is transitive. You can 
compute the closure by taking the relation, adding the join of the rela-
tion with itself, then adding the join of the relation with that, and so on:

^r = r + r.r + r.r.r + …

Example. A relation address representing an address book with 
multiple levels (which maps aliases and groups to groups, aliases, 
and addresses), and its transitive closure:
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address =
  {(G0, A0), (G0, G1), (A0, D0), (G1, D0), (G1, A1), (A1, D1), (A2, D2)}

^address =
 {(G0, A0), (G0, G1), (A0, D0), (G1, D0), (G1, A1), (A1, D1), (A2, D2),
 (G0, D0), (G0, A1), (G1, D1),
 (G0, D1)}

I’ve broken the transitive closure into lines to indicate the contri-
bution from the relation itself (on the first line), from its square 
address.address (on the second), and from its cube address.address.
address (on the third). Fig. 3.9 shows the closure graphically.

Viewing a relation as a graph, the transitive closure represents reach-
ability. Since the relation itself represents the paths that are one step 
long, its square the paths that are two steps long, and so on, the closure 
relates one atom to another when they are connected by a path of any 
length (except for zero).
A binary relation r is reflexive if it contains the tuple a -> a for every atom 
a, or as a relational constraint,

. .  A snapshot illustrating transitive closure of a relation: the 
feint arcs represent the relation address; the solid arcs are those that 

are added to it to form its closure ^address.

G0 A0

G1

D0

A1

A2 D2

address
^address - address

D1
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iden in r

!e reflexive-transitive closure *r is the smallest relation that contains r 
and is both transitive and reflexive, and is obtained by adding the iden-
tity relation to the transitive closure:  

*r = ^r + iden

From the graphical viewpoint, the reflexive-transitive closure relates 
one atom to another when they are connected by a path of any length, 
including zero.
Because iden relates every atom in the universe to itself (as explained in 
section 3.4.1 and the discussion that follows it), the reflexive-transitive 
closure will do so as well.

Discussion

Why does the reflexive-transitive closure associate “irrelevant” atoms?
Suppose a model has a set Book of books, a set Name of names, a set Addr 
of addresses, a book b, and a relation addr mapping books to their con-
tents, with the following values:

Book = {(B0), (B1)}
Name = {(N0), (N1)}
Addr = {(D0), (D1)}
b = {(B0)}
addr = {(B0, N0, N1), (B0, N1, D0), (B1, N1, D1)}

!en the universe will contain all the atoms
univ = {(B0), (B1), (N0), (N1), (D0), (D1)}

and the identity relation will map each to itself:
iden = {(B0, B0), (B1, B1), (N0, N0), (N1, N1), (D0, D0), (D1, D1)}

!e expression ^(b.addr), denoting the direct and indirect mapping of 
names in book b to the names and addresses reachable, will map names 
to names and addresses:

^(b.addr) = {(N0, N1), (N1, D0), (N0, D0)}

!e expression *(b.addr) will include the tuples of both these relations. 
In addition to tuples such as (N0, N0), which are expected, it will also 
includes tuples such as (B0, B0).



 

Although this seems odd, it follows naturally from the definition of 
reflexive-transitive closure and the identity relation. !e alternative 
would be to have sets implicitly associated with each relation that repre-
sent the possible members of its domain and range, which would com-
plicate the logic.
In practice this is not a problem. Closures often appear in navigation 
expressions, and the irrelevant self-tuples disappear in the join. For ex-
ample, the names and addresses reachable in zero or more steps from 
a set of names friends would be denoted friends.*(b.addr), and would not 
include any books, because friends and Book would be disjoint. If you 
need to remove the extra tuples explicitly, you can always write s <: *r to 
restrict the closure to map only atoms in the set s.

How many iterations can it take to form the closure of a relation?
For a finite universe, transitive closure needs only a finite unwinding, 
limited by the length of the longest path in the graph. For some rela-
tions, the transitive closure requires very few unwindings even if the 
universe is large. Stanley Milgram’s famous experiment in which he had 
residents of Kansas attempt to get letters to residents of Boston via ac-
quaintances showed that it took on average only six steps for a letter to 
arrive [54]. If six steps were really enough to connect any two people, it 
would mean that the closure of the knows relation is the universal rela-
tion, and that it can be obtained in six unwindings.

... Domain and Range Restrictions
!e restriction operators are used to filter relations to a given domain 
or range. !e expression s <: r, formed from a set s and a relation r, 
contains those tuples of r that start with an element in s. Similarly, r :> s 
contains the tuples of r that end with an element in s.
Restrictions can be applied to relations of any arity of two or more, but 
are most often applied to binary relations.

Examples. Given a relation representing a multilevel address book 
and sets representing the aliases, groups, and addresses

address = {(G0, A0), (G0, G1), (A0, D0),
      (G1, D0), (G1, A1), (A1, D1), (A2, D2)}
Alias = {(A0), (A1), (A2)}
Group = {(G0), (G1)}
Addr = {(D0), (D1), (D2)}
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· address :> Addr = {(A0, D0), (G1, D0), (A1, D1), (A2, D2)}
 contains the entries that map names to addresses (and not to 

other names);
· address :> Alias = {(G0, A0), (G1, A1)}
 contains the entries that map names to aliases;

· Group <: address = {(G0, A0), (G0, G1), (G1, D0), (G1, A1)}
 contains the entries that map groups.

Applying a restriction to a binary relation is like taking the image of a 
set, but without dropping the matching elements. Put more formally, if 
r is a binary relation, and s is a set, then

range (s <: r) = s.r
domain (r :> s) = r.s

!e identity relation maps every atom in the universe to itself. Often, 
what we want instead is a relation that maps every atom in some set s to 
itself, which can be written s <: iden.

... Override
!e override p ++ q of relation p by relation q is like the union, except that 
the tuples of q can replace the tuples of p rather than just augmenting 
them. Any tuple in p that matches a tuple in q by starting with the same 
element is dropped. !e relations p and q can have any matching arity 
of two or more.

Example. An address book might be represented by two relations, 
homeAddress and workAddress, mapping an alias to email addresses 
at home and at work:

homeAddress = {(A0, D1), (A1, D2), (A2, D3)}
workAddress = {(A0, D0), (A1, D2)}

!e preferred address for an alias, which is the work address if it 
exists, and otherwise the home address, is given by

homeAddress ++ workAddress = {(A0, D0), (A1, D2), (A2, D3)}

Override can be defined in terms of simpler operators. Taking the over-
ride of p by q is equivalent to taking the union of q and what’s left of p 
after removing the tuples that start with an element in the domain of q:

p ++ q = p - (domain (q) <: p) + q

Override is useful for modeling insertions into map datatypes, and as-
signment-like statements in programs.
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Example. Insertion of a key k with value v into a hashmap can be 
modeled by representing the value of the map before and after as 
two relations m and m’ from keys to values, satisfying

m’ = m ++ k -> v
Example. !e environment e of an executing Java program can be 
viewed (simplistically) as a relation mapping variables to object 
references. !e effect of a Java assignment

x = y

with a variable on both sides can be modeled in Alloy as
e’ = e ++ x -> y.e

where e and e’ are the values of the environment before and after 
execution. !e state of the heap at any point can be represented by 
one relation for each field (that is, instance variable) of each class. 
A setter statement such as

x.f = y

in which x and y are variables and f is a field can thus be described 
by

f’ = f ++ x.e -> y.e
where f and f’ represent the values of the field f before and after 
execution.

Discussion

What are the operator precedences?
Operators have a standard precedence ranking so that constraints aren’t 
marred by masses of parentheses. !e ranking follows the usual con-
ventions: unary operators (closure, transpose) precede binary opera-
tors; product operators (such as dot and arrow) precede sum operators 
(plus, minus, intersect). !e details are given in appendix B. All opera-
tors associate to the left.

. Constraints
We’ve seen how to make a constraint from two expressions using the 
comparison operators in and =. Larger constraints are made from small-
er constraints by combining them with the standard logical operators, 
and by quantifying constraints that contain free variables over bindings.
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.. Logical Operators
!ere are two forms of each logical operator: a shorthand and a verbose 
form (similar to the operators used in boolean expressions in program-
ming languages):

· not ! negation
· and && conjunction
· or  || disjunction
· implies => implication
· iff  <=> bi-implication

!e negation symbol can be combined with comparison operators, so 
a != b is equivalent to not a = b, for example. !e shorthand and the 
verbose forms are completely interchangeable, so you can write a not = 
b as well.
!ere is an else keyword that can be used with the implication operator;

F implies G else H

is equivalent to
(F and G) or ((not F) and H)

Implications are often nested. !e common idiom
C1 implies F1
else C2 implies F2
else C3 implies F3

says that under condition C1, F1 holds, and if not, then under condition 
C2, F2 holds, and if not, under condition C3, F3 holds.
Conjunctions of constraints are so common that we’ll often omit the 
and operator, and wrap the entire collection of constraints in braces. So 
{F G H} is equivalent to F and G and H.
Sometimes, it’s more natural to use a conditional expression than a con-
ditional formula. !is takes the form

C implies E1 else E2

or
C => E1 else E2

where C is a constraint, and E1 and E2 are expressions, and has the value 
of E1 when C is true, and the value of E2 otherwise.
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Examples. Suppose an address book is modeled with three rela-
tions: homeAddress and workAddress mapping an alias to email ad-
dresses at home and at work, and address mapping an alias to the 
preferred address. To say that the preferred address for an alias 
a is the work address if it exists, otherwise the home address, we 
can write

some a.workAddress =>
  a.address = a.workAddress
  else a.address = a.homeAddress

or, using a conditional expression
a.address =
 some a.workAddress => a.workAddress else a.homeAddress

.. Quantification     
A quantified constraint takes the form

Q x: e | F

where F is a constraint that contains the variable x, e is an expression 
bounding x, and Q is a quantifier.
!e forms of quantification in Alloy are

· all x: e | F  F holds for every x in e;
· some x: e | F F holds for some x in e;
· no x: e | F  F holds for no x in e;
· lone x: e | F F holds for at most one x in e;
· one x: e | F F holds for exactly one x in e.

To remember what lone means, it might help to think of it as being short 
for “less than or equal to one.”
Several variables can be bound in the same quantifier;

one x: e, y: e | F

for example, says that there is exactly one combination of values for x 
and y that makes F true. Variables with the same bounding expression 
can share a declaration, so this constraint can also be written

one x, y: e | F

By using the keyword disj before the declaration, you can restrict the 
bindings only to include ones in which the bound variables are disjoint 
from one another, so
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all disj x, y: e | F

means that F is true for any distinct combination of values for x and y. 
(See subsection 3.5.3 for cases in which x and y are not scalars.)

Examples. Given a set Address of email addresses, Name of names, 
and a relation address representing a multilevel address book map-
ping names to names and addresses,

· some n: Name, a: Address | a in n.address
 says that some name maps to some address (that is, the address 

book is not empty);
· no n: Name | n in n.^address
 says that no name can be reached by lookups from itself (that is, 

there are no cycles in the address book);
· all n: Name | lone d: Address | d in n.address
 says that every name maps to at most one address;

· all n: Name | no disj d, d’: Address | d + d’ in n.address
 says the same thing, but slightly differently: that for every name, 

there is no pair of distinct addresses that are among the results 
obtained by looking up the name.

Quantifiers can be applied to expressions too:
· some e e has some tuples;
· no e e has no tuples;
· lone e e has at most one tuple;
· one e e has exactly one tuple.

Note that some e and no e could be written e != none and e = none respec-
tively, but using the quantifiers makes the constraints more readable.

Examples. Using the sets and relation from the previous example,
· some Name
 says that the set of names is not empty;

· some address
 says that the address book is not empty: there is some pair map-

ping a name to an address or to a name;
· no (address.Addr - Name)
 says that nothing is mapped to addresses except for names;

· all n: Name | lone (n.address & Address)
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 says that every name maps to at most one address (more suc-
cinctly than in the previous example);

· all n: Name | one n.address or no n.address
 says the same thing.

.. Higher-Order Quantification
Quantified variables don’t have to be scalars; they can be sets, or even 
multirelations. A logic that allows this is no longer “first order” and be-
comes “higher order.” Alloy includes such quantifications, but they can-
not always be analyzed (see subsection 5.2.2).

Examples. Higher-order quantifications are often useful for stat-
ing properties about operators:

· all s, t: set univ | s + t = t + s
 the union operator on sets is commutative;

· all p, q: univ lone -> lone univ | p.q in univ lone -> lone univ
 the join of two functions is a function too.

Discussion

Does Alloy allow freestanding declarations?
!e declaration forms described in this section can be used for quanti-
fied variables, and for fields, and they can be used as constraints (using 
in rather than the colon). Top-level relation declarations are not sup-
ported, as they are unnecessary (as explained in the discussion follow-
ing section 4.2.2).

When can higher-order quantifications be analyzed?
Generally, the Alloy Analyzer cannot handle formulas that involve 
higher-order quantifications, so their use is discouraged. But in some 
useful cases, higher-order quantifiers can be eliminated by a scheme 
known as “Skolemization,” which turns a quantified variable into a free 
variable whose value can then be found by constraint solving. See sub-
section 5.2.2 for more details.

What’s the difference between quantifiers and multiplicities?
Novices are sometimes confused by the difference between these quan-
tifications:

lone p: some X | F
some p: lone X | F
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What makes these confusing is the use of the same keywords for the 
quantifier and the bounding expression’s multiplicity. In the first case, 
the quantifier is lone (at most one), and the multiplicity is some (one or 
more), so p is constrained to be drawn from the nonempty subsets of 
X, and the constraint says that F holds for at most one such subset p. In 
the second case, the quantifier is some, and the multiplicity is lone, so 
the constraint says that F holds for some option p, and is equivalent to

(some p: X | F) or (let p = none | F)

and is thus not really a higher-order quantification at all. I’ve never 
come across a need for the first, but the second is occasionally useful.

Does anyone really confuse quantifiers and multiplicities?
Lest you think the last question was of purely academic interest, con-
sider the following common (but surprisingly subtle) modeling mistake. 
Suppose you want to model the flushing of a line from a cache defined 
as a set of lines. You might be tempted to write something like

one x: Line | cache’ = cache - x

reading it as “pick one line so that the cache after is the cache before 
with that line removed.” But this is not what the Alloy constraint actu-
ally means. Rather, it says there is exactly one line for which the old 
and new cache are related by that constraint. Note that, in particular, 
if the cache is empty before and after, the constraint will be false, be-
cause there will be multiple values of x—in fact, any value—for which 
the body holds. What you meant to write instead was

some x: Line | cache’ = cache - x

namely that there is some line that can be removed from the cache be-
fore to obtain the cache after. !is constraint allows for the cache to be 
empty before and after. If this were not desired, analysis would find the 
error, and you could then elaborate the formula, for example to

some x: Line | x in cache and cache’ = cache - x

.. Let Expressions and Constraints
When an expression appears repeatedly, or is a subexpression of a larger, 
complicated expression, you can factor it out. !e form

let x = e | A
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is short for A with each occurrence of the variable x replaced by the ex-
pression e. !e body of the let, A, and thus the form as a whole, can be a 
constraint or an expression.

Example. Revisiting the version of the address book with three 
relations—homeAddress and workAddress mapping an alias to email 
addresses at home and at work, and address mapping an alias to the 
preferred address—we can say that the preferred address for an 
alias a is the work address if it exists, otherwise the home address, 
by writing

all a: Alias |
 let w = a.workAddress |
  a.address = some w implies w else a.homeAddress

or
all a: Alias |
  a.address =
  let w = a.workAddress |
   some w implies w else a.homeAddress

Discussion

Can let bindings be recursive?
No. !ey only provide a convenient shorthand, and don’t allow recur-
sive definitions. A variable introduced by a let on the left-hand side of 
a binding cannot appear on the right-hand side of the same binding, or 
one that precedes it in the same let construct.

.. Comprehensions
Comprehensions make relations from properties. !e comprehension 
expression

{x1: e1, x2: e2, …, xn: en | F}

makes a relation with all tuples of the form x1 -> x2 -> … -> xn for which the 
constraint F holds, and where the value of xi is drawn from the value 
of the bounding set expression ei. Each expression ei must denote a set, 
and not a relation of higher arity.

Examples. In a multilevel address book represented by a relation 
address mapping names in the set Name to names and also to ad-
dresses in the set Addr,
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· {n: Name | no n.^address & Addr}
 is the set of names that don’t resolve to any actual addresses;

· {n: Name, a: Addr | n -> a in ^address}
 is a relation mapping names to addresses that corresponds to the 

multilevel lookup.

. Declarations and Multiplicity Constraints
A declaration introduces a relation name. We’ve just seen how decla-
rations are used in quantified constraints and comprehensions. Free-
standing declarations of relation names make sense too, although we’ll 
see in chapter 4 how, in the full Alloy language, these would instead be 
declared within “signatures.”
!e notion of multiplicity is closely tied to the notion of declaration. It’s 
not essential in a logic, but I’ve included it in this chapter because it’s so 
useful, and can be explained independently of the structuring mecha-
nisms of Alloy.

.. Declarations
A constraint of the form

relation-name : expression

is called a declaration, and says that the relation named on the left has a 
value that is a subset of the value of the bounding expression on the right. 
!e bounding expression is usually formed with unary relations and the 
arrow operator, but any expression can be used. In fact, as we shall see 
in the next two sections, the bounding expression on the right can actu-
ally be a more general form of expression that uses multiplicity symbols.
Declarations in this form, with the colon as the operator, are used to de-
clare bound variables in quantified formulas (section 3.5.2), and fields 
of signatures (section 4.2). But the same form can also constrain a pre-
viously declared variable, or an arbitrary expression (section 3.6.4), in 
which case the colon is replaced by the keyword in.

Examples. !e address relation, representing a single address book, 
maps names to addresses:

address: Name -> Addr

!e addr relation, representing a collection of address books, maps 
books to names to addresses:
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addr: Book -> Name -> Addr

A relation address representing a multilevel address book maps 
names to names and addresses:

address: Name -> (Name + Addr)

!e same relation can be declared in different ways, depending on how 
much information you want to put in the declaration.

Example. A declaration saying that a relation address maps aliases 
and groups to addresses and to aliases and groups

address: (Alias + Group) -> (Addr + Alias + Group)

and a stronger declaration of the same relation, saying, in addi-
tion, that aliases, unlike groups, are always mapped directly to ad-
dresses:

address: (Alias -> Addr) + (Group -> (Addr + Alias + Group))

Relations, not just sets, can appear on the right-hand side of declara-
tions too.

Example. An address book might be represented with three rela-
tions, representing the home, work, and preferred addresses:

workAddress, homeAddress: Alias -> Addr
prefAddress: workAddress + homeAddress

.. Set Multiplicities
A declaration can include multiplicity constraints, which are sometimes 
implicit. Multiplicities are expressed with the multiplicity keywords:

· set any number
· one exactly one
· lone zero or one
· some one or more

Note that one, lone, and some are the same keywords used for quantifica-
tion.
!e meaning of a declaration depends on the arity of the bounding ex-
pression. If it denotes a set (that is, is unary), it can be prefixed by a 
multiplicity keyword like this

x: m e
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which constrains the size of the set x according to m. For a set-valued 
bounding expression, omitting the keyword is the same as writing one. 
So if no keyword appears, the declaration makes the variable a scalar.

Examples
· RecentlyUsed: set Name
 says that RecentlyUsed is a subset of the set Name;

· senderAddress: Addr
 says that senderAddress is a scalar in the set Addr;

· senderName: lone Name
 says that senderName is an option: either a scalar in the set Name, 

or empty;
· receiverAddresses: some Addr
 says that receiverAddresses is a nonempty subset of Addr.

!e declarations of variables in quantified constraints are declarations 
of exactly the same form, and follow the same rules. !e only difference 
is that quantifiers introduce variables that are bound within the body 
of the quantified constraint; the other declarations we have seen intro-
duce free variables.

Example. !e quantification we saw above,
some n: Name, a: Address | a in n.address

has two declarations, binding the scalars n and a.

.. Relation Multiplicities
When the bounding expression is a relation (that is, a relation with arity 
greater than one), it may not be preceded by a multiplicity keyword. But 
if the bounding expression is constructed with the arrow operator, mul-
tiplicities can appear inside it. Suppose the declaration looks like this:

r: A m -> n B

where m and n are multiplicity keywords (and where A and B are, for 
now, sets). !en the relation r is constrained to map each member of A 
to n members of B, and to map m members of A to each member of B.
Such a declaration can indicate the domain and range of the relation 
(see subsection 3.2.5), and whether or not it is functional or injective 
(see subsection 3.2.4):

· r: A -> one B
 a function whose domain is A;
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· r: A one -> B
 an injective relation whose range is B;

· r: A -> lone B
 a function that is partial over the domain A;

· r: A one -> one B
 an injective function with domain A and range B, also called a 

bijection from A to B;
· r: A some -> some B
 a relation with domain A and range B.
Examples. Some declarations and their meaning:
· workAddress: Alias -> lone Addr
 !e relation workAddress is a function that maps each member 

of the set Alias to at most one member of the set Addr; each alias 
represents at most one work address.

· homeAddress: Alias -> one Addr
 Each alias represents exactly one home address.

· members: Group lone -> some Addr
 An address belongs to at most one group, and a group contains at 

least one address.
Multiplicities are just a shorthand, and can be replaced by standard 
constraints; the multiplicity constraint in

r: A m -> n B

can be written as
all a: A | n a.r
all b: B | m r.b

but multiplicities are preferable because they are terser and easier to 
read.

Example. !e last declaration of the previous example
members: Group lone -> some Addr

can be replaced by
members: Group -> Addr

along with the constraints
all g: Group | some g.members
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all a: Addr | lone members.a

!e expressions A and B can be arbitrary expressions, and don’t have 
to be relation names. !ey also don’t have to represent unary relations. 
!e rule is generalized simply by replacing “member” by “tuple.” !us

r: A m -> n B

says that r maps m tuples in A to each tuple in B, and maps each tuple in 
A to n tuples in B.

Example. !e declaration
addr: (Book -> Name) -> lone Addr

says that the relation addr associates at most one address with each 
address book and name pair.

.. Declaration Formulas
Declarations usually introduce new names, but the same form can also 
be used to impose constraints on relations that have already been de-
clared, or on arbitrary expressions. In this case, the subset operator in 
is used in place of the colon, and the term “declaration formula” is used.

Example. For an address book represented by a relation address 
mapping groups and aliases to addresses

address in (Group + Alias) -> Addr

a declaration formula might say that each alias maps to at most 
one address:

Alias <: address in Alias -> lone Addr

A declaration formula is like any other formula, and can be combined 
with logical operators, placed inside the body of quantifications, and so 
on.

Example. Given a relation addr associating address books, names 
and addresses, the constraint that each address book is injective 
(that is, maps at most one name to an address) can be written

all b: Book | b.addr in Name lone -> Addr

.. Nested Multiplicities
Multiplicities can be nested. Suppose you have a declaration of the form

r: A  -> (B m -> n C)
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!is means that, for each tuple in A, the corresponding tuples in B -> C 
form a relation with the given multiplicity. In the case that A is a set, the 
multiplicity constraint is equivalent to

all a: A | a.r in B m -> n C

Similarly,
r: (A m -> n B) -> C

will be equivalent to
all c: C | r.c in A m -> n B

Examples. !e declaration
addr: Book -> (Name lone -> Addr)

says that, for any book, each address is associated with at most one 
name, and is equivalent to

all b: Book | b.addr in Name lone -> Addr

whereas
addr: (Book -> Name) lone -> Addr

says that each address is associated with at most one book/name 
combination. !e first allows an address to have different names 
in different books; the second does not.

. Cardinality and Integers 
!e operator # applied to a relation gives the number of tuples it con-
tains, as an integer value. !e following operators can be used to com-
bine integers:

plus  addition
minus subtraction
mul  multiplication
div  division
rem  remainder

and the following to compare them:
=  equals
<  less than
>  greater than
=<  less than or equal to
>=  greater than or equal to
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Example. For a relation address

address: (Group + Alias) -> Addr

mapping groups and aliases to addresses, the constraint that every 
group has more than one address associated with it can be written

all g: Group | #g.address > 1

Example. Suppose an email program needs to break groups of ad-
dresses into smaller subgroups. Given a relation mapping groups 
to the addresses they contain,

address: Group -> Addr

a second relation 
split: Group -> Group

might map a group to its subgroups under the constraint that no 
group is a subgroup of itself

no g: Group | g in g.split

that a group’s subgroups contain all its addresses
all g: split.Group | g.address = g.split.address

and that the subgroups are disjoint
all g: Group, disj g1, g2: g.split | no g1.address & g2.address

!e cardinality constraints on the division into subgroups might 
be that any group with more than 5 members is split up

all g: Group | #g.address > 5 implies some g.split

that no subgroup contains more than 5 members
all g: Group.split | #g.address =< 5

and that subgroups are of roughly equal size (differing from each 
other by at most one)

all g: Group, disj g1, g2: g.split |
  #g1.address < #g2.address
   implies #g2.address = #g1.address.plus[1]

!e expression e.sum denotes the sum of a set of integers e, and the ex-
pression

sum x: e | ie
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denotes the integer obtained by summing the values of the integer ex-
pression ie for all values of the scalar x drawn from the set e.

Example. !e size of a group is the sum of the sizes of its sub-
groups:

all g: split.Group | #g.address = (sum g’: g.split | #g’.address)

Discussion

Why not use the standard symbol + for addition?
An earlier version of Alloy used the same symbol for integer addition 
and relational union, but this complicated the language. !e current 
version avoids any ambiguity by using distinct integer operators.

What kind of form is x.plus[1]?
You can think of plus, minus, etc. as predefined ternary relations repre-
senting the arithmetic operators. So this expression is just a standard 
join using dot and box, and could be written equivalently as plus[x,1], 
for example.

Can integers be atoms in relations?
Yes, they can. But the arithmetic operators and comparisons cannot be 
applied to sets, so in a formula such as S =< T, if S and T are sets of inte-
gers, the operator will actually compare their sums, as if you’d written

S.sum =< T.sum

and similarly S.plus[T] will be short for (S.sum).plus[(T.sum)].
!e equality operator, however, retains its standard meaning, so S = T 
will be false when S and T are distinct sets of integers, even if their sums 
are equal. !is has the somewhat disturbing consequence that

S =< T and T =< S implies S.sum = T.sum

will always be true, but
S =< T and T =< S implies S = T

may not be.

What kind of form is S.sum?
!at’s a good question. Unfortunately, it can’t be interpreted as a stan-
dard join, since the sum takes the entire set and produces a single in-
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teger (that is, a scalar) result. !ink of sum as a special function, which, 
like equality, cannot be represented as a first-order relation.


