
alloy
Daniel Jackson

M
IT Lab for Com

puter Science
6898: Advanced Topics in Software Design

February 11, 2002

2

course adm
in

schedule
›today: Alloy language
›weds: m

odelling idiom
s

first problem
 set out; due 2 weeks later

›m
on: holiday

›weds: peer review
›m

on: JM
L, O

CL, Z

peer review
›4 students present m

odels for discussion

tasks
›scribe for today
›organizer for peer review
›presenters on JM

L, O
CL, Z

new
 version of bill’s notes online

3

software blueprints

what?
›clear abstract design
›captures just essence

why?
›fewer showstopper flaws
›m

ajor refactoring less likely
›easier coding, better perform

ance

how?
›identify risky aspects
›develop m

odel increm
entally

›sim
ulate & analyze as you go

4

alloy: a new approach

alloy
›language & analyzer designed hand-in-hand
›fully autom

atic checking of theorem
s

›sim
ulation without test cases

language
›a flexible notation for describing structure
›static structures, or dynam

ic behaviours
›a logic, so declarative: increm

ental & im
plicit

analyzer
›m

ouse-click autom
ation

›generates counterexam
ples to theorem

s
›based on new SAT technology

5

roots &
 influences

Z notation (O
xford, 1980-1992)

›elegant & powerful, but no autom
ation

SM
V m

odel checker (CM
U, 1989)

›10 100 states, but low-level & for hardware

Nitpick (Jackson & Dam
on, 1995)

›Z subset (no quantifiers), explicit search

Alloy (Jackson, Shlyakhter, Sridharan, 1997-2002)
›full logic with quantifiers & any-arity relations
›flexible structuring m

echanism
s

›SAT backend, new solvers every m
onth

6

experience with alloy

applications
›Chord peer-to-peer lookup (W

ee)
›Access control (W

ee)
›Intentional Nam

ing (Khurshid)
›M

icrosoft CO
M

 (Sullivan)
›Classic distributed algorithm

s (Shlyakhter)
›Firewire leader election (Jackson)
›Red-black tree invariants (Vaziri)

taught in courses at
›CM

U, W
aterloo, W

isconsin, Rochester, Kansas State, Irvine,
Georgia Tech, Q

ueen’s, M
ichigan State, Im

perial, Colorado
State, Twente

7

elem
ents of alloy project

language design
flexible, clean syntax, all F.O

.

schem
e for translation to SAT

skolem
ization, grounding out

exploiting sym
m

etry & sharing

custom
izable visualization

fram
ework for plug-in solvers

currently Chaff & BerkM
in

decouples Alloy from
 SAT

type
checker

SA
TLab

translator

visualizer

C
haff dot

Berkm
in

RelSA
T

8

alloy type system

types
›a universe of atom

s, partitioned into basic types
›relational type is sequence of basic types
›sets are unary relations; scalars are singleton sets

exam
ples

›basic types RO
UTER, IP, LINK

›relations
Up: hRO

UTERi
the set of routers that’s up

ip: hRO
UTER, IPi

m
aps router to its IP addr

from
, to: hLINK,RO

UTERi
m

aps link to routers
table: hRO

UTER, IP, LINKi
m

aps router to table

9

relational operators

joinp.q = {(p
1 , …

p
n-1 , q

2 , …
 q

m) |(p
1 , …

p
n)2

p ^
 (q

1 , …
 q

m)2
q ^

 p
n =q

1 }
for binary relations, p.q is com

position
for set s and relation r, s.r is relational im

age
q[p] is syntactic variant of p.q

product
p->q = {(p

1 , …
p

n , q
1 , …

 q
m) | (p

1 , …
p

n)2
p ^

 (q
1 , …

 q
m) 2

q}
for sets s and t, s->t is cross product

set operators
p+q, p-q, p&q

union, difference, intersection
p in q = ‘every tuple in p is also in q’
for scalar e and set s, e in s is set m

em
bership

for relations p and q, p in q is set subset

10

alloy declarations

m
odule routing

-- declare sets &
 relations

sig IP {}

sig Link {from
, to: Router}

sig Router {
ip: IP,
table: IP ->? Link,
nexts: set Router
}

sig U
p extends Router {}

IP: hIPi
Link: hLINKi
from

, to: hLINK,RO
UTERi

Router: hRO
UTERi

ip: hRO
UTER, IPi

table: hRO
UTER, IP, LINKi

nexts: hRO
UTER,RO

UTERi
Up: hRO

UTERi

11

a sam
ple network

12

interlude: identity etc

constants
›iden[t]

identity: m
aps each atom

 of type of t to itself
›univ [t]

universal: contains every tuple of type t
›none [t]

zero: contains no tuple of type t

exam
ples

›
sig Router {

ip: IP,
table: IP ->? Link,
nexts: set Router
}

›fact NoSelfLinks {all r: Router | r !in r.nexts}
›fact NoSelfLinks’ {no Router$nexts & iden [Router]}

13

alloy constraints

fact Basics {
all r: Router {

// router table refers only to router's links
r.table[IP].from

 = r
// nexts are routers reachable in one step
r.nexts = r.table[IP].to
// router doesn't forw

ard to itself
no r.table[r.ip] }

// ip addresses are unique
no disj r1, r2: Router | r1.ip = r2.ip }

fun Consistent () {
// table forw

ards on plausible link
all r: Router, i: IP | r.table[i].to in i.~ip.*~nexts }

14

sim
ulation com

m
ands

-- show
 m

e a netw
ork that satisfies the Consistent constraint

run Consistent for 2

-- show
 m

e one that doesn’t
fun Inconsistent () {not Consistent ()}
run Inconsistent for 2

15

an inconsistent state

16

assertions &
 com

m
ands

-- define forw
arding operation

-- packet w
ith destination d goes from

 at to at’
fun Forward (d: IP, at, at': Router) {

at' = at.table[d].to
}

-- assert that packet doesn’t get stuck in a loop
assert Progress {

all d: IP, at, at': Router |
Consistent() && Forward (d, at, at') => at != at’

}

-- issue com
m

and to check assertion
check Progress for 4

17

lack of progress

18

introducing m
utation

-- links now
 depend on state

sig Link {from
, to: State ->! Router}

-- one table per state
sig Router {ip: IP, table: State -> IP ->? Link}

-- state is just an atom
-- put router connectivity here
sig State {nexts: Router -> Router}

19

state in constraints

fact {all r: Router, s: State {
(r.table[s][IP].from

)[s] = r
s.nexts[r] = (r.table[s] [IP].to)[s]
no r.table[s][r.ip]
}

no disj r1, r2: Router | r1.ip = r2.ip
}

fun Consistent (s: State) {
all r: Router, i: IP |

(r.table[s][i].to)[s] in i.~ip.*~(s.nexts)
}

20

propagation

in one step, each router can …
›

incorporate a neighbour’s entries
›

drop entries

fun Propagate (s, s': State) {
all r: Router |

r.table[s'] in r.table[s] + r.~(s.nexts).table[s]
}

declarative spec
›

m
ore possibilities, better checking

›
easier than w

riting operationally

21

does propagation work?

assert PropagationO
K

 {
all s, s': State |

Consistent (s) &
&

 Propagate (s,s') => Consistent (s')
}

check PropagationO
K

 for 2

22

no!

23

try again…

fun N
oTopologyChange (s,s': State) {

all x: Link {
x.from

[s] = x.from
[s']

x.to[s] = x.to[s']
}

}

assert PropagationO
K

' {
all s, s': State |

Consistent (s) &
&

 N
oTopologyChange (s,s')

 &
&

 Propagate (s,s') => Consistent (s')
}

check PropagationO
K

' for 4 but 2 State

24

still broken!

25

language recap (1)

sig X {f: Y} declares
›a set X
›a type TX associated with X
›a relation f with type hTX,TYi
›a constraint (all x: X | x.f in Y && one x.f)

fact {…
}

introduces a global constraint

fun F (…
) {…

}
declares a constraint to be instantiated

assert A {…
}

declares a theorem
 intended to follow from

 the facts

26

language recap (2)

run F for 3 instructs analyzer to
›find exam

ple of F
›using 3 atom

s for each type

check A for 5 but 2 X instructs analyzer to
›find counterexam

ple of A
›using 5 atom

s for each type, but 2 for type TX

27

other features (3)

arbitrary expressions in decls
›sig PhoneBook {friends: set Friend, num

ber: friends -> Num
}

signature extensions
›sig M

an extends Person {wife: option W
om

an}

polym
orphism

›fun Acyclic[t] (r: t->t) {no ^r & iden[t]}

m
odules

›open m
odels/trees

integers
›#r.table[IP] < r.fanout

28

m
odels, validity &

 scopes

sem
antic elem

ents
›assignm

ent: function from
 free variables to values

›m
eaning functions
E : Expression -> Ass -> Relation
F : Form

ula -> Ass -> Bool

exam
ples

›expression: Alice.~likes
›assignm

ent:
Alice = {(alice)}
Person = {(alice),(bob),(carol)}
likes = {(bob, alice),(carol, alice)}

›value: {(bob),(carol)}

29

›form
ula: Alice in p.likes

›assignm
ent:

p = {(bob)}
Alice = {(alice)}
Person = {(alice),(bob),(carol)}
likes = {(bob, alice),(carol, alice)}

›value: true

›form
ula: all p: Person | Alice in p.likes

›assignm
ent:

Alice = {(alice)}
Person = {(alice),(bob),(carol)}
likes = {(bob, alice),(carol, alice)}

›value: false

30

validity, satisfiability, etc

m
eaning of a form

ula
›Ass (f) = {set of all well-typed assignm

ents for form
ula f}

›M
odels (f) = {a: Ass(f) | F[f]a = true}

›Valid (f) = all a: Ass (f) | a in M
odels(f)

›Satisfiable (f) = som
e a: Ass (f) | a in M

odels(f)
›! Valid (f) = Satisfiable (!f)

checking assertion
›SYSTEM

 => PRO
PERTY

›intended to be valid, so try to show that negation is sat
›m

odel of negation of theorem
 is a counterexam

ple

31

scope

a scope is a function
›from

 basic types to natural num
bers

assignm
ent a is within scope s iff

›for basic type t, #a(t) ≤ s(t)

‘sm
all scope hypothesis’

›m
any errors can be found in sm

all scopes
›ie,for the theorem

s f that arise in practice
if f has a counterexam

ple, it has one in a sm
all scope

32

what you’ve seen

sim
ple notation

›expressive but first-order
›properties in sam

e notation
›static & dynam

ic constraints
›flexible: no fixed idiom

fully autom
atic analysis

›sim
ulation, even of im

plicit operations
›checking over large spaces
›concrete output

expressive
intractable

tractable
inexpressive

33

increm
entality

all behaviours

no behaviours

a safety property

declarative

operational

34

next tim
e

idiom
s

›m
utation

›fram
e conditions

›object-oriented structure
›operations and traces

reading
›questions are on web page
›answers to m

e by m
ail before class

