
objective
cam

l
Daniel Jackson

M
IT Lab for Com

puter Science
6898: Advanced Topics in Software Design

M
arch 18, 2002

2

topics for today

fam
iliar notions (from

 Schem
e)

›let bindings, functions, closures, lists

new notions (from
 M

L)
›inferred types and param

etric polym
orphism

›side-effects and the unit type
›datatypes (variants)

3

functions

applying an anonym
ous function

(fun x -> 2 * x) 3;;
- : int = 6

declaring a function and applying it
let dbl = fun x -> 2 * x;;
val dbl : int -> int = <fun>
dbl 3;;
- : int = 6

functionals, or higher-order functions
let twice = fun f -> (fun x -> (f (f x)));;
val twice : ('a -> 'a) -> 'a -> 'a = <fun>
(twice dbl) 3;;
- : int = 12

4

let bindings

a let expression binds a variable to a value
let x = 3 and y = 4 in x + y;;
- : int = 7

read-eval-print-loop uses let instead of define
let x = 5;;
val x : int = 5
x;;
- : int = 5

recursive let
let rec fact i = if i = 0 then 1 else i * fact (i - 1);;
val fact : int -> int = <fun>
fact 4;;
- : int = 24

5

let vs. define

let k = 5;;
val k : int = 5
let f = fun x -> x + k;;
val f : int -> int = <fun>
f 3;;
- : int = 8
let k = 6;;
val k : int = 6
f 3;;
- : int = 8

let is lexical
›no side-effecting top-level define built-in

6

tuples

tuple constructor
let x = 1, 2;;
val x : int * int = 1, 2
fst x;;
- : int = 1
snd x;;
- : int = 2

em
pty tuple, used instead of ‘void’

();;
- : unit = ()
print_string;;
- : string -> unit = <fun>

7

function argum
ents

tupled form
: like in an im

perative language
let diff (i,j) = if i < j then j-i else i-j;;
val diff : int * int -> int = <fun>
diff (3, 4);;
- : int = 1
(diff 3 4);;
This function is applied to too m

any argum
ents

curried form
: stages the com

putation
let diff i j = if i < j then j-i else i-j;;
val diff : int -> int -> int = <fun>
(diff 3) 4;;
- : int = 1
(diff 3 4);;
- : int = 1

8

[1;2];;
- : int list = [1; 2]
1::2::[];;
- : int list = [1; 2]

lists are hom
ogeneous

[[1]];;
- : int list list = [[1]]
[1;[2]];;
This expression has type 'a list but is here used with type int

em
pty list is polym

orphic
[];;
- : 'a list = []

lists

9

polym
orphic functions

the sim
plest polym

orphic function
fun x -> x;;
- : 'a -> 'a = <fun>

a polym
orphic function over lists

let cons e l = e :: l;;
val cons : 'a -> 'a list -> 'a list = <fun>
cons 1 2;;
This expression has type int but is here used w

ith type 'a list
cons 1 [];;
- : int list = [1]

10

datatypes

a sim
ple datatype

type color = Red | G
reen | Blue;;

type color = Red | G
reen | Blue

Red;;
- : color = Red
[Red ; G

reen];;
- : color list = [Red; G

reen]

constructors can take argum
ents

type num
tree = Em

pty | Tree of num
tree * int * num

tree;;
type num

tree = Em
pty | Tree of num

tree * int * num
tree

Em
pty;;

- : num
tree = Em

pty
Tree (Em

pty, 3, Em
pty);;

- : num
tree = Tree (Em

pty, 3, Em
pty)

11

patterns

a function on num
ber trees

type num
tree = Em

pty | Tree of num
tree * int * num

tree;;
let rec treesum

 t =
 m

atch t w
ith Em

pty -> 0
 | Tree (t1, i, t2) -> i + treesum

 t1 + treesum
 t2;;

val treesum
 : num

tree -> int = <fun>
let tt = Tree (Tree (Em

pty, 1, Em
pty), 3, Tree (Em

pty, 2,Em
pty));;

…
treesum

 tt;;
- : int = 6

a function on lists
let rec sum

 l = m
atch l w

ith [] -> 0 | e :: rest -> e + sum
 rest;;

val sum
 : int list -> int = <fun>

sum
 [1;2;3;4];;

- : int = 10

12

puzzle: poly functional over lists

write the function m
ap

›val m
ap : ('a -> 'b) -> 'a list -> 'b list

solution
let rec m

ap f l =
m

atch l with [] -> [] | x :: xs -> (f x) :: (m
ap f xs);;

val m
ap : ('a -> 'b) -> 'a list -> 'b list = <fun>

m
ap dbl [1;2];;

- : int list = [2; 4]

13

puzzle: user-defined poly datatypes

a polym
orphic tree

type 'a tree = Em
pty | Tree of ('a tree) * 'a * ('a tree);;

type 'a tree = Em
pty | Tree of 'a tree * 'a * 'a tree

what is the type of treefold?
let rec treefold f b t =
 m

atch t with Em
pty -> b

| Tree (left, v, right) -> f (treefold f b left, v, treefold f b right);;

val treefold : ('a * 'b * 'a -> 'a) -> 'a -> 'b tree -> 'a = <fun>

14

side-effects

m
utable cells

let seed = ref 0;;
val seed : int ref = {contents=0}

dereference
!seed;;
- : int = 0

assignm
ent

seed := 1;;
- : unit = ()
!seed;;
- : int = 1

15

puzzle

write a function next
›which produces 0, 1, 2, etc
›takes no argum

ents

16

closures and cells

let next =
(let seed = ref 0 in

function () -> seed := !seed+1; !seed);;
val next : unit -> int = <fun>
(next);;
- : unit -> int = <fun>
next ();;
- : int = 1
next ();;
- : int = 2

17

lazy lists or ‘stream
s’

define a datatype for stream
s

type 'a stream
 = N

il | Cons of 'a * (unit -> 'a stream
);;

type 'a stream
 = N

il | Cons of 'a * (unit -> 'a stream
)

let cons x s = Cons (x, fun () -> s);;
val cons : 'a -> 'a stream

 -> 'a stream
 = <fun>

let hd s = m
atch s w

ith Cons (x,f) -> x;;
W

arning: this pattern-m
atching is not exhaustive.

H
ere is an exam

ple of a value that is not m
atched: N

il
val hd : 'a stream

 -> 'a = <fun>

let tl s = m
atch s w

ith Cons (x, f) -> f ();;
W

arning: this pattern-m
atching is not exhaustive.

H
ere is an exam

ple of a value that is not m
atched: N

il
val tl : 'a stream

 -> 'a stream
 = <fun>

18

using stream
s

let rec from
 k = Cons (k, fun () -> from

 (k+1));;
val from

 : int -> int stream
 = <fun>

(from
 3);;

- : int stream
 = Cons (3, <fun>)

hd (tl (from
 3));;

- : int = 4

19

puzzle

given
type 'a tree = Em

pty | Tree of 'a * 'a tree list;;
type 'a tree = Em

pty | Tree of 'a * 'a tree list

write a function that
›perform

s a depth-first traversal of a tree
›gives result as a stream

you can assum
e an infix function @

›for appending stream
s

