analysis
atterns

Daniel Jackson
MIT Lab for Computer Science
6898: Advanced Topics in Software Design
March 4, 2002




what are analysis patterns?

background
» Martin Fowler, 1996
> based on experience applying object modelling to large
corporate information systems
» focus on models themselves, not process

according to MF
ideas from one context useful in another
useful across business areas (health, finance, manufacturing)
type models provide ‘language of the business’
modelling = Business Process Reengineering
simple models obvious only in retrospect




plan

look more deeply into one pattern
> “Referring to objects”

apply Alloy
> express constraints formally
» investigate dynamic aspects too

consider applications of pattern
> what problems does this fit?




example: haming

motivation
systems need to deal with entities using names
humans use names to refer to entities
how names/entities are related can be tricky
(anything object oriented here?)

patterns

> Referring to Objects

> Identification Scheme
> Object Merge




objects & names

sig Object {}
sig Name {}

sig Scheme {
objects: set Object,
names: set Name,
denotes: names -> objects

¥




static constraints

fun Uniqueldentifiers (s: Scheme) {
func (s.denotes)

b

fun NoAliases (s: Scheme) {
1nj (s.denotes)

¥

fun AllNamed (s: Scheme) {
s.objects 1n ran (s.denotes)

¥

fun AllDenote (s: Scheme) {
s.names 1n dom (s.denotes)

¥







matching constraints to problems

constraints
Uniqueldentifiers
NoAliases
AllDenote
AllNamed

problems
» machine/mac, machine/IP, machine/domain name

person/social security number
aircraft/flight number
MIT class/class number
medical procedure/health plan treatment code
Java object/heap address
roadway/number




dynamic constraints

questions
can the name/object mapping change?
if an object exists at two times, are its names the same?
if a name exists at two times, are its objects the same?
can names be recycled?




sample dynamic constraints

fun RetainNames (s, s': Scheme) {
all o: s.objects & s'.objects | s.denotes.o = s'.denotes.o

b

fun NamesSticky' (s, s': Scheme) {
all n: s.names & s'.names |
all o: s.objects & s'.objects |
n->0 1n s.denotes iff
n->o0 1n s'.denotes




3 deneric constraint

fun FixedFor (s, s": Scheme, ns: set Name, os: set Object) {
let r = ns->0s | s.denotes & r = s'.denotes & r

b

says
> for the names in ns and objects in 0s
> naming 1s fixed

symmetrical in s and s’
> surprising?




varieties of dynamic constraint

fun NamingFixed (s, s': Scheme) {
FixedFor (s,s',Name,Object)
}

fun Sticky (s, s': Scheme) {
FixedFor (s,s',s.names & s'.names, s.objects & s'.objects)

¥

fun NSticky (s, s": Scheme) {
FixedFor (s,s',s.names & s'.names, Object)

¥

fun OSticky (s, s": Scheme) {
FixedFor (s,s',Name, s.objects & s'.objects)

¥







identification scheme

sig SchemeName {}

sig World {
schemes: set Scheme,
names: set Name,
scheme: names -> schemes

j

constraints
> naming constraints across schemes?

> how can schemes change?




a sample operation

code refinement
> classification scheme
» each name refers to set of objects
» find need to refine classification by introducing new names

fun SameNames (s: Scheme): Object -> Object {
result = {0,0": s.objects | s.denotes.o = s.denotes.o'}

j

fun Refines (s, s': Scheme) {
s.objects in s'.objects
some SameNames (s) - SameNames (s')
NSticky (s, s')
AllDenote (s) AllDenote (s')
AllNamed (s) AllNamed (s') }




talking points

“conceptual patterns only useful to software engineers if they
can see how to implement them”

“models are not right or wrong; they are more or less useful”

“analysis & design techniques may be rigorous but they don’t
have to be”

“I try to develop very conceptual models that focus entirely on
the problem, yet my techniques are object oriented, and hence
reflect a design approach”




