cardelli’s
linker

Daniel Jackson
MIT Lab for Computer Science
6898: Advanced Topics in Software Design
March 11, 2002

cardelli’s motivation

separate compilation
» vital for writing, delivering, maintaining libraries
> but often things go wrong
» module designers lost sight of original aims

linking has become complicated

> so develop a formal model to help reason
» treat linking outside the programming language

Luca Cardelli. Program Fragments, Linking & Modularization. POPL 1997

separate compilation goofs

missing language features
» no interface/impl distinction, esp. in untyped languages

global analysis required
» multimethods, overloading, ML modules

can’t compile library without client
» templates in C++, Ada, Modula-3
> overloading in Java (David Griswold)

runtime type errors despite static types
» covariance in Eiffel
» may link with old library by mistake
» class loading problems

our motivation

Units: a new modularity mechanism
» will be presented on wednesday by Findler
> have much in common with Cardelli’s model

nice example of simple theory
» shows how to capture essence of a problem
> use as reference model for more complex systems

challenge: a nice final project

recast Cardelli’s theory in Alloy
might be simpler: no decl ordering
check theorems automatically
explore variants

A A A 4

key ideas

focus on type checking: the hardest part
» work at source code level
» compilation is fragmenting bindings
> linking is substitution (ie, inlining)

linksets: a simple configuration language
> a linkset is a collection of fragments to be linked
> each fragment has
a name
a list of imports
an export
» a linkset has an external interface
its imports and exports
empty for a program, non-empty for a library

judgments

the judgment E a: A means
> in the environment E
» expression a has type A

examples
» f:int—int - f(3): int
» f:int—int, i: int - f(i): int
> g:int—int f(x){return g(x)}: int—int

environment
» D, X0 Ap,e, X0 AL
> well formed if x;!= x; for il=j

lambda calculus

lambda calculus
> a toy language for theoretical investigation
> if you understand Scheme, you’ll understand it
» Cardelli uses the variant ‘F1’: explicit, first-order types

syntax
» types
A,B:=K base type
| A—B function type
» terms
a, b:i=x variable
| lambda (x: A) b abstraction

| b (a) application

type checking

expressed as inference rules

> if f has the type A—B (in environment E)
> ... and a has the type A

> ... then f(a) has the type B

E-f:A—-B, E+a:A
E+f(a):B

E,x:A+Db:B, Era:A
E + lambda (x: A)b: A— B

E- ¢
EFx:E(x)

linksets

O
f # (D rlambda (x: int) x: int—int),
main# (S, f: int —int + {(3) : int)

represents these two fragments:

fragment f: int -> int
import nothing
begin lambda (x: int) x end

fragment main: int
import f: int -> int

begin f(3) end

definitions

general form of a linkset
» L=E, [x;# Ej - a;: A, ...x,# E F a A,

defined notions

imported names imp(L) = dom (E)

exported names exp(L) = {xy, ..., X}

imported environments imports(L) = E,

exported environments exports(L) = {x;: A}, ..., x,: A}

v Y Y

well formed iff

imports(L) and exports(L) are environments
(Ey E))is an environment

dom E. & exp(L)

imp(L) N exp(L) = &

v

v

v

10

type checking (1)

general form of a linkset
» L=E, [x;# Ej - a;: A, ...x,# E F a A,

linkset is intra-checked iff
> E, is well-formed
» each fragment is well typed in isolation
E,, E; - a: A

11

type checking (2)

general form of a linkset
» L=E, [x;# Ej - a;: A, ...x,# E F a A,

linkset is inter-checked ifft
» it’s intra-checked
» if E; has the form E’, x: A, E
and x is X;
then A is ?.

type matching
> here requires exact match
» could use subtyping instead

12

linking

linking steps
» let L =E, | x#(Dra: A), .., y#(xA, E+)
> then L — E, | x#(Jra:A), ..., y#(E - J[x—a])
is a linking step
» write L—* L’ for reflexive transitive closure

note
» linking requires an empty environment
so build bottom-up, and no cycles

algorithm
» keep doing linking steps until
either linked (all environments except E, empty)
or stuck (no further steps possible and some E. not empty)

13

properties of linking

» termination
» compatibility
if L and L are compatible linksets
and L —*L”
then L’ and L” are compatible
» reduction soundness & completeness
essentially that algorithm implements —* maximally
» linking soundness

if inter-checked(L) and L — L’
then inter-checked(L’)

14

modules

key idea
» a simple fragment exports a value
> a module exports a binding
client doesn’t name the module itself!

bindings & signatures
» a binding is a list of definitions
X:int=3, ...
> a signature is a list of declarations
X :int

compilation
> a binding is like a linkset
> compilation transforms a binding into a linkset

15

separate compilation

key theorem
» given two modules whose interfaces are compatible
> their compiled linksets are inter-checked

16

key ideas

two phases
» intra-checking: module is well typed
» inter-checking: module interfaces match

linking criteria
» easy to understand and predict behaviour
» allow partial linking, order independent
> linking preserves well-formedness properties

theory assumes
> modules are outermost (no hiding)
> no mutual references
» import/export types match exactly

17

