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1 Introduction

Abstract

JML is a behavioral interface specification language tailored to Java. It also
allows assertions to be intermixed with Java code, as an aid to verification and
debugging. JML is designed to be used by working software engineers; to do
this it follows Eiffel in using Java expressions in assertions. JML combines
this idea from Eiffel with the model-based approach to specifications, typified
by VDM and Larch, which results in greater expressiveness. Other expressive-
ness advantages over Eiffel include quantifiers, specification-only variables, and
frame conditions.

This paper discusses the goals of JML, the overall approach, and describes the
basic features of the language through examples. It is intended for readers who
have some familiarity with both Java and behavioral specification using pre-
and postconditions.

JML stands for “Java Modeling Language.” JML is a behavioral interface specifica-
tion language (BISL) [Wing87] designed to specify Java [Arnold-Gosling98] [Gosling-Joy-
Steele96] modules. Java modules are classes and interfaces.

The main goal of our research on JML is to better understand how to make BISLs (and
BISL tools) that are practical and effective for production software environments. In order
to understand this goal, and the more detailed discussion of our goals for JML, it helps
to define more precisely what a behavioral interface specification is. After doing this, we
return to describing the goals of JML, and then give a brief overview of the tool support
for JML and an outline of the rest of the paper.

1.1 Behavioral Interface Specification

As a BISL, JML describes two important aspects of a Java module:

• its interface, which consists of the names and static information found in Java decla-
rations, and

• its behavior, which tells how the module acts when used.

BISLs are inherently language-specific [Wing87], because they describe interface details
for clients written in a specific programming language, For example, a BISL tailored to
C++, such as Larch/C++ [Leavens97c], describes how to use a module in a C++ program. A
Larch/C++ specification cannot be implemented correctly in Java, and a JML specification
cannot be correctly implemented in C++ (except for methods that are specified as native
code).

JML specifications can either be written in separate files or as annotations in Java
code files. To a Java compiler such annotations are comments that are ignored [Luckham-
vonHenke85] [Luckham-etal87] [Rosenblum95] [Tan94] [Tan95]. This allows JML specifi-
cations, such as the specification below, to be embedded in Java code files. Consider the
following simple example of a behavioral interface specification in JML, written as annota-
tions in a Java code file, ‘IntMathOps.java’.
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public class IntMathOps { // 1
// 2

/*@ public normal_behavior // 3
@ requires y >= 0; // 4
@ ensures \result * \result <= y // 5
@ && y < (Math.abs(\result) + 1) // 6
@ * (Math.abs(\result) + 1); // 7
@*/ // 8

public static int isqrt(int y) // 9
{ //10
return (int) Math.sqrt(y); //11

} //12
} //13

The specification above describes a Java class, IntMathOps that contains one static
method (function member) named isqrt. The single-line comments to the far right (which
start with //) give the line numbers in this specification; they are ignored by both Java and
JML. Comments with an immediately following at-sign, //@, or, as on lines 3–8, C-style
comments starting with /*@, are annotations. Annotations are treated as comments by a
Java compiler, but JML reads the text of an annotation. The text of an annotation is either
the remainder of a line following //@ or the characters between the annotation markers /*@
and @*/. In the second form, at-signs (@) at the beginning of lines are ignored; they can be
used to help the reader see the extent of an annotation.

In the above specification, interface information is declared in lines 1 and 9. Line 1
declares a class named IntMathOps, and line 9 declares a method named isqrt. Note that
all of Java’s declaration syntax is allowed in JML, including, on lines 1 and 9, that the
names declared are public, that the method is static (line 9), that its return type is int
(line 9), and that it takes one int argument.

Such interface declarations must be found in a Java module that correctly implements
this specification. This is automatically the case in the file ‘IntMathOps.java’ shown
above, since that file also contains the implementation. In fact, when Java annotations are
embedded in ‘.java’ files, the interface specification is the actual Java source code.

To be correct, an implementation must have both the specified interface and the specified
behavior. In the above specification, the behavioral information is specified in the anno-
tation text on lines 3–8.1 The keywords public normal_behavior are used to say that
the specification is intended for clients (hence “public”), and that when the precondition
is satisfied a call must return normally, without throwing an exception (hence “normal”).
In such a public specification, only names with public visibility may be used.2 On line

1 In JML method specifications must be placed either before the method’s header, as shown above, or
between the method’s header its body. In this document, we always place the specification before the
method header. This convention is followed by many Java tools, in particular by Javadoc; It has the
advantage of working in all cases, even when the method has no body.

2 In a protected specification, both public and protected identifiers can be used. In a specification with
default (i.e., no) visibility specified, which corresponds to Java’s default visibility, public and protected
identifiers can be used, as well as identifiers from the same package with default visibility. A private
specification can use any identifiers that are available. The privacy level of a method specification
cannot allow more access than the method being specified. Thus a public method may have a private
specification, but a private method may not have a public specification.
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4 is a precondition, which follows the keyword requires.3 On lines 5–7 is a postcon-
dition, which follows the keyword ensures.4 The precondition says what must be true
about the arguments (and other parts of the state); if the precondition is true, then the
method must terminate normally in a state that satisfies the postcondition. This is a con-
tract between the caller of the method and the implementor [Hoare69] [Jones90] [Jonkers91]
[Guttag-Horning93] [Meyer92a] [Meyer97] [Morgan94]. The caller is obligated to make the
precondition true, and gets the benefit of having the postcondition then be satisfied. The
implementor gets the benefit of being able to assume the precondition, and is obligated to
make the postcondition true in that case.

In general, pre- and postconditions in JML are written using an extended form of Java
expressions. In this case, the only extension visible is the keyword \result, which is used
in the postcondition to denote the value returned by the method. The type of \result
is the return type of the method; for example, the type of \result in isqrt is int. The
postcondition says that the result is an integer approximation to the square root of y. Note
that the behavioral specification does not give an algorithm for finding the square root.

Method specifications may also be written in Java’s documentation comments. The
following is an example. The part that JML sees is enclosed within the HTML “tags”
<jml> and </jml>.5 The use of the surrounding tags <pre> and </pre> tells javadoc to
ignore what JML sees, and to leave the formatting of it alone.

public class IntMathOps4 {

/** Integer square root function.
* @param int y
* @return an integer approximating
* the positive square root of y
* <pre><jml>
* public normal_behavior
* requires y >= 0;
* ensures \result >= 0
* && \result * \result <= y
* && y < (\result + 1) * (\result + 1);
* </jml></pre>
**/
public static int isqrt(int y)
{

return (int) Math.sqrt(y);
}

}

Because we expect most of our users to write specifications in Java code files, most of our
examples will be given as annotations in ‘.java’ files as in the specifications above. However,
it is possible to use JML to write documentation in separate, non-Java, ‘.jml-refined’ files,
such as the file ‘IntMathOps2.jml-refined’ below. Since these files are not Java code files,

3 The keyword pre can also be used as a synonym for requires.
4 The keyword post can also be used as a synonym for ensures.
5 Since HTML tags are not case sensitive, in this one place JML is also not case sensitive. That is, the

syntax also permits the tags <JML>, </JML>, <esc>, </esc>, <ESC>, and </ESC>.
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JML allows the user to omit both the annotation markers and the code for concrete methods
in a class. The specification below shows how this is done, using a semicolon (;), as in a
Java abstract method declaration.

public class IntMathOps2 {

public normal_behavior
requires y >= 0;
ensures \result * \result <= y

&& y < (Math.abs(\result) + 1)
* (Math.abs(\result) + 1);

public static int isqrt(int y);

}

In a file with a suffix of ‘.jml-refined’ or ‘.jml’, the entire file is considered to be in an
annotation. Hence, while annotation markers can be used, they need not be, as illustrated
above, and all of the JML keywords are reserved in the entire file. (JML also works with files
with the suffixes ‘.spec’ and ‘.spec-refined’. Such file’s use Java’s syntax, and must use
annotation markers just as in a ‘.java’ file. However, since ‘.spec’ and ‘.spec-refined’
files are not Java files, in such a file one may also omit the code for concrete methods.)

The above specification would be implemented in the file ‘IntMathOps2.java’, which is
shown below. This file contains a refine clause, which tells the reader of the ‘.java’ file
what is being refined and the file in which to find its specification.

//@ refine IntMathOps2 <- "IntMathOps2.jml-refined";
public class IntMathOps2 {

public static int isqrt(int y)
{

return (int) Math.sqrt(y);
}

}

To summarize, a behavioral interface specification describes both the interface details of a
module, and its behavior. The interface details are written in the syntax of the programming
language; thus JML uses the Java declaration syntax. The behavioral specification uses pre-
and postconditions.

1.2 Lightweight Specifications

Although we find it best to illustrate JML’s features in this paper using specifications
that are detailed and complete, one can use JML to write specifications at any desired
level of detail. In particular, one can use JML to write “lightweight” specifications (as in
ESC/Java). The syntax of JML allows one to write specifications that consist of individual
clauses, so that one can say just what is desired. More precisely, a lightweight specification
is one that does not use a behavior keyword (like normal_behavior).

For example, one might wish to specify just that isqrt should be called only on positive
arguments, but not want to be bothered with saying anything formal about the result.
This could be done as shown below. Notice that the only specification given below is
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a single requires clause. Since the specification of isqrt has no behavior keyword, it
is a lightweight specification. What is the access restriction, or privacy level, of such a
lightweight specification? The syntax for lightweight specifications does not have a place
to specify the privacy level, so JML assumes that such a lightweight specification has the
same level of visibility as the method itself. (Thus, the specification below is implicitly
public.) What about the omitted parts of the specification, such as the ensures clause?
JML assumes nothing about these. In the example below when the precondition is met, an
implementation might either signal an exception or terminate normally, so this specification
technically allows exceptions to be thrown. However, the gain in brevity often outweighs
the need for this level of precision.

public class IntMathOps3 {

//@ requires y >= 0;
public static int isqrt(int y)
{
return (int) Math.sqrt(y);

}
}

JML has a semantics that allows most clauses to be sensibly omitted from a specification.
When the requires clause is omitted, for example, it means that no requirements are placed
on the caller. When the ensures clause is omitted, it means that nothing is promised about
the state resulting from a method call. See Appendix A [Specification Case Defaults],
page 51, for the default meanings of various other clauses.

1.3 Goals

As mentioned above, the main goal of our research is to better understand how to
develop BISLs (and BISL tools) that are practical and effective. We are concerned with
both technical requirements and with other factors such as training and documentation,
although in the rest of this paper we will only be concerned with technical requirements
for the BISL itself. The practicality and effectiveness of JML will be judged by how well it
can document reusable class libraries, frameworks, and Application Programming Interfaces
(APIs).

We believe that to meet the overall goal of practical and effective behavioral interface
specification, JML must meet the following subsidiary goals.

• JML must be able to document the interfaces and behavior of existing software, re-
gardless of the analysis and design methods used to create it.

If JML were limited to only handling certain Java features, certain kinds of software, or
software designed according to certain analysis and design methods, then some APIs
would not be amenable to documentation using JML. This would mean that some
existing software could not be documented using JML. Since the effort put into writing
such documentation will have a proportionally larger payoff for software that is more
widely reused, it is important to be able to document existing software components.

• The notation used in JML should be readily understandable by Java programmers,
including those with only standard mathematical training.
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A preliminary study by Finney [Finney96] indicates that graphic mathematical nota-
tions, such as those found in Z [Hayes93] [Spivey92] [Woodcock-Davies96] may make
such specifications hard to read, even for programmers trained in the notation. This
accords with our experience in teaching formal specification notations to programmers.
Hence, our strategy for meeting this goal has been to shun most special-purpose math-
ematical notations in favor of Java’s own expression syntax.

• The language must be capable of being given a rigorous, formal semantics, and must
also be amenable to tool support.
This goal also helps ensure that the specification language does not suffer from logical
problems, which would make it less useful for static analysis, prototyping, and testing
tools.

We also have in mind a long range goal of a specification compiler, that would produce
prototypes from specifications that happen to be constructive [Wahls-Leavens-Baker00].

Our partners at Compaq SRC and the University of Nijmegen have other goals in mind.
At Compaq SRC, the goal is to make static analysis tools for Java programs that can help
detect bugs. At the University of Nijmegen, the goal is to be able to do full program
verification on Java programs.

As a general strategy for achieving these goals, we have tried to blend the Eiffel
[Meyer92a] [Meyer92b] [Meyer97], Larch [Wing87] [Wing90a] [Guttag-Horning93] [Leav-
ensLarchFAQ], and refinement calculus [Back88] [Back-vonWright98] [Morgan-Vickers94]
[Morgan94] approaches to specification. From Eiffel we have taken the idea that assertions
can be written in a language that is based on Java expressions. We also adapt the “old”
notation from Eiffel, which appears in JML as \old, instead of the Larch-style annotation
of names with state functions. However, Eiffel specifications, as written by Meyer, are
typically not as detailed as model-based specifications written, for example, in Larch
BISLs or in VDM-SL [Fitzgerald-Larsen98] [ISO96] [Jones90]. Hence, we have combined
these approaches, by using syntactic ideas from Eiffel and semantic ideas from model-based
specification languages.

JML also has some other differences from Eiffel (and its cousins Sather and Sather-K).
The most important is the concept of specification-only declarations. These declarations
allow more abstract and exact specifications of behavior than is typically done in Eiffel;
they allow one to write specifications that are similar to the spirit of VDM or Larch BISLs.
A major difference is that we have extended the syntax of Java expressions with quantifiers
and other constructs that are needed for logical expressiveness, but which are not always
executable. Finally, we ban side-effects and other problematic features of code in assertions.

On the other hand, our experience with Larch/C++ has taught us to adapt the model-
based approach in two ways, with the aim of making it more practical and easy to learn.
The first adaptation is again the use of specification-only model variables. An object will
thus have (in general) several such model fields, which are used only for the purpose of
describing, abstractly, the values of objects. This simplifies the use of JML, as compared
with most Larch BISLs, since specifiers (and their readers) hardly ever need to know about
algebraic-style specification. It also makes designing a model for a Java class or interface
similar, in some respects, to designing an implementation data structure in Java. We hope
that this similarity will make the specification language easier to understand. (This kind of
model also has some technical advantages that will be described below.)
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The second adaptation is hiding the details of mathematical modeling behind a facade
of Java classes. In the Larch approach to behavioral interface specification [Wing87], the
mathematical notation used in assertions is presented directly to the specifier. This allows
the same mathematical notation to be used in many different specification languages. How-
ever, it also means that the user of such a specification language has to learn a notation
for assertions that is different than their programming language’s notation for expressions.
In JML we use a compromise approach, hiding these details behind Java classes. These
classes are pure, in the sense that they reflect the underlying mathematics, and hence do
not use side-effects (at least not in any observable way). Besides insulating the user of JML
from the details of the mathematical notation, this compromise approach also insulates the
design of JML from the details of the mathematical logic used for theorem proving.

We have generally taken features wholesale from the refinement calculus [Back88] [Back-
vonWright98] [Morgan-Vickers94] [Morgan94]. Our adaptation of it consists in blending it
with the idea of interface specification and adding features for object-oriented programming.
We are using the adaptation of the refinement calculus by Büchi and Weck [Buechi-Weck00],
which helps in specifying callbacks. However, since the refinement calculus is mostly needed
for advanced specifications, in the remainder of this paper we do not discuss the JML
features related to refinement, such as model programs.

1.4 Tool Support

Our partners at Compaq SRC are building a tool, ESC/Java, that does static analysis
for Java programs [Leino-etal00]. ESC/Java uses a subset of the JML specification syntax,
to help detect bugs in Java code. At the University of Nijmegen the LOOP tool [Huis-
man01] [Jacobs-etal98] is being adapted to use JML as its input language. This tool would
generate verification conditions that could be checked using a theorem prover such as PVS
or Isabelle/HOL. At the Massachusetts Institute of Technology (MIT), the Daikon invariant
detector project [Ernst-etal01] is using a subset of JML to record invariants detected by
runs of a program. Recent work uses ESC/Java to validate the invariants that are found.

The JML release from Iowa State has tool support for: static checking of specifications,
run-time assertion checking, and for generation of HTML pages. (See the ‘README.txt’
file in the Iowa State JML release for the current status of these tools.) In the rest of the
section we concentrate on the tool support found in the JML release from Iowa State.

1.4.1 Type Checking Specifications

Details on how to run the JML checker can be found in its manual page. Here we
only indicate the most basic uses of the checker. Running the checker with filenames
as arguments will perform type checking on all the specifications contained in the given
files. For example, one could check the specifications in the file ‘UnboundedStack.java’ by
executing the following command.

jml UnboundedStack.java

To check all the relevant files in a directory and its subdirectories, one can pass the
directory name to the checker, as in the following command.

jml .
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In the above example, the checker will check all files with the following suffixes:
‘.refines-java’, ‘.refines-spec’, ‘.refines-jml’, ‘.java’, ‘.spec’, and ‘.jml’;
these suffixes are considered to be “active”. There are also three “passive” suffixes:
‘.java-refined’, ‘.spec-refined’, and ‘.jml-refined’. File with passive suffixes can
be used in refinements (see Section 1.1 [Behavioral Interface Specification], page 1) but
the checker does not start checking from these files unless they appear explicitly on the
command line. Among files in a directory with the same prefix, but with different active
suffixes, the one whose suffix appears first in the list of active suffixes above will be the
one the checker starts checking. The JML release includes a script, jmlstartfiles, that
displays a list of the files from which checking will start in the current directory.

1.4.2 Generating HTML Documentation

To use the checker to generate HTML documentation that can be browsed on the web,
one uses the --html option.

jml --html .

1.4.3 Run Time Assertion Checking

Using the checker to do run-time checking of preconditions (the only kind of assertion
checking that is currently supported) is more complicated. First one would execute the
following command to generate a version of the code containing run-time precondition
checks.

jml --assertc myProgram.java UnboundedStack.java

The code that is generated to do run-time precondition checking is stored in another
directory. This prevents the checker from destroying your input files. The parallel direc-
tory where the generated code is stored is defined by the value of the environment variable
JMLOUTDIR, which defaults to ‘c:\jmlout’ on Windows and ‘$HOME/jmlout’ on Unix sys-
tems. (These defaults may be changed by the system administrator. You can personalize
the defaults by setting the environment variable JMLOUTDIR as you wish.)

After doing this, change to the appropriate directory under JMLOUTDIR, the one that
corresponds to the package. For instance, if myProgram lives in the package stacktest,
then on Windows do something like the following.

c:
cd jmlout\stacktest

On Unix this can be done with a command like

cd $HOME/jmlout/stacktest

Once you are in the right directory, you can use the following commands to compile and
then execute the generated code.

jassertc myProgram.java UnboundedStack.java
jassert myProgram

The script jassertc calls javac on the generated code in the directory named by
JMLOUTDIR, and jassert runs it.
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1.5 Outline

In the next sections we describe more about JML and its semantics. See Chapter 2
[Class and Interface Specifications], page 10, for examples that show how Java classes and
interfaces are specified; this section also briefly describes the semantics of subtyping and
refinement. See Chapter 3 [Extensions to Java Expressions], page 43, for a description of
the expressions that can be used in specifications. See Chapter 4 [Conclusions], page 50,
for conclusions from our preliminary design effort. See Appendix B [Syntax], page 52, for
details on the syntax of JML.
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2 Class and Interface Specifications

In this section we give some examples of JML class specifications that illustrate the basic
features of JML.

2.1 Abstract Models

A simple example of an abstract class specification is the ever-popular UnboundedStack
type, which is presented below. It would appear in a file named ‘UnboundedStack.java’.

package edu.iastate.cs.jml.samples.stacks;

//@ model import edu.iastate.cs.jml.models.*;

public abstract class UnboundedStack {

/*@ public model JMLObjectSequence theStack
@ initially theStack != null && theStack.isEmpty();
@*/

//@ public invariant theStack != null;

/*@ public normal_behavior
@ requires !theStack.isEmpty();
@ assignable theStack;
@ ensures theStack.equals(\old(theStack.trailer()));
@*/

public abstract void pop( );

/*@ public normal_behavior
@ assignable theStack;
@ ensures theStack.equals(\old(theStack.insertFront(x)));
@*/

public abstract void push(Object x);

/*@ public normal_behavior
@ requires !theStack.isEmpty();
@ ensures \result == theStack.first();
@*/

public abstract Object top( );
}

The above specification contains the declaration of a model field, an invariant, and some
method specifications. These are described below.

2.1.1 Model Fields

In the fourth non-blank line of ‘UnboundedStack.java’, a model data field, theStack,
is declared. Since it is declared using the JML modifier model, such a field does not have to
be implemented; however, for purposes of the specification we treat it exactly as any other
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Java field (i.e., as a variable location). That is, we imagine that each instance of the class
UnboundedStack has such a field.

The type of the model field theStack is a pure type, JMLObjectSequence, which is a
sequence of objects. It is provided by JML in the package edu.iastate.cs.jml.models,
which is imported in the second non-blank line of the figure. Note that this import decla-
ration does not have to appear in the implementation, since it is modified by the keyword
model. In general, any declaration form in Java can have this modifier, with the same
meaning: that the declaration in question is only used for specification purposes, and does
not have to appear in an implementation.

At the end of the model field’s declaration above is an initially clause. (Such clauses
are adapted from RESOLVE [Ogden-etal94] and the refinement calculus [Back88] [Back-
vonWright98] [Morgan-Vickers94] [Morgan94].) An initially clause attached to a field
declaration permits the field to have an abstract initialization. Knowing something about
the initial value of the field permits data type induction [Hoare72a] [Wing83] for abstract
classes and interfaces. The initially clause must appear to be true of the field’s starting
value. That is, all reachable objects of the type UnboundedStack must appear to have been
created as empty stacks and subsequently modified using the type’s methods.

2.1.2 Invariants

Following the model field declaration is an invariant. An invariant does not have to hold
during the execution of an object’s methods, but it must hold, for each reachable object in
each publicly visible state; i.e., for each state outside of a public method’s execution, and
at the beginning and end of each such execution. The figure’s invariant just says that the
value of theStack should never be null.

2.1.3 Method Specifications

Following the invariant are the specifications of the methods pop, push, and top. We
describe the new aspects of these specifications below.

2.1.3.1 The Assignable Clause

The use of the assignable1 clauses in the behavioral specifications of pop and push
is interesting (and another difference from Eiffel). These clauses give frame conditions
[Borgida-Mylopoulos-Reiter95]. In JML, the frame condition given by a method’s assignable
clause only permits the method to assign to a location, loc, if:

• loc is mentioned in the method’s assignable clause,
• a location mentioned in the clause depends on loc (see Section 2.2 [Dependencies],

page 14),

1 For historical reasons, one can also use the keyword modifiable as a synonym for assignable. Also,
for compatibility with (older versions of ESC/Java [Leino-etal00]), in JML, one can also use the key-
word modifies as a synonym for assignable. In the literature, the most common keyword for such
a clause is modifies, and what JML calls the “assignable clause” is usually referred to as a “modifies
clause”. However, in JML, “assignable” most closely corresponds to the technical meaning, so we use
that throughout this document. Users of JML may write whichever they prefer.
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• loc was not allocated when the method started execution, or
• loc is local to the method (i.e., a local variable, including the method’s formal param-

eters).

For example, push’s specification says that it may only assign to theStack (and locations
on which it depends). This allows push to assign to theStack (and its dependees), or to call
some other method that makes such an assignment. Furthermore, push may assign to the
formal parameter x itself, even though that location is not listed in the assignable clause,
since x is local to the method. However, push may not assign to fields not mentioned in
the assignable clause; in particular it may not assign to fields of its formal parameter x,2

or call a method that makes such an assignment.

JML can statically check the body of a method’s implementation to determine whether
its assignable clause is satisfied. Each assignment statement in the implementation can
be checked to see if what is being assigned to is a location that some assignable clause
permits. It is an error to assign to any other allocated, non-local location. Furthermore,
JML will flag as an error a call to a method that would assign to locations that are not
permitted by the calling method’s assignable clause. It can do this using the assignable
clause of the called method.

In JML, a location is modified by a method when it is allocated in both the pre-state of
the method, reachable in the post-state, and has a value that is different in these two states.
The pre-state of a method call is the state just after the method is called and parameters
have been evaluated and passed, but before execution of the method’s body. The post-state
of a method call is the state just before the method returns or throws an exception; in
JML we imagine that \result and information about exception results is recorded in the
post-state.

Since modification only involves objects allocated in the pre-state, allocation of an ob-
ject, using Java’s new operator, does not itself cause any modification. Furthermore, since
the fields of new objects are locations that were not allocated when the method started
execution, they may be assigned to freely.

The reason assignments to local variables are permitted by the assignable clause is that
a JML specification takes the client’s (i.e., the caller’s) point of view. From the client’s
point of view, the local variables in a method are newly-allocated, and thus assignments
to such variables are invisible to the client. Hence, in JML, it is an error to list formal
parameters, or other local variables, in the assignable clause. Furthermore, when formal
parameters are used in a postcondition, JML interprets these as meaning the value initially
given to the formal in the pre-state, since assignments to the formals within the method do
not matter to the client.

JML’s interpretation of the assignable clause does not permit either temporary side
effects or benevolent side effects. A method with a temporary side effect assigns a location,
does some work, and then assigns the original value back to that location. In JML, a
method may not have temporary side effects on locations that it is not permitted to modify
[Ruby-Leavens00]. A method has a benevolent side effect if it assigns to a location in a way
that is not observable by clients. In JML, a method may not have benevolent side effects
on locations that it is not permitted to modify [Leino95] [Leino95a].

2 Assuming that x is not the same object as this!
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Because JML’s assignable clauses give permission to assign to locations, it is safe for
clients to assume that only the listed locations (and their dependees) may have their values
modified. Because locations listed in the assignable clause are the only ones that can be
modified, we often speak of what locations a method can “modify,” instead of the more
precise “can assign to.”

What does the assignable clause say about the modification of locations? In particular,
although the “locations” for model fields and model variables cannot be directly assigned to
in JML, their value is determined by the concrete fields and variables that they (ultimately)
depend on. Thus, model fields and variables can be modified by assignments to their
concrete dependees. So a method’s assignable clause only permits the method to modify a
location if:

• the location is mentioned in the method’s assignable clause,

• a location mentioned in the clause depends on it (see Section 2.2 [Dependencies],
page 14),

• it was not allocated when the method started execution, or

• it is local to the method.

When the assignable clause is omitted, as it is in the specification of top, this means
that no locations can be modified, because none may be assigned to.

2.1.3.2 Old Values

When a method can modify some locations, they may have different values in the pre-
state and post-state of a call. Often the post-condition must refer to the values held in
both of these states. JML uses a notation similar to Eiffel’s to refer to the pre-state value
of a variable. In JML the syntax is \old(E), where E is an expression. (Unlike Eiffel, we
use parentheses following \old to delimit the expression to be evaluated in the pre-state
explicitly.)

The meaning of \old(E) is as if E were evaluated in the pre-state and that
value is used in place of \old(E) in the assertion. It follows that, an expression like
\old(myVar).theStack may not mean what is desired, since only the old value of
myVar is saved; access to the field theStack is done in the post-state. If it is the field,
theStack, not the variable, myVar, that is changing, then probably what is desired is
\old(myVar.theStack). To avoid such problems, it is good practice to have the expression
E in \old(E) be such that its type is either the type of a primitive value, such as an int,
or a pure type, such as JMLObjectSequence.

As another example, in pop’s postcondition the expression \old(theStack.trailer())
has type JMLObjectSequence, which is a pure type. The value of theStack.trailer() is
computed in the pre-state of the method.

Note also that, since JMLObjectSequence is a reference type, one is required to use
equals instead of == to compare them for equality of values. (Using == would be a mistake,
since it would only compare them for object identity, which in combination with new would
always yield false.)
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2.1.3.3 Correct Implementation

The specification of push does not have a requires clause. This means that the method
imposes no obligations on the caller. (The meaning of an omitted requires clause is that
the method’s precondition is true, which is satisfied by all states, and hence imposes no
obligations on the caller.) This seems to imply that the implementation must provide a
literally unbounded stack, which is surely impossible. We avoid this problem, by following
Poetzsch-Heffter [Poetzsch-Heffter97] in releasing implementations from their obligations
to fulfill the postcondition when Java runs out of storage. In general, a method specified
with normal_behavior has a correct implementation if, whenever it is called in a state that
satisfies its precondition, either
• the method terminates normally in a state that satisfies its postcondition, having as-

signed to only the locations permitted by its assignable clause, or
• Java signals an error, by throwing an exception that inherits from java.lang.Error.

We discuss the specification of methods with exceptions in the next subsection.

2.2 Dependencies

In this subsection we present two example specifications. The two example specifications,
BoundedThing and BoundedStackInterface, are used to describe how model (and concrete)
fields can be related to one another, and how dependencies among them affect the meaning
of the assignable clause. Along the way we also demonstrate how to specify methods that
can throw exceptions and other features of JML.

2.2.1 Specification of BoundedThing

The specification in the file ‘BoundedThing.java’, shown below, is an interface specifi-
cation with a simple abstract model. In this case, there are two model fields MAX_SIZE and
size.

package edu.iastate.cs.jml.samples.stacks;

public interface BoundedThing {

//@ public model static int MAX_SIZE;
//@ public model instance int size;

//@ public invariant MAX_SIZE > 0 && 0 <= size && size <= MAX_SIZE;

//@ public constraint MAX_SIZE == \old(MAX_SIZE);

/*@ public normal_behavior
ensures \result == MAX_SIZE;

@*/
public int getSizeLimit();

/*@ public normal_behavior
ensures \result <==> size == 0;



Chapter 2: Class and Interface Specifications 15

@*/
public boolean isEmpty();

/*@ public normal_behavior
ensures \result <==> size == MAX_SIZE;

@*/
public boolean isFull();

/*@ also
public behavior
ensures \result instanceof BoundedThing

&& size == ((BoundedThing)\result).size;
signals (CloneNotSupportedException) true;

@*/
public Object clone () throws CloneNotSupportedException;

}

After discussing the model fields, we describe the other parts of the specification below.

2.2.1.1 Model Fields in Interfaces

In the specification above, the variable MAX_SIZE is a static model field, which is treated
as a class variable.

The variable size is treated as a normal model field, i.e., as an instance variable, because
of the use of the keyword instance. This keyword tells the reader that the variable being
declared is not static, but has a copy in each instance of a class that implements this
interface.3

In specifications of interfaces that extend or classes that implement this interface, these
model fields are inherited. Thus, for example, every object that has a type that is a subtype
of the BoundedThing interface is thought of, abstractly, as having a field size, of type int.
Similarly, every class that implements BoundedThing is thought of as having a static model
field MAX_SIZE.

2.2.1.2 Invariant and History Constraint

Two pieces of class-level specification come after the abstract model in the above speci-
fication.

The first is an invariant clause. The figure’s invariant says that in every publicly visible
state, the MAX_SIZE variable has to be positive, and that every reachable object that is a
BoundedThing must have a size field that has a value less than or equal to MAX_SIZE.

Following the invariant is a history constraint [Liskov-Wing94]. A history constraint is
used to say how values can change between earlier and later publicly-visible states, such as
a method’s pre-state and its post-state. This prohibits subtypes from making certain state
changes, even if they implement more methods than are specified in a given class. The

3 By default, fields declared in Java interfaces are static. Java does not allow non-static fields to be
declared in interfaces. However, JML allows non-static model or ghost fields in interfaces when one uses
instance. The reason for this extension is that such fields are essential for defining the abstract values
and behavior of the objects being specified.
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history constraint in the specification above says that the value of MAX_SIZE cannot change,
since in every pre-state and post-state, its value in the post-state, written MAX_SIZE, must
equal its value in the pre-state, written \old(MAX_SIZE).

2.2.1.3 Details of the Method Specifications

Following the history constraint are the interfaces and specifications for four public
methods. Notice that, if desired, the at-signs (@) may be omitted from the left sides of
intermediate lines, as we do in this specification.

The use of == in the method specifications is okay, since in each case, the things being
compared are primitive values, not references. The notation <==> can be read “if and
only if”. It has the same meaning for Boolean values as ==, but has a lower precedence.
Therefore, the expression “\result <==> size == 0” in the postcondition of the isEmpty
method means the same thing as “\result == (size == 0)”.

2.2.1.4 Adding to Method Specifications

The specification of the last method of BoundedThing, clone, is interesting. Note that
it begins with the keyword also. This form is intended to tell the reader that the specifi-
cation given is in addition to any specification that might have been given in the superclass
Object, where clone is declared as a protected method. A form like this must be used
whenever a specification is given for a method that overrides a method in a superclass, or
that implements a method from an implemented interface.

2.2.1.5 Specifying Exceptional Behavior

The specification of clone also uses behavior instead of normal_behavior. In a speci-
fication that starts this way, one can describe not just the case where the execution returns
normally, but also executions where exceptions are thrown. In such a specification, the
conditions under which exceptions can be thrown can be described by the predicate in the
signals clauses,4 and the conditions under which the method may return without throwing
an exception are described by the ensures clause. In this specification, the clone method
may always throw the exception, because it only needs to make the predicate “true” true
to do so. When the method returns normally, it must make the given postcondition true.

In JML, a normal_behavior specification can be thought of as a syntactic sugar for a
behavior specification to which the following clause is added [Raghavan-Leavens00].

signals (java.lang.Exception) false;

This formalizes the idea that a method with a normal_behavior specification may not
throw an exception when the specification’s precondition is satisfied.

JML also has a specification form exceptional_behavior, which can be used to specify
when exceptions must be thrown. A specification that uses exceptional_behavior can be
thought of as a syntactic sugar for a behavior specification to which the following clause
is added [Raghavan-Leavens00].

4 The keyword “exsures” can also be used in place of signals.
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ensures false;

This formalizes the idea that a method with a exceptional_behavior specification may
not return normally when the specification’s precondition is satisfied.

Since in the specification of clone, we want to allow the implementation to make a
choice between either returning normally or throwing an exception, and we do not wish
to distinguish the preconditions under which each choice must be made, we cannot use
either of the more specialized forms normal_behavior or exceptional_behavior. Thus
the specification of clone demonstrates the somewhat unusual case when the more general
form of a behavior specification is needed.

Finally note that in the specification of clone, the postcondition says that the result
will be a BoundedThing and that its size will be the same as the model field size. The use
of the cast in this postcondition is necessary, since the type of \result is Object. (This
also adheres to our goal of using Java syntax and semantics to the extent possible.) Note
also that the conjunct \result instanceof BoundedThing “protects” the next conjunct
[Leavens-Wing97a] since if it is false the meaning of the cast does not matter.

2.2.2 Specification of BoundedStackInterface

The specification in the file ‘BoundedStackInterface.java’ below gives an interface for
bounded stacks that extends the interface for BoundedThing. In the specification below,
one can refer to the static field MAX_SIZE from the BoundedThing interface, and to size as
an inherited instance field of its objects.

package edu.iastate.cs.jml.samples.stacks;
//@ model import edu.iastate.cs.jml.models.*;
public interface BoundedStackInterface extends BoundedThing {
/*@ public model instance JMLObjectSequence theStack
@ initially theStack != null && theStack.isEmpty();
@*/

//@ public depends size <- theStack;
//@ public represents size <- theStack.length();
//@ public invariant theStack != null;
//@ public invariant_redundantly theStack.length() <= MAX_SIZE;
/*@ public invariant
@ (\forall int i; 0 <= i && i < theStack.length();
@ theStack.itemAt(i) != null);
@*/

/*@ public normal_behavior
@ requires !theStack.isEmpty();
@ assignable size, theStack;
@ ensures theStack.equals(\old(theStack.trailer()));
@ also
@ public exceptional_behavior
@ requires theStack.isEmpty();
@ signals (BoundedStackException);
@*/

public void pop( ) throws BoundedStackException;
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/*@ public normal_behavior
@ requires theStack.length() < MAX_SIZE && x != null;
@ assignable size, theStack;
@ ensures theStack.equals(\old(theStack.insertFront(x)));
@ ensures_redundantly theStack != null && top() == x
@ && theStack.length() == \old(theStack.length()+1);
@ also
@ public exceptional_behavior
@ requires theStack.length() >= MAX_SIZE || x == null;
@ signals (BoundedStackException)
@ theStack.length() == MAX_SIZE;
@ signals (NullPointerException) x == null;
@*/

public void push(Object x )
throws BoundedStackException, NullPointerException;

/*@ public normal_behavior
@ requires !theStack.isEmpty();
@ ensures \result == theStack.first() && \result != null;
@ also
@ public exceptional_behavior
@ requires theStack.isEmpty();
@ signals (BoundedStackException);
@*/

public /*@ pure @*/ Object top( ) throws BoundedStackException;
}

The abstract model for BoundedStackInterface adds to the inherited model by declar-
ing a model instance field named theStack. This field is typed as a JMLObjectSequence.

In the following we describe how the new model instance field, theStack, is related to
size from BoundedThing. We also use this example to explain more JML features.

2.2.2.1 Depends and Represents Clauses

The depends and represents clauses that follow the declaration of theStack are an
important feature in modeling with layers of model fields.5 They also play a crucial role
in relating model fields to the concrete fields of objects, which can be considered to be the
final layer of detail in a design.

The depends clause in BoundedStackInterface says that size depends on theStack;
this means that size might change its value when the theStack changes. Another way of
looking at this is that, if one wants to change size, this can be done by changing theStack.
We also say that theStack is a dependee of size.

A model field can be declared to depend on another model field or on a concrete field
(i.e., a field that is not a model field). However, concrete fields cannot be declared to depend
on other fields.

5 Of course, one could specify BoundedStack without separating out the interface BoundedThing, and in
that case, these layers would be unnecessary. We have made this separation partly to demonstrate more
advanced features of JML, and partly to make the parts of the example smaller.
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The depends clause is important in “loosening up” the assignable clause, for example
to permit the fields of an object that implement the abstract model to be changed [Leino95]
[Leino95a]. This “loosening up” also applies to model fields that have dependencies declared.
For example, since size depends on theStack, whenever size is mentioned in a assignable
clause, then theStack is implicitly allowed to be modified.6 Thus it is only for rhetorical
purposes that we mention both size and theStack in the assignable clauses of pop and
push. Note, however, that just mentioning theStack would not permit size to be modified,
because theStack does not depend on size.

The represents clause in BoundedStackInterface says how the value of size is related
to the value of theStack. It says that the value of size is theStack.length().

A represents clause gives additional facts that can be used in reasoning about the
specification. It serves the same purpose as an abstraction function in various proof methods
for abstract data types (such as [Hoare72a]).

One can only use a represents clause to state facts about a field and its dependees.
To state relationships among concrete data fields or on fields that are not related by a
dependency, one should use an invariant.

2.2.2.2 Redundant Specification

The second invariant clause that follows the represents clause in the specification of
BoundedStackInterface above is our first example of checkable redundancy in a specifi-
cation [Leavens-Baker99] [Tan94] [Tan95]. This concept is signaled in JML by the use of
the suffix _redundantly on a keyword (as in ensures_redundantly). It says both that
the stated property is specified to hold and that this property is believed to follow from
the other properties of the specification. In this case the redundant invariant follows from
the given invariant, the invariant inherited from the specification of BoundedThing, and
the fact stated in the represents clause. Even though this invariant is redundant, it is
sometimes helpful to state such properties, to bring them to the attention of the readers of
the specification.

Checking that such claimed redundancies really do follow from other information is also
a good way to make sure that what is being specified is really what is intended. Such checks
could be done manually, during reviews, or with the aid of a theorem prover.

2.2.2.3 Multiple Specification Cases

Following the redundant invariant of BoundedStackInterface are the specifications of
the pop, push, and top methods. These are interesting for several new features that they
present. Each of these has both a normal and exceptional behavior specified. The meaning
of such multiple specification cases is that, when the precondition of one of them is satisfied,
the rest of that specification case must also be obeyed.

6 Note that the permission to assign a field goes from the more abstract field to the one it depends on
(which in this case is also abstract). Müller points out that this direction is necessary for information
hiding, because concrete fields are often hidden (e.g., they may be private), and as such cannot appear
in public specifications, so the public specification has to mention the more abstract field, which give
assignment rights to their dependees [Mueller01].
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A specification with several specification cases is shorthand for one in which the separate
specifications are combined [Dhara-Leavens96] [Leavens97c] [Wing83] [Wills94]. The desug-
aring can be thought of as proceeding in two steps (see [Raghavan-Leavens00] for more
details). First, the public normal_behavior and public exceptional_behavior cases
are converted into public behavior specifications as explained above. This would produce
a specification for pop as shown below. The use of implies_that introduces a redundant
specification that can be used, as is done here, to point out consequences of the specification
to the reader. In this case the specification in question is the one mentioned in the refine
clause. Note that in the second specification case of this figure, the predicate “true” has
been added for the signals clause; since this is often the predicate desired in a signals clause,
JML allows it to be omitted.

//@ refine BoundedStackInterface <- "BoundedStackInterface.java";
//@ model import edu.iastate.cs.jml.models.*;
public interface BoundedStackInterface extends BoundedThing {
/*@ also
@ implies_that
@ public behavior
@ requires !theStack.isEmpty();
@ assignable size, theStack;
@ ensures theStack.equals(\old(theStack.trailer()));
@ signals (java.lang.Exception) false;
@ also
@ public behavior
@ requires theStack.isEmpty();
@ ensures false;
@ signals (BoundedStackException) true;
@*/

public void pop( ) throws BoundedStackException;
}

The second step of the desugaring is shown below. As can be seen from this example,
public behavior specifications that are joined together using also have a precondition that
is the disjunction of the preconditions of the combined specification cases. The assignable
clause for the expanded specification is the union of all the assignable clauses for the cases,
with each modification governed by the corresponding precondition (which follows the key-
word if). That is, variables are only allowed to be modified if the modification was per-
mitted in the corresponding case, as determined by its precondition. The ensures clauses
of the second desugaring step correspond to the ensures clauses for each specification case;
they say that whenever the precondition for that specification case held in the pre-state,
its postcondition must also hold. As can be seen in the specification below, in logic this
is written using an implication between \old wrapped around the case’s precondition and
its postcondition. Having multiple ensures clauses is equivalent to writing a single ensures
clause that has as its postcondition the conjunction of the given postconditions. Similarly,
the signals clauses in the desugaring correspond those in the given specification cases; as for
the ensures clauses, each has a predicate that says that signaling that exception can only
happen when the predicate in that case’s precondition holds.

/*@ refine BoundedStackInterface
@ <- "BoundedStackInterface.java-refined";
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@*/
//@ model import edu.iastate.cs.jml.models.*;
public interface BoundedStackInterface extends BoundedThing {
/*@ also
@ implies_that
@ public behavior
@ requires !theStack.isEmpty() || theStack.isEmpty();
@ assignable size if !theStack.isEmpty(),
@ theStack if !theStack.isEmpty();
@ ensures \old(!theStack.isEmpty())
@ ==> theStack.equals(\old(theStack.trailer()));
@ ensures \old(theStack.isEmpty()) ==> false;
@ signals (java.lang.Exception)
@ \old(!theStack.isEmpty()) ==> false;
@ signals (BoundedStackException)
@ \old(theStack.isEmpty()) ==> true;
@*/

public void pop( ) throws BoundedStackException;
}

In the file ‘BoundedStackInterface.refines-java’ above, the precondition of pop re-
duces to true. However, the precondition shown is the general form of the expansion.
Similar remarks apply to other predicates.

2.2.2.4 Pitfalls in Specifying Exceptions

A particularly interesting example of multiple specification cases occurs in the specifica-
tion of the BoundedStackInterface’s push method. Like the other methods, this example
has two specification cases; one of these is a normal_behavior and one is an exceptional_
behavior. However, the exceptional behavior of push is interesting because it specifies more
than one exception that may be thrown. The requires clause of the exceptional behavior
says that an exception must be thrown when either the stack cannot grow larger, or when
the argument x is null. The first signals clause says that, if a BoundedStackException is
thrown, then the stack cannot grow larger, and the second signals clause says that, if a
NullPointerException is thrown, then x must be null. The specification is written in this
way because it may be that both conditions occur; the specification allows the implementa-
tion to choose (even nondeterministically) which exception is thrown in that case.

Specifiers should be wary of such situations, where two exceptional conditions may both
be true simultaneously, because it is impossible in Java to throw more than one exception
from a method call. Thus, for example, if the specification of push had been written as
follows, it would not be implementable.7 The problem is that both exceptional preconditions
may be true, and in that case an implementation cannot throw both exceptions.

/*@ public normal_behavior
@ requires theStack.length() < MAX_SIZE && x != null;
@ assignable size, theStack;
@ ensures theStack.equals(\old(theStack.insertFront(x)));
@ ensures_redundantly theStack != null && top() == x

7 Thanks to Erik Poll for pointing this out.
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@ && theStack.length() == \old(theStack.length()+1);
@ also
@ public exceptional_behavior
@ requires theStack.length() >= MAX_SIZE;
@ signals (BoundedStackException);
@ also // this is wrong!
@ public exceptional_behavior
@ requires x == null;
@ signals (NullPointerException);
@*/

public void push(Object x )
throws BoundedStackException, NullPointerException;

One could fix the example above by writing one of the requires clauses in the two ex-
ceptional behaviors to exclude the other, although this would make the specification deter-
ministic about which exception would be thrown when both exceptional conditions occur.
In general, it seems best to avoid this pitfall by writing several exceptional cases together
in a single exceptional behavior clause, as was done originally for push (see Section 2.2.2.3
[Multiple Specification Cases], page 19) or to simply use a single behavior clause.

2.2.2.5 Redundant Ensures Clauses

Finally, there is more redundancy in the specifications of push in the original specifica-
tion of BoundedStackInterface above, which has a redundant ensures clause in its normal
behavior. For an ensures_redundantly clause, what one checks is that the conjunction of
the precondition, the meaning of the assignable clause, and the (non-redundant) postcon-
dition together imply the redundant postcondition. It is interesting to note that, for push,
the specifications for stacks written in Eiffel (see page 339 of [Meyer97]) expresses just what
we specify in push’s redundant postcondition. This conveys strictly less information than
the non-redundant postcondition for push’s normal behavior, since it says little about the
elements of the stack.8

2.3 Making New Pure Types

JML comes with a suite of pure types, implemented as Java classes that can be used for
defining abstract models. These are found in the package edu.iastate.cs.jml.models,
which includes both collection and non-collection types (such as JMLInteger) and a few
helper classes (such as exceptions and enumerators).

The pure collection types can hold either objects or values, and this distinction de-
termines the notion of equality used on their elements and whether cloning is done on the
elements. The object containers use == and do not clone. Simple collection types include the
set types, JMLObjectSet and JMLValueSet, and sequence types JMLObjectSequence and
JMLValueSequence. The binary relation and map types can independently have objects in
their domain or range. The binary relation types are named JMLObjectToObjectRelation,
JMLObjectToValueRelation, and so on. The four map types are similarly named according
to the scheme JML...To...Map.

8 Meyer’s second specification and implementation of stacks (see page 349 of [Meyer97]) is no better in
this respect, although, of course, the implementation does keep track of the elements properly.
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Users can also create their own pure types if desired. Since these types are to be treated
as purely immutable values in specifications, they must be declared with the modifier pure
and pass certain conservative checks that make sure there is no possibility of observable
side-effects from using such objects.

A pure interface must have a specification such that:
• all the methods in each interface it extends are pure (these may be either in pure

interfaces or the methods may be explicitly specified as pure),
• all the methods it specifies must be pure in the sense described below.

We say a method is pure if it is either specified with the modifier pure or appears in
the specification of a pure interface or class. Similarly, a constructor is pure if it is either
specified with the modifier pure or appears in the specification of a pure class.

A pure method (not a constructor) must have a specification that does not allow any
side-effects. That is, it must have a specification that refines (i.e., is stronger than) the
following:

behavior
assignable \nothing;

A pure constructor must have a specification such that: it assigns to only the non-static
fields of the class in which it appears (including those inherited from its superclasses and
model instance fields from the interfaces that implements).

Implementations of pure methods and constructors will be checked to see that they
meet these conditions. In particular, a pure method or constructor implementation is
prohibited from calling methods or constructors that are not pure. It must also be provably
terminating.

A pure method or constructor can be declared in any class. JML will specify the intu-
itively pure methods and constructors in the standard Java libraries as pure.9

A pure class must have a specification such that:
• it only extends other pure classes,
• all the methods in each interface it extends are pure,
• all its methods and constructors must be specified to be pure in the sense described

above, and
• all its data fields must be of some primitive value type or a pure type.

Recursion is permitted, both in pure methods and in data members of pure classes.
However, a pure method must be proved to terminate when its preconditions is met. When
recursion is used in a specification, the proof involves the use of a measured_by clause in
the specification.

Model classes should also be pure, since there is no way to use non-pure operations in
an assertion. However, the modifiers model and pure are orthogonal, and thus usually one
will want to list both of them when declaring a model class. In particular, one may specify
a pure class that is not a model class; such a class would have to be implemented.

We give some examples of pure interfaces, abstract classes, and classes below.

9 Such a specification of the Java libraries is, however, not yet available. Until such a specification is
available, JML may need to relax purity checking for methods with no specification.
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2.3.1 Money

The following example begins a specification of money that would be suitable for use
in abstract models. Our specification is rather artificially broken up into pieces to allow
each piece to have a specification that fits on a page. This organization is not necessarily
something we would recommend, but it does give us a chance to illustrate more features of
JML.

Consider first the interface Money specified below. The abstract model here is a single
field of the primitive Java type long, which holds a number of pennies. Note that the
declaration of this field, pennies, again uses the JML keyword instance.

package edu.iastate.cs.jml.docs.prelimdesign;

import edu.iastate.cs.jml.models.JMLType;

public /*@ pure @*/ interface Money extends JMLType
{
//@ public model instance long pennies;

//@ public constraint pennies == \old(pennies);

/*@ public normal_behavior
@ ensures \result == pennies / 100;
@ for_example
@ public normal_example
@ requires pennies == 703;
@ ensures \result == 7;
@ also
@ public normal_example
@ requires pennies == 799;
@ ensures \result == 7;
@ also
@ public normal_example
@ requires pennies == -503;
@ ensures \result == -5;
@*/

public long dollars();

/*@ public normal_behavior
@ ensures \result == pennies % 100;
@ for_example
@ requires pennies == 703;
@ ensures \result == 3;
@ also
@ requires pennies == -503;
@ ensures \result == -3;
@*/

public long cents();

/*@ also
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@ public normal_behavior
@ ensures \result <==> o2 instanceof Money
@ && pennies == ((Money)o2).pennies;
@*/

public boolean equals(Object o2);

/*@ also
@ public normal_behavior
@ ensures \result instanceof Money
@ && ((Money)\result).pennies == pennies;
@*/

public Object clone();
}

This interface has a history constraint, which says that the number of pennies in an
object cannot change.10

The following explain more aspects of JML related to the above specification.

2.3.1.1 Redundant Examples

The interesting aspect of Money’s method specifications is another kind of redundancy.
This new form of redundancy is examples, which follow the keyword “for_example”.

Individual examples are given by normal_example clauses (adapted from our previous
work on Larch/C++ [Leavens96b] [Leavens-Baker99]). Any number of these11 can be given
in a specification. In the specification of Money above there are three normal examples given
for dollars and two in the specification of cents.

The specification in each example should be such that:
• the example’s precondition implies the precondition of the expanded meaning of the

specified behaviors,
• the example’s assignable clause specifies a subset of the locations that are assignable

according to the expanded meaning of the specified behaviors, and
• the conjunction of the example’s precondition (wrapped by \old()), the precondition

of the expanded meaning of the specified behaviors (also wrapped by \old()), the
assignable clause of the expanded meaning of the specified behaviors, and the postcon-
dition of the expanded meaning of the specified behaviors should be equivalent to the
example’s postcondition.

Requiring equivalence to the example’s postcondition means that it can serve as a test
oracle for the inputs described by the example’s precondition. If there is only one specified
public normal_behavior clause and if there are no preconditions and assignable clauses,
then the example’s postcondition should the equivalent to the conjunction of the example’s

10 There is no use of initially in this interface, so data type induction cannot assume any particular
starting value. But this is desirable, since if a particular starting value was specified, then by the history
constraint, all objects would have that value.

11 One may also give exceptional_example clauses, which are analogous to exceptional_behavior speci-
fications, and example clauses, which are analogous tobehavior specifications. There is also a lightweight
form,that is similar to the example form, except that the introductory keywords “public example” are
omitted.
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precondition and the postcondition of the public normal_behavior specification. Typi-
cally, examples are concrete, and serve to make various rhetorical points about the use of
the specification to the reader. (Exercise: check all the examples given!)

2.3.1.2 JMLType and Informal Predicates

The interface Money is specified to extend the interface JMLType. This interface is given
below. Classes that implement this interface must have equals and clone methods with
the specified behavior. The methods specified override methods in the class Object, and so
they use the form of specification that begins with the keyword “also”.

package edu.iastate.cs.jml.models;

/** Objects with a clone and equals method.
JMLObjectType and JMLValueType are refinements
for object and value containers (respectively).
@see JMLObjectType
@see JMLValueType

**/
public interface JMLType extends Cloneable, java.io.Serializable {

/*@ also
@ public normal_behavior
@ ensures \result instanceof JMLType
@ && ((JMLType)\result).equals(this);
@*/

public /*@ pure @*/ Object clone();

/*@ also
@ public normal_behavior
@ ensures \result <==>
@ (* ob2 is not distinguishable from this,
@ except by using mutation or == *);
@ implies_that
@ public normal_behavior
@ {|
@ requires ob2 instanceof JMLType;
@ ensures ob2.equals(this) == \result;
@ also
@ requires ob2 == this;
@ ensures \result <==> true;
@ |}
@*/

public /*@ pure @*/ boolean equals(Object ob2);
}

The specification of JMLType is noteworthy in its use of informal predicates [Leavens96b].
In JML these start with an open parenthesis and an asterisk (‘(*’) and continue until a
matching asterisk and closing parenthesis (‘*)’). In the public specification of equals, the
normal_behavior’s ensures clause uses an informal predicate as an escape from formality.
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The use of informal predicates avoids the delicate issues of saying formally what observable
aliasing means, and what equality of values means in general.12

In the implies_that section of the specification of the equals method is a nested case
analysis, between {| and |}. The meaning of this is that each pre- and postcondition pair
has to be obeyed. The first of these nested pairs is essentially saying that equals has to be
symmetric. The second of these is saying that it has to be reflexive.

2.3.2 MoneyComparable and MoneyOps

The type Money lacks some useful operations. The extensions below provide specifications
of comparison operations and arithmetic, respectively.

The specification in file ‘MoneyComparable.java’ is interesting because each of the
specified preconditions protects the postcondition from undefinedness in the postcondition
[Leavens-Wing97a]. For example, if the argument m2 in the greaterThan method were
null, then the expression m2.pennies would not be defined.

package edu.iastate.cs.jml.docs.prelimdesign;

public /*@ pure @*/ interface MoneyComparable extends Money
{
/*@ public normal_behavior
@ requires m2 != null;
@ ensures \result <==> pennies > m2.pennies;
@*/

public boolean greaterThan(Money m2);

/*@ public normal_behavior
@ requires m2 != null;
@ ensures \result <==> pennies >= m2.pennies;
@*/

public boolean greaterThanOrEqualTo(Money m2);

/*@ public normal_behavior
@ requires m2 != null;
@ ensures \result <==> pennies < m2.pennies;
@*/

public boolean lessThan(Money m2);

/*@ public normal_behavior
@ requires m2 != null;
@ ensures \result <==> pennies <= m2.pennies;
@*/

public boolean lessThanOrEqualTo(Money m2);
}

12 Observable aliasing is a sharing relation between objects that can be detected by a program. Such
a program, might, for example modify one object and read a changed value from the shared object.
Formalizing this in general is beyond the scope of this paper, and probably beyond what JML can
describe.
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The interface specified in the file ‘MoneyOps.java’ below extends the interface specified
above. MoneyOps is interesting for the use of its pure model methods: inRange, can_add,
and can_scaleBy. These methods cannot be invoked by Java programs; that is, they would
not appear in the Java implementation. When, for example inRange is called in a predicate
it is equivalent to using some correct implementation of its specification. The specification
of inRange also makes use of a local specification variable declaration, which follows the
keyword “old”. Such declarations allow one to abbreviate long expressions, or, to make
rhetorical points by naming constants, as is done with epsilon. These old declarations
are treated as locations that are initialized to the pre-state value of the given expression.
Model methods can be normal (instance) methods as well as static (class) methods.

package edu.iastate.cs.jml.docs.prelimdesign;

public /*@ pure @*/ interface MoneyOps extends MoneyComparable
{
/*@ public normal_behavior
@ old model double epsilon = 1.0;
@ ensures \result <==> Long.MIN_VALUE + epsilon < d
@ && d < Long.MAX_VALUE - epsilon;
@ public model boolean inRange(double d);
@
@ public normal_behavior
@ requires m2!= null;
@ ensures \result <==> inRange((double) pennies + m2.pennies);
@ public model boolean can_add(Money m2);
@
@ public normal_behavior
@ ensures \result <==> inRange(factor * pennies);
@ public model boolean can_scaleBy(double factor);
@*/

/*@ public normal_behavior
@ requires m2 != null && can_add(m2);
@ ensures \result != null
@ && \result.pennies == this.pennies + m2.pennies;
@ for_example
@ public normal_example
@ requires this.pennies == 300 && m2.pennies == 400;
@ ensures \result != null && \result.pennies == 700;
@*/

public MoneyOps plus(Money m2);

/*@ public normal_behavior
@ requires m2 != null
@ && inRange((double) pennies - m2.pennies);
@ ensures \result != null
@ && \result.pennies == this.pennies - m2.pennies;
@ for_example
@ public normal_example
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@ requires this.pennies == 400 && m2.pennies == 300;
@ ensures \result != null && \result.pennies == 100;
@*/

public MoneyOps minus(Money m2);

/*@ public normal_behavior
@ requires can_scaleBy(factor);
@ ensures \result != null
@ && \result.pennies == (long)(factor * pennies);
@ for_example
@ public normal_example
@ requires pennies == 400 && factor == 1.01;
@ ensures \result != null && \result.pennies == 404;
@*/

public MoneyOps scaleBy(double factor);
}

Note also that JML uses the Java semantics for mixed-type expressions. For example in
the ensures clause of the above specification of plus, m2.pennies is implicitly coerced to a
double-precision floating point number, as it would be in Java.

2.3.3 MoneyAC

The key to proofs that an implementation of a class or interface specification is correct
lies in the use of depends and represents clauses [Hoare72a] [Leino95].

Consider, for example, the abstract class specified in the file ‘MoneyAC.java’ below.
This class is abstract and has no constructors. The class declares a concrete field numCents,
which is related to the model instance field pennies by the represents clause. This allows
relatively trivial proofs of the correctness of the dollars and cents methods, and is key to
the proofs of the other methods.

package edu.iastate.cs.jml.docs.prelimdesign;

public /*@ pure @*/ abstract class MoneyAC implements Money {

protected long numCents;
//@ protected depends pennies <- numCents;
//@ protected represents pennies <- numCents;

//@ protected constraint_redundantly numCents == \old(numCents);

public long dollars()
{
return numCents / 100;

}

public long cents()
{
return numCents % 100;

}



Chapter 2: Class and Interface Specifications 30

public boolean equals(Object o2)
{
try {
Money m2 = (Money)o2;
return numCents == (100 * m2.dollars() + m2.cents());

} catch (ClassCastException e) {
return false;

}
}

public Object clone()
{
return this;

}
}

2.3.4 MoneyComparableAC

The straightforward implementation of the pure abstract subclass MoneyComparableAC
is given below. Besides extending the class MoneyAC, it implements the interface
MoneyComparable. Note that the model and concrete fields are both inherited by this
class.

package edu.iastate.cs.jml.docs.prelimdesign;

public /*@ pure @*/ abstract class MoneyComparableAC
extends MoneyAC implements MoneyComparable

{
protected static long totalCents(Money m2)
{
long res = 100 * m2.dollars() + m2.cents();
//@ assert res == m2.pennies;
return res;

}

public boolean greaterThan(Money m2)
{
return numCents > totalCents(m2);

}

public boolean greaterThanOrEqualTo(Money m2)
{
return numCents >= totalCents(m2);

}

public boolean lessThan(Money m2)
{
return numCents < totalCents(m2);

}
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public boolean lessThanOrEqualTo(Money m2)
{
return numCents <= totalCents(m2);

}
}

An interesting feature of the class MoneyComparableAC is the protected static method
named totalCents. For this method, we give its code with an embedded assertion, written
following the keyword assert.13

Note that the model method, inRange is not implemented, and does not need to be
implemented to make this class correctly implement the interface MoneyComparable.

2.3.5 USMoney

Finally, a concrete class implementation is given in the file ‘USMoney.java’ shown below.
The class USMoney implements the interface MoneyOps. Note that specifications as well as
code are given for the constructors.

package edu.iastate.cs.jml.docs.prelimdesign;

public /*@ pure @*/ class USMoney
extends MoneyComparableAC implements MoneyOps

{
/*@ public normal_behavior
@ assignable pennies;
@ ensures pennies == cs;
@ implies_that
@ protected normal_behavior
@ assignable numCents;
@ ensures numCents == cs;
@*/

public USMoney(long cs)
{
numCents = cs;

}

/*@ public normal_behavior
@ assignable pennies;
@ ensures pennies == (long)(100.0 * amt);
@ ensures_redundantly (* pennies holds amt dollars *); @*/

public USMoney(double amt)

13 As of JDK 1.4, assert is also a reserved word in Java. One can thus write assert statements either
in standard Java or in JML annotations. If one writes an assert statement as a JML annotation, all
of the JML extensions to the Java expression syntax see Section 3.1 [Extensions to Java Expressions
for Predicates], page 43 for the predicate can be used, but no side-effects are allowed in this predicate.
Such a JML assert-statement may also refer to model and ghost variables. In a Java assert statement,
i.e., in an assert-statement that is not in an annotation, one cannot use JML’s extensions for assertions,
because such assertions must compile with a Java compiler.
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{
numCents = (long)(100.0 * amt);

}

public MoneyOps plus(Money m2)
{
//@ assume m2 != null;
return new USMoney(numCents + totalCents(m2));

}

public MoneyOps minus(Money m2)
{
//@ assume m2 != null;
return new USMoney(numCents - totalCents(m2));

}

public MoneyOps scaleBy(double factor)
{
return new USMoney(numCents * factor / 100.0);

}
}

The constructors each mention the fields that they initialize in their assignable clause.
This is because the constructor’s job is to initialize these fields. One can think of a new
expression in Java as executing in two steps: allocating an object, and then calling the
constructor. Thus the specification of a constructor needs to mention the fields that it can
initialize in the assignable clause.

The first constructor’s specification also illustrates that redundancy can also be used
in an assignable clause. A redundant assignable clause follows if the meaning of the
set of locations named is a subset of the ones given in the non-redundant clause for the
same specification case. In this example the redundant assignable clause follows from the
given assignable clause and the meaning of the depends clause inherited from the superclass
MoneyAC.

The second constructor above is noteworthy in that there is a redundant ensures clauses
that uses an informal predicate [Leavens96b]. In this instance, the informal predicate is
used as a comment (which could also be used). Recall that informal predicates allow an
escape from formality when one does not wish to give part of a specification in formal detail.

The plus and minus methods use assume statements; these are like assertions, but are
intended to impose obligations on the callers [Back-Mikhajlova-vonWright98]. The main
distinction between a assume statement and a requires clause is that the former is a
statement and can be used within code. These may also be treated differently by different
tools. For example, ESC/Java [Leino-etal00] will require callers to satisfy the requires clause
of a method, but will not enforce the precondition if it is stated as an assumption.

2.4 Use of Pure Classes

Since USMoney is a pure class, it can be used to make models of other classes. An example
is the abstract class specified in the file ‘Account.jml’ below. The first model field in this
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class has the type USMoney, which was specified above. (Further explanation follows the
specification below.)

package edu.iastate.cs.jml.docs.prelimdesign;

public class Account {

//@ public model MoneyOps credit;
//@ public model String owner;

/*@ public invariant owner != null && credit != null
@ && credit.greaterThanOrEqualTo(new USMoney(0));
@*/

//@ public constraint owner.equals(\old(owner));

/*@ public normal_behavior
@ requires own != null && amt != null
@ && (new USMoney(1)).lessThanOrEqualTo(amt);
@ assignable credit, owner;
@ ensures credit.equals(amt) && owner.equals(own);
@*/

public Account(MoneyOps amt, String own);

/*@ public normal_behavior
@ ensures \result.equals(credit);
@*/

public pure MoneyOps balance();

/*@ public normal_behavior
@ requires 0.0 <= rate && rate <= 1.0
@ && credit.can_scaleBy(1.0 + rate);
@ assignable credit;
@ ensures credit.equals(\old(credit.scaleBy(1.0 + rate)));
@ for_example
@ public normal_example
@ requires rate == 0.05 && (new USMoney(4000)).equals(credit);
@ ensures credit.equals(new USMoney(4200));
@*/

public void payInterest(double rate);

/*@ public normal_behavior
@ requires amt != null
@ && amt.greaterThanOrEqualTo(new USMoney(0))
@ && credit.can_add(amt);
@ assignable credit;
@ ensures credit.equals(\old(credit.plus(amt)));
@ for_example
@ public normal_example
@ requires credit.equals(new USMoney(40000))
@ && amt.equals(new USMoney(1));
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@ ensures credit.equals(new USMoney(40001));
@*/

public void deposit(MoneyOps amt);

/*@ public normal_behavior
@ requires amt != null && (new USMoney(0)).lessThanOrEqualTo(amt)
@ && amt.lessThanOrEqualTo(credit);
@ assignable credit;
@ ensures credit.equals(\old(credit.minus(amt)));
@ for_example
@ public normal_example
@ requires credit.equals(new USMoney(40001))
@ && amt.equals(new USMoney(40000));
@ ensures credit.equals(new USMoney(1));
@*/

public void withdraw(MoneyOps amt);
}

The specification of Account makes good use of examples. It also demonstrates the
various ways of protecting predicates used in the specification from undefinedness [Leavens-
Wing97a]. The principal concern here, as is often the case when using reference types
in a model, is to protect against the model fields being null. As in Java, fields and
variables of reference types can be null. In the specification of Account, the invariant
states that these fields should not be null. Since implementations of public methods must
preserve the invariants, one can think of the invariant as conjoined to the precondition
and postcondition of each public method, and the postcondition of each public constructor.
Hence, for example, method pre- and postconditions do not have to state that the fields
are not null. However, often other parts of the specification must be written to allow the
invariant to be preserved, or established by a constructor. For example, in the specification
of Account’s constructor, this is done by requiring amt and own are not null, since, if they
could be null, then the invariant could not be established.

2.5 Composition for Container Classes

The following specifications lead to the specification of a class Digraph (directed graph).
This gives a more interesting example of how more complex models can be composed in
JML from other classes. In this example we use model classes and the pure containers
provided in the package edu.iastate.cs.jml.models.

2.5.1 NodeType

The file ‘NodeType.java’ contains the specification of an abstract class NodeType.
NodeType is an abstract class, as opposed to a model class, because it will require an
implementation and does appear in the interface of the model class Digraph. However, we
also declare this abstract class as pure, since we will also use NodeType in the specification
of other classes. (And we do so appropriately, since all the methods for class NodeType
are side-effect-free.) In the abstract class specification for NodeType we simply provide a
model field iD, which would represent a unique identifier for nodes.
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package edu.iastate.cs.jml.samples.Digraph;

import edu.iastate.cs.jml.models.*;

public /*@ pure @*/ abstract class NodeType implements JMLType {

//@ public model int iD;

/*@ public normal_behavior
@ {|
@ requires o instanceof NodeType;
@ ensures \result == (iD == ((NodeType)o).iD);
@ also
@ requires !(o instanceof NodeType);
@ ensures \result == false;
@ |}
@*/

public abstract boolean equals(Object o);

/*@ public normal_behavior
@ ensures \result instanceof NodeType
@ && ((NodeType)\result).equals(this);
@*/

public abstract Object clone();

} // end of class NodeType

The use of also in the specification of NodeType’s equals method is interesting. It
separates two cases of the normal behavior for that method. This is equivalent to using
two public normal_behavior clauses, one for each case. That is, when the argument is an
instance of NodeType, the method must return true just when this and o have the same iD
field. And when o is not an instance of NodeType, the equals method must return false.
Compare this with the specification of the equals method for the class ArcType below (see
Section 2.5.2 [ArcType], page 35).

2.5.2 ArcType

ArcType is specified as a pure model class in the file ‘ArcType.jml’ shown below. It is a
model class because it does not appear in the interface to Digraph, and so does not need to
be implemented. We declare ArcType to be a pure class so that its methods can be used in
assertions. The two model fields for ArcType, from and to, are both of type NodeType. We
specify the equals method so that two references to objects of type ArcType are equal if
and only if they have equal values in the from and to model fields. Thus, equals is specified
using NodeType.equals. We also specify that ArcType has a public clone method, fulfilling
the obligations of a type that implements JMLType. ArcType must implement JMLType so
that its objects can be placed in a JMLValueSet. We use such a set for one of the model
fields of DiGraph.

package edu.iastate.cs.jml.samples.Digraph;
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import edu.iastate.cs.jml.models.JMLType;

public pure model class ArcType implements JMLType {

public model NodeType from;
public model NodeType to;
public invariant from != null && to != null;

public normal_behavior
requires from != null && to != null;
assignable this.from, this.to;
ensures this.from.equals(from) && this.to.equals(to);

public ArcType(NodeType from, NodeType to);

also
public normal_behavior
requires o instanceof ArcType;
ensures \result <==> ((ArcType)o).from.equals(from)

&& ((ArcType)o).to.equals(to);
also
public normal_behavior
requires !(o instanceof ArcType);
ensures \result == false;

public boolean equals(Object o);

also
public normal_behavior
ensures \result instanceof ArcType

&& ((ArcType)\result).equals(this);
public Object clone();

}

2.5.3 Digraph

Finally, the specification of the class Digraph is given in the file ‘Digraph.jml’ shown
below. This specification demonstrates how to use container classes, like JMLValueSet,
combined with appropriate invariants to specify models that are compositions of other
classes. Both the model fields nodes and arcs are of type JMLValueSet. However, the first
invariant clause restricts nodes so that every object in nodes is, in fact, of type NodeType.
Similarly, the next invariant clause we restrict arcs to be a set of ArcType objects. In both
cases, since the type is JMLValueSet, membership is determined by the equals method for
the type of the elements (rather than reference equality).

package edu.iastate.cs.jml.samples.Digraph;
//@ model import edu.iastate.cs.jml.models.*;
public class Digraph {

//@ public model JMLValueSet nodes;
//@ public model JMLValueSet arcs;
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/*@ public invariant nodes != null
@ && (\forall JMLType n; nodes.has(n); n instanceof NodeType);
@ public invariant arcs != null
@ && (\forall JMLType a; arcs.has(a); a instanceof ArcType);
@ public invariant (\forall ArcType a; arcs.has(a);
@ nodes.has(a.from) && nodes.has(a.to));
@*/

/*@ public normal_behavior
@ assignable nodes, arcs;
@ ensures nodes.isEmpty() && arcs.isEmpty();
@*/

public Digraph();

/*@ public normal_behavior
@ requires n != null;
@ assignable nodes;
@ ensures nodes.equals(\old(nodes.insert(n)));
@*/

public void addNode(NodeType n);

/*@ public normal_behavior
@ requires unconnected(n);
@ assignable nodes;
@ ensures nodes.equals(\old(nodes.remove(n)));
@*/

public void removeNode(NodeType n);

/*@ public normal_behavior
@ requires inFrom != null && inTo != null
@ && nodes.has(inFrom) && nodes.has(inTo);
@ assignable arcs;
@ ensures arcs.equals(
@ \old(arcs.insert(new ArcType(inFrom, inTo))));
@*/

public void addArc(NodeType inFrom, NodeType inTo);

/*@ public normal_behavior
@ ensures \result == nodes.has(n);
@*/

public pure boolean isNode(NodeType n);

/*@ public normal_behavior
@ ensures \result == arcs.has(new ArcType(inFrom, inTo));
@
@*/

public pure boolean isArc(NodeType inFrom, NodeType inTo);
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/*@ public normal_behavior
@ requires nodes.has(start) && nodes.has(end);
@ ensures \result == reachSet(new JMLValueSet(start)).has(end);
@*/

public pure boolean isAPath(NodeType start, NodeType end);

/*@ public normal_behavior
@ ensures \result <==>
@ !(\exists ArcType a; arcs.has(a);
@ a.from.equals(n) || a.to.equals(n));
@ public pure model boolean unconnected(NodeType n);
@*/

/*@ public normal_behavior
@ requires nodeSet != null
@ && (\forall Object o; nodeSet.has(o);
@ o instanceof NodeType && nodes.has(o));
@ measured_by nodes.size() - nodeSet.size();
@ {|
@ requires nodeSet.equals(OneMoreStep(nodeSet));
@ ensures \result != null && \result.equals(nodeSet);
@ also
@ requires !nodeSet.equals(OneMoreStep(nodeSet));
@ ensures \result != null
@ && \result.equals(reachSet(OneMoreStep(nodeSet)));
@ |}
@ public pure model JMLValueSet reachSet(JMLValueSet nodeSet);
@*/

/*@ public normal_behavior
@ requires nodeSet != null
@ && (\forall Object o; nodeSet.has(o);
@ o instanceof NodeType && nodes.has(o));
@ ensures \result != null
@ && \result.equals(nodeSet.union(
@ new JMLValueSet { NodeType n | nodes.has(n)
@ && (\exists ArcType a; a != null && arcs.has(a);
@ nodeSet.has(a.from) && n.equals(a.to))}));
@ public pure model JMLValueSet OneMoreStep(JMLValueSet nodeSet);
@*/

} // end of class Digraph

An interesting use of pure model methods appears at the end of the specification of
Digraph in the pure model method reachSet. This method constructively defines the set
of all nodes that are reachable from the nodes in the argument nodeSet. This specification
uses a nested case analysis, between {| and |}. The meaning of this is again that each pre-
and postcondition pair has to be obeyed, but by using nesting, one can avoid duplication
of the requires clause that is found at the beginning of the specification. The measured_
by clause is needed because this specification is recursive; the measure given allows one to
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describe a termination argument, and thus ensure that the specification is well-defined. This
clause defines an integer-valued measure that must always be at least zero; furthermore,
the measure for a call and recursive uses in the specification must strictly decrease [Owre-
etal95]. The recursion in the specification builds up the entire set of reachable nodes by, for
each recursive reference, adding the nodes that can be reached directly (via a single arc)
from the nodes in nodeSet.

2.6 Subtyping

Following Dhara and Leavens [Dhara-Leavens96] [Leavens97c], a subtype inherits the
specifications of its supertype’s public and protected members (fields and methods), as well
as its public and protected invariants and history constraints.14 This ensures that a subclass
specifies a behavioral subtype of its supertypes. This inheritance can be thought of textually,
by copying the public and protected specifications of the methods of a class’s ancestors
and all interfaces that a class implements into the class’s specification and combining the
specifications using also.15 (This is the reason for the use of also at the beginning of
specifications in overriding methods.) By the semantics of method combination using also,
these behaviors must all be satisfied by the method, in addition to any explicitly specified
behaviors.

For example, consider the class PlusAccount, specified in file ‘PlusAccount.jml’ shown
below. It is specified as a subclass of Account (see Section 2.4 [Use of Pure Classes],
page 32). Thus it inherits the fields of Account, and Account’s public invariants, history
constraints, and method specifications. (The specification of Account given above does
not have any protected specification information.) Because it inherits the fields of its
superclass, inherited method specifications of behavior are still meaningful when copied to
the subclass. The trick is to always add new model fields to the subclass and relate them
to the existing ones.

Note that in the represents clause below, instead of a left-facing arrow, <-, the connective
“\such_that” is used to introduce a relationship predicate. This form of the represents
clause allows one to specify abstraction relations, instead of abstraction functions.

package edu.iastate.cs.jml.docs.prelimdesign;

public class PlusAccount extends Account {
//@ public model MoneyOps savings, checking;

//@ public depends credit <- savings, checking;
/*@ public represents credit \such_that
@ credit.equals(savings.plus(checking));
@*/

//@ public invariant savings != null && checking != null;
/*@ public invariant_redundantly savings.plus(checking)
@ .greaterThanOrEqualTo(new USMoney(0));

14 A subtype also inherits default privacy (package-protected) method specifications, invariants, and history
constraints if it is in the same package as its supertype.

15 However, textual copying shouldn’t be taken literally; if a subclass declares a field that hides the fields
of its superclass, renaming must be done to prevent name capture.
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@*/

/*@ public normal_behavior
@ requires sav != null && chk != null && own != null
@ && (new USMoney(1)).lessThanOrEqualTo(sav)
@ && (new USMoney(1)).lessThanOrEqualTo(chk);
@ assignable credit, owner;
@ assignable_redundantly savings, checking;
@ ensures savings.equals(sav) && checking.equals(chk)
@ && owner.equals(own);
@ ensures_redundantly credit.equals(sav.plus(chk));
@*/

public PlusAccount(MoneyOps sav, MoneyOps chk, String own);

/*@ also
@ public normal_behavior
@ requires 0.0 <= rate && rate <= 1.0
@ && credit.can_scaleBy(1.0 + rate);
@ assignable credit, savings, checking;
@ ensures checking.equals(\old(checking.scaleBy(1.0 + rate)));
@ for_example
@ public normal_example
@ requires rate == 0.05 && checking.equals(new USMoney(2000));
@ ensures checking.equals(new USMoney(2100));
@*/

public void payInterest(double rate);

/*@ also
@ public normal_behavior
@ requires amt != null
@ && (new USMoney(0)).lessThanOrEqualTo(amt)
@ && amt.lessThanOrEqualTo(savings);
@ assignable credit, savings;
@ ensures savings.equals(\old(savings.minus(amt)))
@ && \not_modified(checking);
@ also
@ public normal_behavior
@ requires amt != null
@ && (new USMoney(0)).lessThanOrEqualTo(amt)
@ && amt.lessThanOrEqualTo(credit)
@ && amt.greaterThan(savings);
@ assignable credit, savings, checking;
@ ensures savings.equals(new USMoney(0))
@ && checking.equals(
@ \old(checking.minus(amt.minus(savings))));
@ for_example
@ public normal_example
@ requires savings.equals(new USMoney(40001))
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@ && amt.equals(new USMoney(40000));
@ ensures savings.equals(new USMoney(1))
@ && \not_modified(checking);
@ also
@ public normal_example
@ requires savings.equals(new USMoney(30001))
@ && checking.equals(new USMoney(10000))
@ && amt.equals(new USMoney(40000));
@ ensures savings.equals(new USMoney(0))
@ && checking.equals(new USMoney(1));
@*/

public void withdraw(MoneyOps amt);

/*@ also
@ public normal_behavior
@ requires amt != null
@ && amt.greaterThanOrEqualTo(new USMoney(0))
@ && credit.can_add(amt);
@ assignable credit, savings;
@ ensures savings.equals(\old(savings.plus(amt)))
@ && \not_modified(checking);
@ for_example
@ public normal_example
@ requires savings.equals(new USMoney(20000))
@ && amt.equals(new USMoney(1));
@ ensures savings.equals(new USMoney(20001));
@*/

public void deposit(MoneyOps amt);

/*@ public normal_behavior
@ requires amt != null
@ && amt.greaterThanOrEqualTo(new USMoney(0))
@ && credit.can_add(amt);
@ assignable credit, checking;
@ ensures checking.equals(\old(checking.plus(amt)))
@ && \not_modified(savings);
@ for_example
@ public normal_example
@ requires checking.equals(new USMoney(20000))
@ && amt.equals(new USMoney(1));
@ ensures checking.equals(new USMoney(20001));
@*/

public void depositToChecking(MoneyOps amt);

/*@ public normal_behavior
@ requires amt != null;
@ {|
@ requires (new USMoney(0)).lessThanOrEqualTo(amt)
@ && amt.lessThanOrEqualTo(checking);
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@ assignable credit, checking;
@ ensures checking.equals(\old(checking.minus(amt)))
@ && \not_modified(savings);
@ also
@ requires (new USMoney(0)).lessThanOrEqualTo(amt)
@ && amt.lessThanOrEqualTo(credit)
@ && amt.greaterThan(checking);
@ assignable credit, checking, savings;
@ ensures checking.equals(new USMoney(0))
@ && savings.equals(
@ \old(savings.minus(amt.minus(checking))));
@ |}
@ for_example
@ public normal_example
@ requires checking.equals(new USMoney(40001))
@ && amt.equals(new USMoney(40000));
@ ensures checking.equals(new USMoney(1))
@ && \not_modified(savings);
@ also
@ public normal_example
@ requires savings.equals(new USMoney(30001))
@ && checking.equals(new USMoney(10000))
@ && amt.equals(new USMoney(40000));
@ ensures checking.equals(new USMoney(0))
@ && savings.equals(new USMoney(1));
@*/

public void payCheck(MoneyOps amt);
}
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3 Extensions to Java Expressions

JML makes extensions to the Java expression syntax for two uses. The main set of
extensions are used in predicates. But there are also some extensions used in store-ref s,
which are themselves used in the assignable, accessible, depends, represents clauses.

3.1 Extensions to Java Expressions for Predicates

The expressions that can be used as predicates in JML are an extension to the side-effect
free Java expressions. Since predicates are required to be side-effect free, the following Java
operators are not allowed within predicates:
• assignment (=), and the various assignment operators (such as +=, -=, etc.)
• all forms of increment and decrement operators (++ and --),
• calls to methods that are not pure, and
• any use of operator new that would call a constructor that is not pure.

Furthermore, within method specification that are not model programs, one cannot use
super to call a pure superclass method, because it is confusing in combination with JML’s
specification inheritance.1

We allow the allocation of storage (e.g., using operator new and pure constructors)
in predicates, because such storage can never be referred to after the evaluation of the
predicate, and because such pure constructors have no side-effects other than initializing
the new objects so created.

JML adds the following new syntax to the Java expression syntax, for use in predicates
(see Section B.1.10 [Predicate and Specification Expression Syntax], page 60 for syntactic
details such as precedence):
• Informal descriptions, which look like

(* some text describing a Boolean-valued predicate *)

and have type boolean. Their meaning is entirely determined by the reader, and tools
will mostly treat them the same as true.

• ==> for logical implication; for example, the formula raining ==> getsWet is true
if either raining is false or getsWet is true. The notation <== is used for reverse
implication. Finally, the notation <==> is used for logical equivalence, and <=!=> for
logical inequivalence. Note that, for expressions of type boolean, <==> means the same
thing as ==, and <=!=> means the same thing as !=; however, <==> and <=!=> have a
much lower precedence, and are also associative and symmetric.

• \forall and \exists, which are universal and existential quantifiers (respectively);
for example,

(\forall int i,j; 0 <= i && i < j && j < 10; a[i] < a[j])

says that a is sorted at indexes between 0 and 9. The quantifiers range over all potential
values of the variables declared which satisfy the range predicate, given between the

1 Suppose A is the superclass of B, and B is the superclass of C. Suppose B ’s specification used super to
call a method of A. The problem is that when this specification is inherited by C, if we imagine copying
B ’s specification to C, then this use of super no longer refers to A, but to B.
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semicolons (;). If the range predicate is omitted, it defaults to true. Thus, when the
variables declared are reference types, they may be null, or may refer to objects not
constructed by the program; one should use a range predicate to eliminate such cases
if they are not desired.

• \max, \min, \product, and \sum, which are generalized quantifiers that return the
maximum, minimum, product, or sum of the values of the expressions given, where the
variables satisfy the given range. The range predicate must be of type boolean. The
expression in the body must be a built-in numeric type, such as int or double; the type
of the quantified expression as a whole is the type of its body. The body of a quantified
expression is the last top-level expression it contains; it is the expression following the
range predicate, if there is one. As with the universal and existential quantifiers, if the
range predicate is omitted, it defaults to true. For example, the following equations
are all true (see chapter 3 of [Cohen90]):

(\sum int i; 0 <= i && i < 5; i) == 0 + 1 + 2 + 3 + 4
(\product int i; 0 < i && i < 5; i) == 1 * 2 * 3 * 4
(\max int i; 0 <= i && i < 5; i) == 4
(\min int i; 0 <= i && i < 5; i-1) == -1

For computing the value of a sum or product, Java’s arithmetic is used. The meaning
thus depends on the type of the expression. For example, in Java, floating point
numbers use the IEEE 754 standard, and thus when an overflow occurs, the appropriate
positive or negative infinity is returned. However, Java integers wrap on overflow.
Consider the following examples.

(\product float f; 1.0e30f < f && f < 1.0e38f; f)
== Float.POSITIVE_INFINITY

(\sum int i; i == Intger.MAX_VALUE || i == 1; i)
== Integer.MAX_VALUE + 1
== Integer.MIN_VALUE

When the range predicate is not satisfiable, the sum is 0 and the product is 1; for
example:

(\sum int i; false; i) == 0
(\product double d; false; d*d) == 1.0

When the range predicate is not satisfiable for \max the result is the smallest number
with the type of the expression in the body; for floating point numbers, negative infinity
is used. Similarly, when the range predicate is not satisfiable for \min, the result is the
largest number with the type of the expression in the body.

• \num_of, which is “numerical quantifier.” It returns the number of values for its
variables for which the range and the expression in its body are true. Both the range
predicate and the body must have type boolean, and the entire quantified expression
has type long. The meaning of this quantifier is defined by the following equation (see
p. 57 of [Cohen90]).

(\num_of T x; R(x); P(x)) == (\sum T x; R(x) && P(x); 1L)

• Set comprehensions, which can be used to succinctly define sets; for example, the
following is the JMLObjectSet that is the subset of non-null Integer objects found in
the set myIntSet whose values are between 0 and 10, inclusive.
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new JMLObjectSet {Integer i | myIntSet.has(i)
&& i != null && 0 <= i.getInteger()
&& i.getInteger() <= 10 }

The syntax of JML (see Section B.1.10 [Predicate and Specification Expression
Syntax], page 60) limits set comprehensions so that following the vertical bar (‘|’)
is always an invocation of the has method of some set on the variable declared.
(This restriction is used to avoid Russell’s paradox [Whitehead-Russell25].) One
may often start from the sets containing the objects of primitive types found in
edu.iastate.cs.jml.models.JMLModelObjectSet and (in the same Java package)
JMLModelValueSet.

• \elemtype, which returns the most-specific static type shared by all elements of its
array argument.

• \fresh, which asserts that objects were freshly allocated; for example, \fresh(x,y)
asserts that the objects bound to x and y were not allocated in the pre-state.

• \invariant_for, which is true just when its argument satisfies the invariant of its
static type; for example, \invariant_for((MyClass)o) is true when o satisfies the
invariant of MyClass. The entire \invariant_for expression is of type boolean.

• \is_initialized, which is true just when its reference-type argument is a class that
has finished its static initialization. It is of type boolean.

• \lblneg and \lblpos can be used to attach labels to expressions; these labels might
be printed in various messages by support tools, for example, to identify an assertion
that failed. One would only write an expression such as

(\lblneg indexInBounds 0 <= index && index < length)

which has value that is the same as 0 <= index && index < length. The idea is that
if this expression is used in an assertion and its value is false (e.g., when doing run-
time checking of assertions), then a warning will be printed that includes the label
indexInBounds. The form using \lblpos has a similar syntax, but should be used for
warnings when the value of the enclosed expression is true.

• \lockset, which is the set of locks held by the current thread. It is of type
JMLObjectSet. (This is an adaptation from ESC/Java [Leino-etal00] for dealing with
threads.)

• \not_modified, which asserts that the values of objects (and their dependees) are the
same in the post-state as in the pre-state; for example, \not_modified(xval,yval)
says that xval and yval have the same value in the pre- and post-states (in the sense
of an equals method). The keyword \not_modified can only be used in an ensures-
clause or a signals-clause; it cannot be used, for example, in preconditions.

• \old, which can be used to refer to values in the pre-state; e.g., \old(myPoint.x) is
the value of the x field of the object myPoint in the pre-state. The keyword \old can
only be used in an ensures-clause, a signals-clause, or a history-constraint; it cannot
be used, for example, in preconditions.

• Several notations using \reach allow one to refer to the set of objects reachable from
some particular object. The \reach syntax is overloaded to reduce the number of
keywords. There are three cases, each of which has two alternatives depending on the
static type of the first argument:
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- The syntax \reach(x) denotes the smallest JMLObjectSet containing the ob-
ject denoted by x, if any, and all objects accessible through all fields of objects
in this set. That is, if x is null, then this set is empty otherwise it contains
x, all objects accessible through all fields of x, all objects accessible through all
fields of these objects, and so on, recursively. If the expression x has static type
edu.iastate.cs.jml.models.JMLObjectSet, then \reach(x) denotes the small-
est JMLObjectSet containing the non-null objects in x, if any, and all objects
accessible through all fields of objects in this set.

- The syntax \reach(x, T) denotes the smallest JMLObjectSet containing the ob-
ject denoted by x, if such an object exists and has type T, and all objects of type
T accessible through all fields of objects in this set. If x, the argument to \reach
has the static type edu.iastate.cs.jml.models.JMLObjectSet, then this syntax
denotes the smallest JMLObjectSet containing the non-null objects in x of type T,
if any, and all objects accessible through all fields of objects in this set.

Note that if x is a JMLObjectSet, it may contain objects of different types; the
presence of objects of other types does not matter. Only the instances of type T
participate, and there need not be any instances of type T in the set.

- The syntax \reach(x, T, f ) denotes the smallest JMLObjectSet containing
the object denoted by x, if such an object exists and has type T, and all
objects of type T accessible using the field f on objects in this set. The type
T must have been declared with a (non-static) field f. If x has static type
edu.iastate.cs.jml.models.JMLObjectSet, then this denotes the smallest
JMLObjectSet containing the objects in x that have type T, and all objects of
type T accessible using the field f on objects in this set.

More generally, in this syntax one can use instead of f, a store-ref-expression. For
example, in

\reach(myPointSet, ColorPoint, neighbor[3])

if myPointSet is a JMLObjectSet, then this expression denotes the smallest set of
objects of type ColorPoint such that the objects contained in myPointSet of type
ColorPoint are in the set, and for each object cp of type ColorPoint in the set,
cp.neighbor[3] is in the set.

• \result, which, in an ensures clause is the value or object that is being returned by
a method. The keyword \result can only be used in an ensures-clause; it cannot be
used, for example, in preconditions or in signals clauses.

• \nonnullelements, which can be used to assert that the elements of an array are all
non-null. For example, \nonnullelements(myArray), is equivalent to

myArray != null &&
(\forall int i; 0 <= i && i < myArray.length;

myArray[i] != null)

• \typeof, which returns the most-specific static type of an expression. An expression
of the form \typeof(E) has type \TYPE.2 For example, \typeof(true == false) is
the type boolean.

2 The type \TYPE stands for the type of all types.
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• The operator <: which compares two reference types and returns true when the type
on the left is a subtype of the type on the right. Although the notation might suggest
otherwise, this operator is also reflexive; a type will compare as <: with itself.

• \type, which can be used to mark types in expressions. An expression of the form
\type(T) has the type \TYPE. For example, in

\typeof(myObj) <: \type(PlusAccount)

the use of \type(PlusAccount) is required to introduce the type PlusAccount into
this expression context.

As in Java itself, most types are reference types, and hence many expressions yield
references (i.e., object identities or addresses), as opposed to primitive values. This means
that ==, except when used to compare pure values of primitive types such as boolean or
int, is reference equality. As in Java, to get value equality for reference types one uses the
equals method in assertions. For example, the predicate myString == yourString, is only
true if the objects denoted by myString and yourString are the same object (i.e., if the
names are aliases); to compare their values one must write myString.equals(yourString).

The reference semantics makes interpreting predicates that involve the use of \old in-
teresting. We want to have the semantics suited for two purposes:
• execution of assertions for purposes of debugging and testing, as in Eiffel, and
• generation of mathematical assertions for static analysis and possible theorem proving

(e.g., to verify program correctness).

The key to the semantics of \old is to treat it as an abbreviation for a local definition.
That is, E in \old(E) can be evaluated in the pre-state, and its value bound to a locally
defined name, and then the name can be used in the postcondition.

To avoid refering to the value of initialized locations, a constructor’s precondition can
only refer to locations in the object being constructed that are not assignable. This allows
a constructor to refer to instance fields of the object being constructed if they are not
made assignable by the constructor’s assignable clause, for example, if they are declared
with initializers. In particular, the precondition of a constructor may not mention a “blank
final” instance variable that it must assign.

Since we are using Java expressions for predicates, there are some additional problems in
mathematical modeling. We are excluding the possibility of side-effects by limiting the syn-
tax of predicates, and by using type checking [Gifford-Lucassen86] [Lucassen87] [Lucassen-
Gifford88] [Nielson-Nielson-Amtoft97] [Talpin-Jouvelot94] [Wright92] to make sure that only
pure methods and constructors may be called in predicates.

Exceptions in expressions are particularly important, since they may arise in type casts.
Logically, we originally planned to deal with exceptions by having the evaluation of predi-
cates substitute an arbitrary expressible value of the normal result type when an exception
is thrown during evaluation. (When the expression’s result type is a reference type, an
implementation would have to return null if an exception is thrown while executing such
a predicate.) This corresponds to a mathematical model in which partial functions are
mathematically modeled by underspecified total functions [Gries-Schneider95]. However,
instead of doing this for all subexpressions, we only require this to be done for the smallest
boolean-valued subexpression that may throw an exception (and for entire expressions used
in JML’s measured-clause and variant-function).
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JML will check that errors (i.e., exceptions that inherit from Error) are not explicitly
thrown by pure methods. This means that they can be ignored during mathematical mod-
eling. When executing predicates, errors will cause run-time errors.

3.2 Extensions to Java Expressions for Store-Refs

The grammatical production store-ref (see Section B.1.5 [Store Ref Syntax], page 54)
is used to name locations in the assignable, depends, represents clauses. A similar
production for object-ref is used in the accessible clause. A store-ref names a location,
not an object; a location is either a field of an object, or an array element. Besides the
Java syntax of names and field and array references, JML supports the following syntax for
store-ref s. See Section B.1.4 [Behavioral Specification Syntax for Types], page 54, for more
details on the syntax.
• Array ranges, of the form A[E1 .. E2], denote the locations in the array A between

the value of E1 and the value of E2 (inclusive). For example, the clause
assignable myArray[3 .. 5]

can be thought of an abbreviation for the following.
assignable myArray[3], myArray[4], myArray[5]

• One can also name all the indexes in an array A by writing, A[*], which is shorthand
for A[0 .. A.length-1].

• Several notations using \fields_of allow one to refer to the fields and array elements
in a set of objects, or in some particular object. The \fields_of syntax is overloaded
to reduce the number of keywords. There are three cases, each of which has two
alternatives depending on the static type of the first argument:

- The syntax \fields_of(x) names all the non-static fields and ar-
ray elements of the object(s) referred to by x. If x has static type
edu.iastate.cs.jml.models.JMLObjectSet, then this names all the fields and
array elements in all the objects in the set x, otherwise it simply names all the
fields and array elements of the object x. For example, if p is a Point object
with two fields, x and y of type BigInteger, then \fields_of(p) names the
fields p.x and p.y. Notice that the fields of the BigInteger objects are not
named. As another example, if a is an array of type Rocket [], then the store-ref
\fields_of(a) is equivalent to a[*].

- The syntax \fields_of(x, T) names all the non-static fields and
array elements of x in objects of type T. If x has static type
edu.iastate.cs.jml.models.JMLObjectSet, then this names all non-
static fields of all instances of type T (or a subtype) in the set x, otherwise x
must have static type T (or a subtype), this store-ref names all the non-static
fields of x found in type T (or the array elements of x, if T is an array type.)
Note that if x is a JMLObjectSet, it may contain objects of different types; the
presence of objects of other types does not matter. Only the instances of type T
participate, and there need not be any instances of type T in the set.

- The syntax \fields_of(x, T, f ) names the f fields of x in objects of
type T. The type T must have been declared with a (non-static) field f.
Note that in this case, T cannot be an array type. If x has static type



Chapter 3: Extensions to Java Expressions 49

edu.iastate.cs.jml.models.JMLObjectSet, then this names the f fields in
all instances of type T in the set x, otherwise x must have static type T, this
store-ref is the same as writing x.f.
More generally, in this syntax one can use instead of f, a store-ref-expression. For
example, in

\fields_of(myPointSet, ColorPoint, val[3].color)

if myPointSet is of type JMLObjectSet, then this expression refers to the locations
cp.val[3].color, for each object cp of type ColorPoint in myPointSet.

Note that \reach is useful for constructing sets of objects for use as the first argument
to \fields_of. For example, one might write \fields_of(\reach(myVar)).
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4 Conclusions

One area of future work for JML is concurrency. The main feature currently in JML that
supports concurrency is the when clause [Lerner91] [Sivaprasad95]; it says that the caller will
be delayed until the condition given holds. This permits the specification of when the caller
is delayed to obtain a lock, for example. While syntax for this exists in the JML parser,
our exploration of this topic is still in an early stage. JML also has several primitives from
ESC/Java that deal with monitors and locks.

JML is an expressive behavioral interface specification language for Java. It combines
the best features of the Eiffel and Larch approaches to specification. It allows one to write
specifications that are quite precise and detailed, but also allows one to write lightweight
specifications. It has examples and other forms of redundancy to allow for debugging speci-
fications and for making rhetorical points. It supports behavioral subtyping by specification
inheritance.

More information on JML, including software to aid in working with JML specifications,
can be obtained from ‘http://www.cs.iastate.edu/~leavens/JML.html’.
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Appendix A Specification Case Defaults

As noted above (see Section 1.2 [Lightweight Specifications], page 4), specifications in
JML do not need to be as detailed as most of the examples given in this document. If a
spec-case or conjoinable-spec (see Section B.1.6 [Behavioral Specification Syntax for Meth-
ods], page 55) does not use one of the behavior keywords (behavior, normal_behavior, or
exceptional_behavior), or if an example (see Section B.1.8 [Example Syntax], page 59)
does not use one of the example keywords (example, normal_example, exceptional_
example), then it is called a lightweight specification or example.

When the various clauses of a spec-case, conjoinable-spec, or example are omitted, they
have the defaults given in the table below. The table distinguishes between lightweight and
non-lightweight specifications and examples. In each case the default for the lightweight
form is that no assumption is made about the omitted clause. However, in a non-lightweight
specification or example, the specifier is assumed to be giving a complete specification or
example. Therefore, in a non-lightweight specification the meaning of an omitted clause is
given a definite default. For example, the meaning of an omitted assignable clause is that
nothing can be modified. Furthermore, in a non-lightweight specification, the meaning of
an omitted diverges clause is that the method may not diverge in that case. (The diverges
clause is almost always omitted; it can be used to say what should be true, of the pre-state,
when the specification is allowed to loop forever or signal an error.)

Default
Omitted clause lightweight non-lightweight
___________________________________________________________
requires \not_specified true
when \not_specified true
measured_by \not_specified \not_specified
assignable \not_specified \nothing
ensures \not_specified true
signals (Exception) \not_specified (Exception) true
diverges \not_specified false

A completely omitted specification is taken to be a lightweight specification. Thus one
can read off the meaning of a completely omitted specification from the lightweight column
of table.

It is intended that the meaning of \not_specified may vary between different uses of
a JML specification. For example, a static checker might treat a requires clause that is
\not_specified as if it were true, while a verification logic would need to treat it as if it
were false.

Note that specification statements (see Section B.1.7 [Model Program Syntax], page 57)
cannot be lightweight. In addition, a spec-statement can specify abrupt termination. The
additional clauses possible in a spec-statement have the following defaults.

Default
Omitted clause (non-lightweight)
________________________________
continues false
breaks false
returns false
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Appendix B Syntax

We use an extended BNF grammar to describe the syntax of JML. The extensions are
as follows [Ledgard80].
• Nonterminal symbols are written as follows: nonterminal. That is, nonterminal symbols

appear in an italic font (in the HTML they are also hyperlinked to their definitions).
• Terminal symbols are written as follows: terminal. In a few cases we also quote

terminal symbols using ‘ and ’, such as when using ‘|’ as a terminal symbol instead of
a meta-symbol.

• Square brackets ([ and ]) surround optional text. Note that ‘[’ and ‘]’ are terminals.
• The notation . . . means that the preceding nonterminal or group of optional text can

be repeated zero (0) or more times.

For example, the following gives a production for the nonterminal name, which is a
non-empty list of ident’s separated by periods (.).

name ::= ident [ . ident ] . . .
To remind the reader that the notation ‘. . . ’ means zero or more repetitions, we use

‘. . . ’ only following optional text.
We use “//” to start a comment (to you, the reader) in the grammar.

B.1 Context-Free Syntax

B.1.1 Compilation Unit Syntax

The following is the syntax of compilation units in JML. The compilation-unit rule is
the start rule for the JML grammar.

compilation-unit ::= [ package-definition ]
[ refine-prefix ]
[ import-definition ] . . .
[ type-definition ] . . .

package-definition ::= package name ;
refine-prefix ::= refine ident-list <- string-literal ;
ident-list ::= ident [ , ident ] . . .
import-definition ::= [ model ] import name-star ;
name ::= ident [ . ident ] . . .
name-star ::= ident [ . ident ] . . . [ . * ]

B.1.2 Type Definition Syntax

The following is the syntax of type definitions. The order of the modifier productions
suggests the relative order for writing the modifiers in code and specifications, with public
before all other modifiers, and non_null last.

type-definition ::= [ doc-comment ] modifiers class-or-interface-def
| ;

class-or-interface-def ::= class-definition | interface-definition
type-spec ::= type [ dims ] | \TYPE [ dims ]
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type ::= reference-type | builtInType
reference-type ::= name
modifiers ::= [ modifier ] . . .
modifier ::= public | private | protected

| spec_public | spec_protected
| abstract | static |
| model | ghost | pure
| final | synchronized
| instance
| transient | volatile
| native | strictfp
| const | monitored | uninitialized
| non_null

class-definition ::= class ident [ extends name [ weakly ] ]
[ implements-clause ] class-block

interface-definition ::= interface ident [ interface-extends ] class-block
interface-extends ::= extends name-weakly-list
implements-clause ::= implements name-weakly-list
name-weakly-list ::= name [ weakly ] [ , name [ weakly ] ] . . .
class-block ::= { [ field ] . . . }

B.1.3 Field Syntax

The following gives the syntax of fields.
field ::= [ doc-comment ] . . . modifiers member-decl

| [ doc-comment ] . . . modifiers jml-declaration
| [ method-specification ] [ static ] compound-statement
| method-specification static_initializer
| method-specification initializer
| axiom predicate ;
| ;

member-decl ::= variable-decls ; | method-decl
| class-definition | interface-definition

variable-decls ::= type-spec variable-declarators [ jml-var-assertion ]
variable-declarators ::= variable-declarator [ , variable-declarator ] . . .
variable-declarator ::= ident [ dims ] [ = initializer ]
initializer ::= expression | array-initializer
array-initializer ::= { [ initializer-list ] }
initializer-list ::= initializer [ , initializer ] . . . [ , ]
method-decl ::= method-specification

[ type-spec ] method-head method-body
| [ type-spec ] method-head

[ method-specification ]
method-body

method-head ::= ident ( [ param-declaration-list ] )
[ dims ] [ throws-clause ]

method-body ::= compound-statement | ;
throws-clause ::= throws name [ , name ] . . .
param-declaration-list ::= param-declaration [ , param-declaration ] . . .
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param-declaration ::= [ final ] type-spec ident [ dims ]

B.1.4 Behavioral Specification Syntax for Types

The following gives the syntax of behavioral specifications for types.

jml-var-assertion ::= initially predicate
| readable_if predicate
| monitored_by spec-expression-list

jml-declaration ::= invariant | history-constraint
| depends-decl | represents-decl

invariant ::= invariant-keyword predicate ;
invariant-keyword ::= invariant | invariant_redundantly
history-constraint ::= constraint-keyword predicate

[ for constrained-list ] ;
constraint-keyword ::= constraint | constraint_redundantly
constrained-list ::= method-name-list | \everything
method-name-list ::= method-name [ , method-name ] . . .
method-name ::= method-ref [ ( [ param-disambig-list ] ) ]
method-ref ::= method-ref-start [ . ident ] . . .

| new reference-type
method-ref-start ::= super | this | ident | \other
param-disambig-list ::= param-disambig [ , param-disambig ] . . .
param-disambig ::= type-spec [ ident [ dims ] ]
depends-decl ::= depends-keyword store-ref <- store-ref-list ;
depends-keyword ::= depends | depends_redundantly
represents-decl ::= represents-keyword

store-ref <- spec-expression ;
| represents-keyword

store-ref \such_that predicate ;
represents-keyword ::= represents | represents_redundantly

B.1.5 Store Ref Syntax

The syntax related to the store-ref production is used in several places.

store-ref-list ::= store-ref [ , store-ref ] . . .
store-ref ::= store-ref-expression

| \fields_of ( spec-expression [ , reference-type [ , store-ref-expression ] ] )
| informal-description
| store-ref-keyword

store-ref-expression ::= store-ref-name [ store-ref-name-suffix ] . . .
store-ref-name ::= ident | super | this
store-ref-name-suffix ::= . ident | ‘[’ spec-array-ref-expr ‘]’
spec-array-ref-expr ::= spec-expression

| spec-expression .. spec-expression
| *

store-ref-keyword ::= \nothing | \everything | \not_specified
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B.1.6 Behavioral Specification Syntax for Methods

The following gives the syntax of behavioral specifications for methods. We start with
the top-level syntax that organizes these specifications.

method-specification ::= specification | extending-specification
specification ::= spec-case-seq

[ subclassing-contract ]
[ redundant-spec ]

| subclassing-contract
[ redundant-spec ]

| redundant-spec
spec-case-seq ::= spec-case [ also spec-case ] . . .
spec-case ::= generic-spec-case | behavior-spec | model-program
extending-specification ::= also specification

| and conjoinable-spec-seq
[ subclassing-contract ]
[ redundant-spec ]

conjoinable-spec-seq ::= conjoinable-spec [ and conjoinable-spec ] . . .
conjoinable-spec ::= generic-conjoinable-spec | behavior-conjoinable-spec
generic-conjoinable-spec ::= [ spec-var-decls ] simple-spec-body
behavior-conjoinable-spec ::= [ privacy ] behavior

[ spec-var-decls ]
simple-spec-body

| [ privacy ] exceptional_behavior
[ spec-var-decls ]
exceptional-simple-spec-body

| [ privacy ] normal_behavior
[ spec-var-decls ]
normal-simple-spec-body

privacy ::= public | protected | private
exceptional-simple-spec-body ::= assignable-clause [ assignable-clause ] . . .

[ signals-clause ] . . .
[ diverges-clause ] . . .

| signals-clause [ signals-clause ] . . .
[ diverges-clause ] . . .

normal-simple-spec-body ::= assignable-clause [ assignable-clause ] . . .
[ ensures-clause ] . . .
[ diverges-clause ] . . .

| ensures-clause [ ensures-clause ] . . .
[ diverges-clause ] . . .

redundant-spec ::= implications [ examples ] | examples
implications ::= implies_that spec-case-seq
examples ::= for_example example [ also example ] . . .

The following is the syntax of generic specification cases. These are the least verbose
and most general specification cases.

generic-spec-case ::= [ spec-var-decls ] spec-header [ generic-spec-body ]
| [ spec-var-decls ] generic-spec-body

spec-header ::= requires-clause [ requires-clause ] . . .
[ when-clause ] . . .
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[ measured-clause ] . . .
| when-clause [ when-clause ] . . .

[ measured-clause ] . . .
| measured-clause [ measured-clause ] . . .

generic-spec-body ::= simple-spec-body
| {| generic-spec-case-seq |}

generic-spec-body-seq ::= generic-spec-case [ also generic-spec-case ] . . .
simple-spec-body ::= assignable-clause [ assignable-clause ] . . .

[ ensures-clause ] . . .
[ signals-clause ] . . .
[ diverges-clause ] . . .

| ensures-clause [ ensures-clause ] . . .
[ signals-clause ] . . .
[ diverges-clause ] . . .

| signals-clause [ signals-clause ] . . .
[ diverges-clause ] . . .

| diverges-clause [ diverges-clause ] . . .

The following gives the syntax of specification cases that start with one of the behavior
keywords.

behavior-spec ::= [ privacy ] behavior generic-spec-case
| [ privacy ] exceptional_behavior exceptional-spec-case
| [ privacy ] normal_behavior normal-spec-case

exceptional-spec-case ::= [ spec-var-decls ] spec-header
[ exceptional-spec-body ]

| [ spec-var-decls ] exceptional-spec-body
exceptional-spec-body ::= assignable-clause [ assignable-clause ] . . .

[ signals-clause ] . . .
[ diverges-clause ] . . .

| signals-clause [ signals-clause ] . . .
[ diverges-clause ] . . .

| {| exceptional-spec-case-seq |}
exceptional-spec-case-seq ::= exceptional-spec-case

[ also exceptional-spec-case ] . . .
normal-spec-case ::= [ spec-var-decls ] spec-header

[ normal-spec-body ]
| [ spec-var-decls ] normal-spec-body

normal-spec-body ::= assignable-clause [ assignable-clause ] . . .
[ ensures-clause ] . . .
[ diverges-clause ] . . .

| ensures-clause [ ensures-clause ] . . .
[ diverges-clause ] . . .

| {| normal-spec-case-seq |}
normal-spec-case-seq ::= normal-spec-case [ also normal-spec-case ] . . .

The following gives the syntax of subclassing contracts.

subclassing-contract ::= subclassing_contract
accessible-clause [ accessible-clause ] . . .
[ callable-clause ] . . .

| subclassing_contract
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callable-clause [ callable-clause ] . . .
accessible-clause ::= accessible-keyword object-ref-list ;
object-ref-list ::= object-ref [ , object-ref ] . . .

| store-ref-keyword
object-ref ::= store-ref-expression

| \other [ store-ref-name-suffix ] . . .
accessible-keyword ::= accessible | accessible_redundantly
callable-clause ::= callable-keyword callable-methods-list ;
callable-keyword ::= callable | callable_redundantly
callable-methods-list ::= method-name-list | store-ref-keyword

B.1.7 Model Program Syntax

The following gives the syntax of model programs, adapted from the refinement calculus
[Back88] [Back-vonWright89a] [Morgan94] [Morris87]. See Section B.1.11 [Statement and
Annotation Statement Syntax], page 61 for the parts of the syntax of statements that are
unchanged from Java. The jml-compound-statement and jml-statement syntax is the same
as the compound-statement and statement syntax, except that model-prog-statements are
not flagged as errors within the jml-compound-statement and jml-statements.

model-program ::= [ privacy ] model_program jml-compound-statement
jml-compound-statement ::= compound-statement
jml-statement ::= statement
model-prog-statement ::= nondeterministic-choice

| nondeterministic-if
| spec-statement
| invariant

nondeterministic-choice ::= choose alternative-statements
alternative-statements ::= jml-compound-statement

[ or jml-compound-statement ] . . .
nondeterministic-if ::= choose_if guarded-statements

[ else jml-compound-statement ]
guarded-statements ::= guarded-statement

[ or guarded-statement ] . . .
guarded-statement ::= {

assume-statement
jml-statement [ jml-statement] . . .

}

The grammar for specification statements appears below. It is unusual, compared to
specification statements in refinement calculus, in that it allows one to specify statements
that can signal exceptions, or terminate abruptly. The reasons for this are based on ver-
ification logics for Java [Huisman01] [Poll-Jacobs00], which have these possibilities. The
meaning of an abrupt-spec-case is that the normal termination and signalling an exception
are forbidden; that is, the equivalent spec-statement using behavior would have ensures
false; and signals (Exception) false; clauses.

spec-statement ::= [ privacy ] behavior generic-spec-statement-case
| [ privacy ] exceptional_behavior exceptional-spec-case
| [ privacy ] normal_behavior normal-spec-case
| [ privacy ] abrupt_behavior abrupt-spec-case
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generic-spec-statement-case ::= [ spec-var-decls ] generic-spec-statement-body
| [ spec-var-decls ] spec-header [ generic-spec-statement-body ]

generic-spec-statement-body ::= simple-spec-statement-body
| {| generic-spec-statement-case-seq |}

generic-spec-statement-body-seq ::= generic-spec-statement-case
[ also generic-spec-statement-case ] . . .

simple-spec-statement-body ::= assignable-clause [ assignable-clause ] . . .
[ ensures-clause ] . . .
[ signals-clause ] . . .
[ diverges-clause ] . . .
[ continues-clause ] . . .
[ breaks-clause ] . . .
[ returns-clause ] . . .

| ensures-clause [ ensures-clause ] . . .
[ signals-clause ] . . .
[ diverges-clause ] . . .
[ continues-clause ] . . .
[ breaks-clause ] . . .
[ returns-clause ] . . .

| signals-clause [ signals-clause ] . . .
[ diverges-clause ] . . .
[ continues-clause ] . . .
[ breaks-clause ] . . .
[ returns-clause ] . . .

| diverges-clause [ diverges-clause ] . . .
[ continues-clause ] . . .
[ breaks-clause ] . . .
[ returns-clause ] . . .

| continues-clause [ continues-clause ] . . .
[ breaks-clause ] . . .
[ returns-clause ] . . .

| breaks-clause [ breaks-clause ] . . .
[ returns-clause ] . . .

| returns-clause [ returns-clause ] . . .

abrupt-spec-case ::= [ spec-var-decls ] spec-header
[ abrupt-spec-body ]

| [ spec-var-decls ] abrupt-spec-body
abrupt-spec-body ::= assignable-clause [ assignable-clause ] . . .

[ diverges-clause ] . . .
[ continues-clause ] . . .
[ breaks-clause ] . . .
[ returns-clause ] . . .

| diverges-clause [ diverges-clause ] . . .
[ continues-clause ] . . .
[ breaks-clause ] . . .
[ returns-clause ] . . .

| continues-clause [ continues-clause ] . . .
[ breaks-clause ] . . .
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[ returns-clause ] . . .
| breaks-clause [ breaks-clause ] . . .

[ returns-clause ] . . .
| returns-clause [ returns-clause ] . . .
| {| abrupt-spec-case-seq |}

abrupt-spec-case-seq ::= abrupt-spec-case [ also abrupt-spec-case ] . . .

continues-clause ::= continues-keyword [ target-label ] [ pred-or-not ] ;
continues-keyword ::= continues | continues_redundantly
target-label ::= -> ( ident )
breaks-clause ::= breaks-keyword [ target-label ] [ pred-or-not ] ;
breaks-keyword ::= breaks | breaks_redundantly
returns-clause ::= returns-keyword [ pred-or-not ] ;
returns-keyword ::= returns | returns_redundantly

B.1.8 Example Syntax

The following gives the syntax of examples.
example ::= [ [ privacy ] example ]

[ spec-var-decls ] [ spec-header ] simple-spec-body
| [ privacy ] exceptional_example

[ spec-var-decls ] spec-header [ exceptional-example-body ]
| [ privacy ] exceptional_example

[ spec-var-decls ] exceptional-example-body
| [ privacy ] normal_example

[ spec-var-decls ] spec-header [ normal-example-body ]
| [ privacy ] normal_example

[ spec-var-decls ] normal-example-body
exceptional-example-body ::= assignable-clause [ assignable-clause ] . . .

[ signals-clause ] . . .
[ diverges-clause ] . . .

| signals-clause [ signals-clause ] . . .
[ diverges-clause ] . . .

normal-example-body ::= assignable-clause [ assignable-clause ] . . .
[ ensures-clause ] . . .
[ diverges-clause ] . . .

| ensures-clause [ ensures-clause ] . . .
[ diverges-clause ] . . .

B.1.9 Method Specification Clause Syntax

The following gives the syntax of clauses that occur in method specifications.
spec-var-decls ::= forall-var-decls [ let-var-decls ]

| let-var-decls
forall-var-decls ::= forall-var-decl [ forall-var-decl ] . . .
forall-var-decl ::= forall quantified-var-decl ;
let-var-decls ::= old local-spec-var-decl [ local-spec-var-decl ] . . .
local-spec-var-decl ::= model type-spec spec-variable-declarators ;

| ghost type-spec spec-variable-declarators ;
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requires-clause ::= requires-keyword pred-or-not ;
requires-keyword ::= requires | pre

| requires_redundantly | pre_redundantly
pred-or-not ::= predicate | \not_specified
when-clause ::= when-keyword pred-or-not ;
when-keyword ::= when | when_redundantly
measured-clause ::= measured-by-keyword \not_specified ;

| measured-by-keyword spec-expression [ if predicate ] ;
measured-by-keyword ::= measured_by | measured_by_redundantly
assignable-clause ::= assignable-keyword conditional-store-ref-list ;
assignable-keyword ::= assignable | assignable_redundantly

| modifiable | modifiable_redundantly
| modifies | modifies_redundantly

conditional-store-ref-list ::= conditional-store-ref
[ , conditional-store-ref ] . . .

conditional-store-ref ::= store-ref [ if predicate ]
ensures-clause ::= ensures-keyword pred-or-not ;
ensures-keyword ::= ensures | post

| ensures_redundantly | post_redundantly
signals-clause ::= signals-keyword

( reference-type [ ident ] ) [ pred-or-not ] ;
signals-keyword ::= signals | signals_redundantly

| exsures | exsures_redundantly
diverges-clause ::= diverges-keyword pred-or-not ;
diverges-keyword ::= diverges | diverges_redundantly

B.1.10 Predicate and Specification Expression Syntax

The following gives the syntax of predicates and specification expressions. Within a
spec-expression, one cannot use any of the operators (such as ++, --, and the assignment
operators) that would necessarily cause side effects. See Section B.1.12 [Expression Syntax],
page 62 for the syntax of expressions.

predicate ::= spec-expression
spec-expression-list ::= spec-expression [ , spec-expression ] . . .
spec-expression ::= expression

jml-primary ::= \result
| \old ( spec-expression )
| \not_modified ( store-ref-list )
| \fresh ( spec-expression-list )
| \reach ( spec-expression [ , reference-type [ , store-ref-expression ] ] )
| informal-description
| \nonnullelements ( spec-expression )
| \typeof ( spec-expression )
| \elemtype ( spec-expression )
| \type ( type )
| \lockset
| \is_initialized ( reference-type )
| \invariant_for ( spec-expression )
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| ( \lblneg ident spec-expression )
| ( \lblpos ident spec-expression )
| spec-quantified-expr

set-comprehension ::= { type-spec quantified-var-declarator
‘|’ set-comprehension-pred }

set-comprehension-pred ::= spec-primary-expr [ . ident ] . . . . has ( ident )
&& predicate

spec-quantified-expr ::= ( quantifier quantified-var-decl ; [ [ predicate ] ; ]
spec-expression )

quantifier ::= \forall | \exists | \max | \min | \num_of | \product | \sum
quantified-var-decl ::= type-spec quantified-var-declarator

[ , quantified-var-declarator ] . . .
quantified-var-declarator ::= ident [ dims ]

spec-variable-declarators ::= spec-variable-declarator
[ , spec-variable-declarator ] . . .

spec-variable-declarator ::= ident [ dims ] [ = spec-initializer ]
spec-array-initializer ::= { [ spec-initializer

[ , spec-initializer ] . . . [ , ] ] }
spec-initializer ::= spec-expression

| spec-array-initializer

B.1.11 Statement and Annotation Statement Syntax

The following gives the syntax of statements. These are the standard Java statements,
with the addition of annotations, the because-statement, assert-redundantly-statement,
assume-statement, set-statement, and unreachable-statement, and the various forms of
model-prog-statement. See Section B.1.7 [Model Program Syntax], page 57 for the syn-
tax of model-prog-statement, which is only allowed in model programs.

compound-statement ::= { statement [ statement ] . . . }
statement ::= compound-statement

| local-declaration ;
| ident : statement
| expression ;
| if ( expression ) statement [ else statement ]
| [ loop-invariant ] . . . [ variant-function ] . . . loop-stmt
| break [ ident ] ;
| continue [ ident ] ;
| return [ expression ] ;
| switch-statement
| try-block
| throw expression ;
| synchronized ( expression ) statement
| ;
| assert-statement
| because-statement
| assert-redundantly-statement
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| assume-statement
| set-statement
| unreachable-statement
| model-prog-statement // only allowed in model programs

loop-stmt ::= while ( expression ) statement
| do statement while ( expression ) ;
| for ( [ for-init ] ; [ expression ] ; [ expression-list ] )

statement
for-init ::= local-declaration | expression-list
local-declaration ::= local-modifiers variable-decls
local-modifiers ::= [ local-modifier ] . . .
local-modifier ::= model | ghost | final | non_null
switch-statement ::= switch ( expression ) { [ switch-body ] . . . }
switch-body ::= switch-label-seq [ statement ] . . .
switch-label-seq ::= switch-label [ switch-label ] . . .
switch-label ::= case expression : | default :
try-block ::= try compound-statement [ handler ] . . .

[ finally compound-statement ]
handler ::= catch ( param-declaration ) compound-statement
assert-statement ::= assert expression [ : expression ] ;

The following gives the syntax of JML annotations that can be used on statements. See
Section B.1.7 [Model Program Syntax], page 57, for the syntax of statements that can only
be used in model programs.

hence-by-statement ::= hence-by-keyword predicate ;
hence-by-keyword ::= hence_by | hence_by_redundantly
assert-redundantly-statement ::= assert_redundantly predicate [ : expression ] ;
assume-statement ::= assume-keyword predicate [ : expression ] ;
assume-keyword ::= assume | assume_redundantly
set-statement ::= set assignment-expr ;
unreachable-statement ::= unreachable ;
loop-invariant ::= maintaining-keyword predicate ;
maintaining-keyword ::= maintaining | maintaining_redundantly

| loop_invariant | loop_invariant_redundantly
variant-function ::= decreasing-keyword spec-expression ;
decreasing-keyword ::= decreasing | decreasing_redundantly

| decreases | decreases_redundantly

B.1.12 Expression Syntax

The JML syntax for expressions extends the Java syntax with several operators and
primitives. See Section 3.1 [Extensions to Java Expressions for Predicates], page 43 for a
brief description of the meaning of the JML syntax added to Java expressions.

The precedence of operators in JML expressions is similar to that in Java The precedence
levels are given in the following table, where the parentheses, quantified expressions, [], .,
and method calls on the first three lines all have the highest precedence, and for the rest,
only the operators on the same line have the same precedence.

highest new () \forall \exists \max \min
\num_of \product \sum informal-description
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[] . and method calls
unary + and - ~ ! (typecast)
* / %
+ (binary) - (binary)
<< >> >>>
< <= > >= <: instanceof
== !=
&
^
|
&&
||
==> <==
<==> <=!=>
?:

lowest = *= /= %= += -= <<= >>= >>>= &= ^= |=

The following is the syntax of Java expressions, with JML additions. The additions are
the operators ==>, <==, <==>, <=!=>, and <:, and the syntax found under the nonterminals
jml-primary, set-comprehension, and spec-quantified-expr (see Section B.1.10 [Predicate
and Specification Expression Syntax], page 60). The JML additions to the Java syntax
can only be used in assertions and other annotations. Furthermore, within assertions, one
cannot use any of the operators (such as ++, --, and the assignment operators) that would
necessarily cause side effects.

expression-list ::= expression [ , expression ] . . .
expression ::= assignment-expr
assignment-expr ::= conditional-expr [ assignment-opt assignment-expr ]
assignment-op ::= = | += | -= | *= | /= | %= | >>=

| >>>= | <<= | &= | ‘|=’ | ^=
conditional-expr ::= equivalence-expr

[ ? conditional-expr : conditional-expr ]
equivalence-expr ::= implies-expr [ equivalence-op implies-expr ] . . .
equivalence-op ::= <==> | <=!=>
implies-expr ::= logical-or-expr

[ ==> implies-non-backward-expr ]
| logical-or-expr <== logical-or-expr

[ <== logical-or-expr ] . . .
implies-non-backward-expr ::= logical-or-expr

[ ==> implies-non-backward-expr ]
logical-or-expr ::= logical-and-expr [ ‘||’ logical-and-expr ] . . .
logical-and-expr ::= inclusive-or-expr [ && inclusive-or-expr ] . . .
inclusive-or-expr ::= exclusive-or-expr [ ‘|’ exclusive-or-expr ] . . .
exclusive-or-expr ::= and-expr [ ^ and-expr ] . . .
and-expr ::= equality-expr [ & equality-expr ] . . .
equality-expr ::= relational-expr [ == relational-expr] . . .

| relational-expr [ != relational-expr] . . .
relational-expr ::= shift-expr < shift-expr

| shift-expr > shift-expr
| shift-expr <= shift-expr
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| shift-expr >= shift-expr
| shift-expr <: shift-expr
| shift-expr [ instanceof type-spec ]

shift-expr ::= additive-expr [ shift-op additive-expr ] . . .
shift-op ::= << | >> | >>>
additive-expr ::= mult-expr [ additive-op mult-expr ] . . .
additive-op ::= + | -
mult-expr ::= unary-expr [ mult-op unary-expr ] . . .
mult-op ::= * | / | %
unary-expr ::= ( type-spec ) unary-expr

| ++ unary-expr
| -- unary-expr
| + unary-expr
| - unary-expr
| unary-expr-not-plus-minus

unary-expr-not-plus-minus ::= ~ unary-expr
| ! unary-expr
| ( builtinType ) unary-expr
| ( reference-type ) unary-expr-not-plus-minus
| postfix-expr

postfix-expr ::= primary-expr [ primary-suffix ] . . . [ ++ ]
| primary-expr [ primary-suffix ] . . . [ -- ]
| builtinType [ ‘[’ ‘]’ ] . . . . class

primary-suffix ::= . ident
| . this
| . class
| . new-expr
| . super ( [ expression-list ] )
| ( [ expression-list ] )
| ‘[’ expression ‘]’
| [ ‘[’ ‘]’ ] . . . . class

primary-expr ::= ident | new-expr
| constant | super | true
| false | this | null
| ( expression )
| jml-primary
| informal-description

builtInType ::= void | boolean | byte
| char | short | int
| long | float | double

constant ::= java-literal
new-expr ::= new type new-suffix
new-suffix ::= ( [ expression-list ] ) [ class-block ]

| array-decl [ array-initializer ]
| set-comprehension

array-decl ::= dim-exprs [ dims ]
dim-exprs ::= ‘[’ expression ‘]’ [ ‘[’ expression ‘]’ ] . . .
dims ::= ‘[’ ‘]’ [ ‘[’ ‘]’ ] . . .
array-initializer ::= { [ initializer [ , initializer ] . . . [ , ] ] }
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initializer ::= expression
| array-initializer

B.1.13 Deprecated Syntax

The following describes deprecated syntax; that is syntax that is currently allowed, but
which will not be legal in the future. The JML parser warns the user when deprecated
syntax is used.

The following syntax for let-var-decls that uses the keyword let is deprecated. Such
code should use the keyword old instead.

let-var-decls ::= let local-spec-var-decl [ local-spec-var-decl ] . . .

B.2 Microsyntax or Lexical Grammar

Throughout the figures for the lexical grammar below, grammatical productions are to
be understood lexically; that is, this grammar concerns individual characters, not tokens.
Another way of thinking of this is that no white-space may intervene between the characters
of a token.

The microsyntax of JML is described by the production microsyntax in the grammar
below. It describes what a program looks like from the point of view of a lexical analyzer
[Watt91].

microsyntax ::= lexeme [ lexeme ] . . .
lexeme ::= white-space | lexical-pragma | comment

| annotation-marker | doc-comment | token
token ::= ident | keyword | special-symbol | java-literal

| informal-description

B.2.1 White Space

Blanks, horizontal and vertical tabs, carriage returns, formfeeds, and newlines, collec-
tively called white space, are ignored except as they serve to separate tokens. Newlines are
special in that they cannot appear in some contexts where other whitespace can appear,
and are also used to end C++-style (//) comments. This is described formally below.

white-space ::= non-nl-white-space | end-of-line
non-nl-white-space ::= a blank, tab, or formfeed character
end-of-line ::= newline | carriage-return | carriage-return newline
newline ::= a newline character
carriage-return ::= a carriage return character

B.2.2 Lexical Pragmas

ESC/Java [Leino-etal00] has a single kind of “lexical pragma,” nowarn, whose syntax is
described below in general terms. The JML checker currently ignores these lexical pragmas,
but nowarn is only recognized within an annotation. Note that, unlike ESC/Java, the
semicolon is mandatory. This restriction seems to be necessary to prevent lexical ambiguity.
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lexical-pragma ::= nowarn-pragma
nowarn-pragma ::= nowarn [ spaces [ nowarn-label-list ] ] ;
spaces ::= non-nl-white-space [ non-nl-white-space ] . . .
nowarn-label-list ::= nowarn-label [ spaces ] [ , [ spaces ] nowarn-label [ spaces ] ] . . .
nowarn-label ::= letter [ letter ] . . .

B.2.3 Comments

Both kinds of Java comments are allowed in JML: old C-style comments and new C++-
style comments. However, if what looks like a comment starts with the at-sign (@) character,
or with a plus sign and an at-sign (+@), then it is considered to be the start of an annotation
by JML, and not a comment. Furthermore, if what looks like a comment starts with an
asterisk (*), then it is a documentation comment, which is parsed by JML.

comment ::= C-style-comment | C++-style-comment
C-style-comment ::= /* [ C-style-body ] C-style-end
C-style-body ::= non-at-plus-star [ non-star-slash ] . . .

| + non-at [ non-star-slash ] . . .
| stars-non-slash [non-star-slash] . . .

non-star-slash ::= non-star
| stars-non-slash

stars-non-slash ::= * [ * ] . . . non-slash
non-at-plus-star ::= any character except @, +, or *
non-at ::= any character except @
non-star ::= any character except *
non-slash ::= any character except /
C-style-end ::= [ * ] . . . */
C++-style-comment ::= // [ + ] end-of-line

| // non-at-plus-newline [ non-newline ] . . . newline
| //+ non-at [ non-newline ] . . . newline

non-newline ::= any character except a newline or carriage return
non-at-plus-newline ::= any character except @, +, newline, or carriage return

B.2.4 Annotation Markers

If what looks to Java like a comment starts with an at-sign (@) as its first character,
then it is not considered a comment by JML. We refer to the tokens between //@ and the
following newline, and between pairs of /*@ and @*/ as annotations.

Annotations must hold entire grammatical units of JML specifications. For example the
following is illegal, because the postcondition is split over two annotations, and thus each
contains a fragment instead of a complete grammatical unit.

//@ ensures 0 <= x // illegal!
//@ && x < a.length;

Annotations look like comments to Java, and are thus ignored by it, but they are sig-
nificant to JML. One way that this can be achieved is by having JML drop (i.e., ignore)
the character sequences that are annotation-markers: //@, //+@, /*@, /*+@, and @+*/, @*/.
The at-sign (@) in @*/ is optional, and more than one at-sign may appear in the other
annotation markers. However, JML will recognize jml-keywords only within annotations.
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Within annotations, on each line, initial white-space followed by at-signs (@) are ignored.
The definition of an annotation marker is given below.

annotation-marker ::= //@ | //+@
| /*@ | /*+@ | @+*/ | @*/ | */

ignored-at-in-annotation ::= @

B.2.5 Documentation Comments

If what looks like a C-style comment starts with an asterisk (*) then it is a documen-
tation comment. The syntax is given below. The syntax doc-comment-ignored is used for
documentation comments that are ignored by JML.

doc-comment ::= /** [ * ] . . . doc-comment-body */
doc-comment-ignored ::= doc-comment

At the level of the rest of the JML grammar, a documentation comment that does not
contain an embedded JML method specification is essentially described by the above, and
the fact that a doc-comment-body cannot contain the two-character sequence */.

However, JML and javadoc both pay attention to the syntax inside of these documen-
tation comments. This syntax is really best described by a context-free syntax that builds
on a lexical syntax. However, because much of the documentation is free-form, the context-
free syntax has a lexical flavor to it, and is quite line-oriented. Thus it should come as no
surprise that the first non-whitespace, non-asterisk (i.e., not *) character on a line deter-
mines its interpretation. In particular, this means that the jml-pre and pre-jml tokens that
start and end the jml-specs portion of a documentation coment are only recognized at the
beginning of a line (following any leading * and whitespace).

doc-comment-body ::= [ description ] . . .
[ tagged-paragraph ] . . .
[ jml-specs ]

description ::= doc-non-empty-textline
tagged-paragraph ::= paragraph-tag [ doc-non-nl-ws ] . . .

[ doc-atsign ] . . . [ description ] . . .
jml-specs ::= pre-jml [ method-specification ] jml-pre

[ pre-jml [ method-specification ] jml-pre ] . . .

The microsyntax or lexical grammar used within documentation comments is as follows.
Note that the token doc-nl-ws can only occur at the end of a line, and is always ignored
within documentation comments. Ignoring doc-nl-ws means that any asterisks at the be-
ginning of the next line, even in the part that would be a JML method-specification, is also
ignored. Otherwise the lexical syntax within a method-specification is as in the rest of JML.
This method specification is attached to the following method or constructor declaration.
(Currently there is no useful way to use such specifications in the documentation comments
for other declarations.) Note the exception to the grammar of doc-non-empty-textline.
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paragraph-tag ::= @author | @deprecated | @exception
| @param | @return | @see
| @serial | @serialdata | @serialfield
| @since | @throws | @version
| @ letter [ letter ] . . .

doc-atsign ::= @
doc-nl-ws ::= end-of-line [ doc-non-nl-ws ] . . . [ * [ * ] . . . [ doc-non-nl-ws ] . . . ]
doc-non-nl-ws ::= non-nl-white-space
doc-non-empty-textline ::= non-at-newline [ non-end-of-line ] . . .

however, the start of the line must not match pre-jml or jml-pre
pre-jml ::= pre-tag [ doc-non-nl-ws ] . . . jml-tag
jml-pre ::= end-jml-tag [ doc-non-nl-ws ] . . . end-pre-tag
pre-tag ::= <pre> | <PRE>
end-pre-tag ::= </pre> | </PRE>
jml-tag ::= <jml> | <JML> | <esc> | <ESC>
end-jml-tag ::= </jml> | </JML> | </esc> | </ESC>

B.2.6 Tokens

Character strings that are Java reserved words are made into the token for that reserved
word, instead of being made into an ident token. Within an annotation this also applies to
jml-keywords. The details are given below.

ident ::= letter [ letter-or-digit ] . . .
letter ::= _, $, a through z, or A through Z
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
letter-or-digit ::= letter | digit

Several strings of characters are recognized as keywords or reserved words in JML. These
fall into three separate categories: Java keywords, JML predicate keywords (which start
with a backslash), and JML keywords. Java keywords are truly reserved words, and are
recognized in all contexts. The nonterminal java-keywords represents the reserved words in
Java (as in the JDK version 1.4). JML keywords are only recognized as such if they occur
outside of a spec-expression but within either an annotation or a file that is a JML file
(with suffixes ‘.jml’ ‘.jml-refined’, or ‘.refines-jml’). JML predicate keywords are, as
their name implies, used within spec-expressions; they are also used in store-ref-lists and
constrained-lists. The details are given below.

keyword ::= java-keyword | jml-predicate-keyword | jml-keyword
jml-predicate-keyword ::= \elemtype | \everything

| \exists | \fields_of | \forall
| \fresh | \invariant_for | \is_initialized
| \lblneg | \lblpos | \lockset
| \max | \min | \nonnullelements
| \nothing | \not_modified | \not_specified
| \num_of |\old | \other
| \product | \reach | \result
| \such_that | \sum | \type
| \typeof | \TYPE

jml-keyword ::= abrupt_behavior | accessible_redundantly | accessible
| also | and | assert_redundantly



Appendix B: Syntax 69

| assignable_redundantly | assignable
| assume_redundantly | assume | axiom
| behavior | breaks_redundantly | breaks
| callable_redundantly | callable | choose_if
| choose | constraint_redundantly | constraint
| continues_redundantly | continues
| decreases_redundantly | decreases | decreasing_redundantly
| decreasing | depends_redundantly | depends
| diverges_redundantly | diverges | ensures_redundantly
| ensures | example | exceptional_behavior
| exceptional_example | exsures_redundantly | exsures
| forall | for_example | ghost
| implies_that | hence_by_redundantly | hence_by
| initializer | initially | instance
| invariant_redundantly | invariant | let
| loop_invariant_redundantly | loop_invariant
| maintaining_redundantly | maintaining
| measured_by_redundantly | measured_by
| model_program | model | modifiable_redundantly
| modifiable modifies_redundantly | modifies
| monitored_by | monitored | non_null
| normal_behavior | normal_example | nowarn
| old | or | post | pre
| pure | readable_if | refine
| represents_redundantly | represents | requires_redundantly
| requires | returns_redundantly | returns
| set | signals_redundantly | signals
| spec_protected | spec_public | static_initializer
| subclassing_contract | uninitialized | unreachable
| weakly | when_redundantly | when

The following describes the special symbols used in JML. The nonterminal java-special-
symbol is the special symbols of Java, taken without change from Java [Gosling-Joy-
Steele96].

special-symbol ::= java-special-symbol | jml-special-symbol
java-special-symbol ::= java-separator | java-operator
java-separator ::= ( | ) | { | } | ‘[’ | ‘]’ | ; | , | .
java-operator ::= = | < | > | ! | ~ | ? | :

| == | <= | >= | != | && | ‘||’ | ++ | --
| + | - | * | / | & | ‘|’ | ^ | % | << | >> | >>>
| += | -= | *= | /= | &= | ‘|=’ | ^= | %= | <<= | >>= | >>>=

jml-special-symbol ::= ==> | <== | <==> | <=!=> | -> | <- | .. | ‘{|’ | ‘|}’

The nonterminal java-literal represents Java literals which are taken without change
from Java [Gosling-Joy-Steele96].

java-literal ::= integer-literal | floating-point-literal | boolean-literal
| character-literal | string-literal | null-literal

integer-literal ::= decimal-integer-literal | hex-integer-literal | octal-integer-literal
decimal-integer-literal ::= decimal-numeral [ integer-type-suffix ]
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decimal-numeral ::= 0 | non-zero-digit [ digits ]
digits ::= digit [ digit ] . . .
digit ::= 0 | non-zero-digit
non-zero-digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
integer-type-suffix ::= l | L
hex-integer-literal ::= hex-numeral [ integer-type-suffix ]
hex-numeral ::= 0x hex-digit | 0X hex-digit

| hex-numeral hex-digit
hex-digit ::= digit | a | b | c | d | e | f

| A | B | C | D | E | F
octal-integer-literal ::= octal-numeral [ integer-type-suffix ]
octal-numeral ::= 0 octal-digit | octal-numeral hex-digit
octal-digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

floating-point-literal ::= digits . [ digits ] [ exponent-part ] [ float-type-suffix ]
| . digits [ exponent-part ] [ float-type-suffix ]
| digits exponent-part [ float-type-suffix ]
| digits [ exponent-part ] float-type-suffix

exponent-part ::= exponent-indicator signed-integer
exponent-indicator ::= e | E
signed-integer ::= [ sign ] digits
sign ::= + | -
float-type-suffix ::= f | F | d | D

boolean-literal ::= true | false

character-literal ::= ’ single-character ’ | ’ escape-sequence ’
single-character ::= any character except ’, \, carriage return, or newline
escape-sequence ::= \b // backspace

| \t // tab
| \n // newline
| \r // carriage return
| \’ // single quote
| \" // double quote
| \\ // backslash
| octal-escape
| unicode-escape

octal-escape ::= \ octal-digit [ octal-digit ]
| \ zero-to-three octal-digit octal-digit

zero-to-three ::= 0 | 1 | 2 | 3
unicode-escape ::= \u hex-digit hex-digit hex-digit hex-digit

string-literal ::= " [ string-character ] . . . "
string-character ::= escape-sequence

| any character except ", \, carriage return, or newline

null-literal ::= null

An informal-description looks like (* some text *). It is used in predicates. The exact
syntax is given below.
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informal-description ::= (* non-star-close [ non-star-close ] . . . *)
non-star-close ::= non-star

| stars-non-close
stars-non-close ::= * [ * ] . . . non-close
non-close ::= any character except )
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