Structuring specifications

in Z

by J.C.P. Woodcock

In the specification notation known as
Z, schemas are used to structure
mathematical descriptions. This paper
describes the language of schemas and
the conventions that are employed in
their use. It also describes how proof
obligations are generated during
specification, and how these obligations
may be discharged. The paper contains
many examples, mostly taken from the
specification of the user interface to a
small, but realistic, software
component.

1 Introduction

In the Z notation (Refs. 1-5) there are two complementary
languages: the schema language supports the structured,
systematic presentation of large-scale system specifications
written in the mathematical language. This paper describes
the former and assumes knowledge of the latter.

The schema language allows us to factor out common
parts of a specification and to highlight the differences
between similar constructs. This helps to reduce typo-
graphical errors; it gives us the opportunity to subordinate
complexity; and it allows us to re-use existing parts of a
specification and to modify them easily. Re-usability is vital
to the successful application of formal methods: it allows us
to remain flexible by sharing descriptions at every stage of
the development process. We are quite used to sharing code
— in the form of procedural abstractions in libraries — but
here we are talking about specifications sharing parts,
proofs sharing arguments, theories sharing abstractions,
even problems sharing common aspects.

We believe that the use of schemas helps to promote a
good specification style. However, just like any notation, the
language of schemas requires careful and judicious applica-
tion if it is not to be abused. We should not try to use
schemas to overcome our shortcomings as specifiers: we
should try instead to develop simple theories and to use
schemas to present them nicely.

This paper is something of an informal introduction to
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using schemas; readers interested in a more formal defini-
tion of the schema notation are referred to Ref. 3.

1.1 An introduction to schemas

The mathematical language of Z (Refs. 4 and 5) is suffi-
ciently powerful to describe many aspects of software
systems. However, the application of mathematics to large-
scale specification work soon results in unwieldy descrip-
tions that are difficult to follow. It is not the mathematics
that is at fault, but rather our human inability to com-
prehend more than just a small amount of information at a
time. Therefore we must present mathematical descriptions
in a sympathetic fashion, explaining small parts in the sim-
plest possible context, and then showing how to fit the
pieces together to make the whole.

The schema:

One of the most basic things that we can do to help the
reader — or indeed the writer — of a specification is to
identify commonly used concepts and factor them out from
the mathematical description of a system. In this way, we
can encapsulate an important concept and give it a name,
thus increasing our vocabulary — and our mental power!

In specifications, we see a pattern occurring over and
over again: a piece of mathematical text which is a struc-
ture describing some variables whose values are con-
strained in some way. We call this introduction of variables
under some constraint a schema.

Example 1:

The following set comprehension term, lambda expres-
sion, and quantified predicate each contain the pattern of
constrained variables:

{mn:Nln=2xmemm—n}

As i seq(X]|s # > o (tl sy Xhd s>

Vx,y:N|x#yex>y Vy>x
O

Example 2:
In an operating system there is a program which
manages blocks of free storage which users (drawn from the
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set U) may want to access.t There are n consecutively num-
bered blocks:

B=1..n

The storage manager maintains a difectory of which users
have which blocks. We call this information structure diz,
and we would like it to have various properties:

No block is owned by more than one user.
A user may own more than one block.
Some blocks might not be owned at all.
Some users might not own any blocks.

We can express these properties more formally by consider-
ing dir as a relation between B and U that satisfies the
formalised properties:

dir is functional.

dir need not be an injection.
dir may be partial.

dir need not be a surjection.

So it is enough to say that dir is a partial function from B
to U:

dir: B+ U

We also need a record of which blocks are free, i.e. not
owned by anyone. This is just a subset of B:

free . PB

Of course, it must be that the free blocks are all the ones not
being used. We can specify this: -

free = B\ (dom dir)

We regard this predicate as part of the state invariant: it
must always be true. A function dir: B+ U and a set
free : PB do not constitute a possible state of the storage
manager unless they satisfy the state invariant.§

The state invariant, together with the declarations of dir
and free, form a schema which we shall call SM.

O

A schema consists of two parts: a declaration of some vari-
ables, and a predicate constraining their values: schemas
= declarations + predicates.

In Z we often need to distinguish between the declaration
of a variable and its underlying signature. A declaration is
syntactic: it introduces a variable, and says that its values
range over some set; for example

digit:0..9

+ This example also appears in Ref. 6.

§ As we shall see later, the functionality of dir and the fact that
free is wholly a subset of B are also part of the state invariant.
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We can deduce the type of digit, because we know that the
numbers 0..9 form a subset of N. Thus, digit has type N.
A signature, on the other hand, is semantic: it introduces a
variable and gives its type explicitly. If we had written a
constrained signature for digit, it would have looked like
this:

digit: N
digite 0..9
The signature for dir does not include its functionality (a
constraint which we added to model a requirement), nor
does it mention B, since B is simply a subset of N. In fact
dir is just a relation between numbers and users. Since rela-
tions are sets of pairs, the signature would be written
dir : P(N x U)
In Z there is a convenient short-hand for this:
dir: NoU

How to write a schema:

We can write a schema in one of two forms: either hori-
zontally

[declaration | predicate]

or vertically

declaration

predicate

Example 3:
‘We can write the storage manager schema as

[dir : B+» U; free : PB| free = B\ (dom dir)]

or equivalently

dir : B+ U, free : PB
free = B\ (dom dir)

O

In the horizontal form the signature and predicate are
separated by a vertical bar, and in the vertical form by a
horizontal bar — both pronounced ‘such that’. In the hori-
zontal form, brackets delimit the schema, and in the vertical
form, a broken box. If we omit the declaration part, then the
schema contains no components; if we omit the predicate
part, then it is a short-hand for including the predicate frue.
In order to reduce unnecessary formal clutter, we often put
declarations on separate lines and elide the semi-colon. Simi-
larly, we often put conjuncts on separate lines and elide the
conjunction symbol.

Example 4:

The domain of the directory and the free set partition the
set of blocks B: together they account for all the blocks, and
no block can belong to both sets. Thus, the storage manager
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schema might also be described as

dir . B+ U, free: PB
Sfree U dom dir = BA free n dom dir = {}

or, eliding the semicolon and conjunction symbol, as

dir:B+U
free :PB

free L dom dir =B
Jree N dom dir = {}

This schema is equivalent to that previously presented,
which we can see because the sets (dom dir) and (B\(dom
dir)) partition B.

d

Since each line of a predicate forms a conjunct

a=>b
c
dVe

means
@=b AcAN@dVe

The exception to this is when we impose some additional,
obvious structure:

yeB

Jr:Xe
xr<yV
y<x

means
eB)AN(@x:Xex<yV y<ux

It does not matter in which order we write the declarations

in a schema: we would be very surprised indeed if the fol-

lowing schema defined something different from the one
that we referred to as SM:

free : PB
dir :B+U

free = B\ (dom dir)

How to name a schema:

Naming a schema introduces a particular kind of syn-
tactic equivalence between name and schema. Schemas are
named in the following ways: either horizontally

Name = [declaration | predicate]

or by embedding the name in the top line of the vertical
schema'’s box:
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__Name
declaration

predicate

Example 5
We can name the storage manager schema

SM = [dir : B+ U, free : PB|free = B\ (dom dir)}

__SM.
dir: BU
free : PB

free = B\ (dom dir)

a
1.2 Schemas within mathematical text

Having encapsulated a concept such as that of the
storage manager, we shall probably want to use it in our
mathematical descriptions of operating systems. In this
section we describe exactly how schemas may appear in
mathematics.

Types:

When people use set theory to specify systems, they often
include some notion of #ype. For example, whenever we
have introduced a new variable, we have been careful to say
precisely over which set its values may range. In this sense,
we say that we are working in a #yped set theory. In Z, the
notion of type is a very simple one: a type is a maximal set:
values may belong to just one type. This is not the only
possibility: in VDM (Ref. 7), for example, types may be
refined by adding a data type invariant constraining their
values. This process creates a subtype. Thus one can
imagine a hierarchy of types and subtypes and subsubtypes
etc. Type checking then requires the proof of a theorem:
that a particular data type invariant has not been violated.
However, if one sticks to the simple type system in Z, then
type checking is decidable, and a simple compiler-like algo-
rithm may be used.

In the mathematical language there are three kinds of
types:

e given set names, for example B, U, Password, Taskid

e power set types, for example P Char, PB, P(B x U)

e Cartesian product types, for example B x U, Char x
Password, Taskid x Password.

We allow schemas to be used as types as well.

Example 6
We can introduce managers for different kinds of
storage:

backingsm, mainsm : SM

O

In the example, the two variables each consist of a pair of
values related by the predicate in SM. However, their type
is not simply the Cartesian product
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(PN x U)) x (PN)

since order is unimportant — we did not mind in which
order we wrote components in the signature. Instead, we
can regard schemas as providing a fourth sort of type: a
schema type is a product whose elements contain named
components. Note that these elements are not constrained
by the predicate; i.e. the predicate does not further refine
the type. If it did, then we could imagine elements belong-
ing to two or more schema types whose declaration parts
were identical, but whose predicate parts were different.
This would conflict with our notion of types. However,
when we introduce a variable of schema type, then this
variable is constrained by the schema’s predicate, in the
usual way.

Example 7:
Given the declarations

sm . SM
»n:10..20

The variable sm satisfies the storage manager’s state invari-
ant, and # satisfies the predicate # € 10..20.
0

There is no way in Z to write down the type of the vari-
ables backingsm and mainsm, other than to say they are of
type SMnorm, where we have defined this to be as uncon-
strained as possible:

SMnorm
dir : P(N x U)
free . P

Clearly SMnorm contains a signature which corresponds to
the declaration part of SM, but with all the predicate infor-
mation removed. Two schemas, rewritten so that all their
predicates are removed, are the same if they differ only in
the order in which we wrote down their components.{ Thus,
to see whether two schema objects are of the same type, we
must first reduce the schemas over which they range to
their underlying signatures. If these contain exactly the
same named components, agreeing on their types, then the
schema objects come from the same schema type.

There is also no explicit way to write down particular
values taken from the type SMrorm. Consider first of all an
ordinary Cartesian product, say N x N. We can form a
value from this type by pairing numbers: (x, y), for instance.
Here, order is vitally important: we know that x is the first
number and y is the second. Both x and y must be natural
numbers, and their names must be in scope already: they
are not introduced by the pairing operation. In general, a
value from the Cartesian product of #-types is called an #-
tuple, or simply a tuple, and it can be written down using
an ordered list of components, indexed by position.

The values in a schema type are also tuples, but instead
of referring to them by position, we refer to them by name,
since we cannot use position. The variable backingsm

t Later, when we come to the convention that we use to describe
sequential systems, we shall describe decorated names, and require
that these decorations be removed when exposing the underlying
type.
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denotes just such a tuple, and in the section on lambda
abstractions, we shall see a way of referring to the tuple’s
components. But there is also a way of constructing a
schema tuple that is analogous to that of constructing an
ordinary tuple. Given the schema definition

_ InitSM
dir:B+U
free . PB

dir = {}
free =B

the expression
0itSM

is a binding with {} as the value of dir, and B as the value
of free. For this to make sense, the component names dir
and free must already be in scope; they are not introduced
by mentioning 0/nitSM. As one might expect, the schema
tuple 8mitSM is an element of the schema type underlying
InitSM, which is the same schema type underlying SM:
namely, what we have called SMnorm.

There is no notation in Z that allows us to write down
just what the binding mitSM actually is. However, we can
give a rule for equality. Remember that two »-tuples a and
b are equal just in case the ith element of a is equal to the
ith element of 5. Similarly, two tuples s and ¢, from the same
schema type, are equal just in case, for each named com-
ponent in the type, the value in s is the same as the value
int.

Schemas as predicates :

Schemas can be used in any place where a predicate is
expected. The component names must already be in scope
— with the right types — in the place where the schema is
used as a predicate. The schema’s signature is discarded,
but not any constraints from the declaration.

Example 8:

In our storage allocator system, it is possible that none of
the blocks have been allocated to any of the users; it is also
possible that all the blocks have been allocated:

F 3dir : B+ U, free : PB|free = B @ SM
b 3dir: B+ U; free : PB| free = {} « SM

These are equivalent to

3dir : B+ U, free : PB|free = B o free = B\ (dom dir)
3dir : B+ U, free :PB|free = {} o free = B\ (dom dir)
O

When we use a schema in such a way, we must be careful
to use it properly. For example, consider the economical
storage manager which maintains a director, but not a free
set:

ESM
rdir:BHU

Now, is the following conjecture true, given b, : B and dis-
tinct u,, u, : U?
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[dir : P(N x U)|dir = {by+>uy, bor—u,}) 2+ ESM

The type of dir in ESM agrees with the declaration in the
hypothesis, and the predicate part of ESM is true by defini-
tion, and therefore follows from any hypothesis that we
choose to make; so the answer would seem to be ‘yes’. But
the hypothesis introduced a directory that was a relation,
but not a partial function, and therefore not a candidate for
a possible state of the economical storage manager. The
answer to this apparent mystery is simple: we threw the
baby out with the bath-water. Instead of disposing of the
declaration of dir, we should have disposed of the signature
and retained the declaration’s predicate content. If we
rewrite ESM so that all the predicate information is
revealed, and the schema consists of a signature and a pre-
dicate over that signature

_ ESM
dir : P(N x U)

dire B~ U

then it is quite clear that
[dir : P(N x U)|dir = {bg—uqy, by u,}] F ESM

The process of changing declarations into signatures is
called normalisation.

Set comprehension :
We can use schemas to specify sets in comprehension

{schema e term}

Example 9.
The set of all possible states of the storage manager is
described as

SMstates = {SM e 0SM}

SMstates is not the same as SM because the former con-
tains only those bindings whose values satisfy the SM-
invariant.t

d

Lambda abstraction:
We can use a schema to provide the signature and con-
straint for lambda expressions defining functions

ASchema o term

Such a function requires as its argument an object of the
schema type.

Example 10:
The contiguous free blocks in our operating system may
be calculated by the following function:

cfb = ASM o{l, h: B|l..h < free A
((—1) ¢ free N (h+1) ¢ frecel..h}

t Other accounts of Z allow a convention that SM can be used as
a short-hand for {SM e SM}, so this distinction becomes lost.

Software Engineering Journal January 1989

Each of the sets in the comprehension term are contiguous:
..k contains every number between [/ and 4, inclusively.
Moreover, they are maximal, since the set /..h cannot be
extended in either direction, since / — 1 and 4 + 1 are not
free. Because the smallest value that / can assumeis 1,/ — 1
is always defined.

We can apply this function to an instance of a storage
management system:

sm: SM

spareblocks : PPB
spareblocks = cfb sm
Since sm denotes a schema tuple, we can apply the function

cfbtoit.
O

We can use this technique of embedding schemas in lambda
abstractions to define functions which project out com-
ponents.

Example 11:
Let us introduce a variable of SM type

sm . SM

Then, if we often want to refer to the set of free blocks in
sm, we can name it fb. The function ASM e free always
returns the free blocks in the storage manager supplied as
an argument. Thus, our definition of fb could be

fb:PB
fb = (ASM e free) sm

O

The kind of function which projects a component from an
object of schema type is useful and frequently used. The
construction

schemaobject - component

is called component selection. It is reminiscent of record field
selection in Pascal.

Example 12:
Our storage manager variable has two projections; given
sm . SM

sm - dir means (ASM e dir) sm
sm - free means (ASM e free) sm
O

The components of a schema tuple can be referred to only
by using component selection.

Example 13:
The directory component of the initial storage manager
state is denoted

O0InitSM - dir

which is, since di» must be in scope, simply dir.

O
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Quantification:

Just as in the preceding section, we can use schemas to
supply the signatures and constraints of quantified predi-
cates:

Ischema e predicate
Vschema e predicate

Example 14:
In every storage manager, a block cannot be both free
and in use:

FVSM e
—(3b:Bebedomdir A\ be free)

ie.
- Vdir : B+ U, free . PB|
free = B\(dom dir) e
—(3b:Bebedomdir A be free)
a

Hypothests :
Schemas can provide the hypothesis for a theorem:

schema v conclusion

Example 15:
Recall our theorem about blocks from the last section:

F Vdir : B+ U, free : PB)|
free = B\ (dom dir)
—(3b:Bebedomdir A\ b e free)
which is to say that

dir : B+ U, free : PB| free = B\ (dim dir)
}_
—(3b:Bebedomdir N\ befree)

The hypothesis above the turnstile is of course simply SM;
thus our theorem could be stated as

SMt+—(3b:Bebedomdir \ be free)
]

2 Basic schema operators

In this section we introduce the simplest operations on
schemas which produce new schemas.

2.1 Renaming components

From an existing schema we can produce a new schema
by systematically changing the names of some of its com-
ponents. The notation is

schemalnew, [old |, new,/old, ...]

Example 16:
A library, if we now interpret B as books, not blocks:

Library = SM[booksonloan/dir, booksonshelves/free]
56
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We can expand this definition to see the effect of systemati-
cally changing component names:

__Library
booksonloan : B+ U
booksonshelves : PB

booksonshelves = B\ (dom booksonloan)

a

Decoration:
Decoration is a special case of renaming a schema’s com-
ponents:

schema decoration

Each component of the schema is systematically decorated.
We often use a convention when writing state-based specifi-
cations that we add a prime to the variable names to denote
the state after a state transition. Decorating a schema with a
prime is an easy way to construct a final state from an
initial one.

Example 17:
The state of a storage manager after some operation is
SM’, which is equivalent to

dir : B+ U; free' . PB
free’ = B\(dom dir’)

O

If we want to use this convention, then we must accept that
SM and SM' both describe the same schema type. There-
fore, in considering the type of a schema, and in deciding
equality, decorations are ignored. Thus we can safely
equate the following tuples

6SM = OSM’

Inclusion:

We can take advantage of previously defined schemas
when creating new ones, by ‘importing’ their definitions.
This technique is called inclusion :

schema
declaration

predicate

The effect of including a schema in the signature of another
is to form an augmented schema with a signature contain-
ing all the declarations of both schemas, and a predicate
which is the conjunction of the schemas’ predicates.

Example 18:

A super storage manager keeps a complicated account of
the occupancy of the system; it serves little purpose except
to enhance the existing design so that it can be sold for
more money :
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— SuperSM
SM
occupancy : N

occupancy = (100 x #(dom dir))div# B

This is equivalent to

__SuperSM

dir:B+U

free : PB
occupancy : N

free = B\ (dom dir)
occupancy = (100 x #(dom dir))div# B

a

Example 19:
The new storage manager keeps track of the contiguous
free blocks: '

— NSM.
SM
contiguous : P(PB)

contiguous = cfb (6SM)

This is equivalent to

—_NSM.
dir:B+ U
free . PB
contiguous : P(PB)

free = B\ (dom dir)
contiguous = ¢fb (0SM)

Note the need for 6SM in the argument to ¢fb. We apply the
function ¢fb to the tuple formed from the component names
introduced by the inclusion of SM.

Od

If we include a schema in the signature of another, any vari-
ables with common names are identified; ie. they are
regarded as referring to the same component. Of course,
their declarations must agree on the type of the component.

Example 20:

FancySM = [busy : PB; dir : B+ U; SM | busy = dom dir]
]

2.2 Conventions for using schemas

In this section we describe some of the conventions that
have been found to be useful in developing structured math-
ematical descriptions of software systems. These conven-
tions are the product of experience gained in many case
studies — for example Ref. 1.

The A convention:
We often use schemas to describe the state of some part
of a system; SM is an example of this. We also use schemas
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to describe the effect of state transitions — operations on
the state. To do this, we form a schema which contains both
the state before the operation and the state after the oper-
ation. The latter has the same component names as the
former, but with the addition of a final dash.§ The predicate
part of this new schema relates the values of the variables
before and after the operation, as well as describing the
tnvariant conditions on both states.

Example 21 :
The following operation resets a storage manager; i.e. it
frees all blocks:

__Reset
dir, dir :B+U
free, free' . PB

free = B\ (dom dir)
free' = B\(dom dir’)
free =B

dir = {}

We have included the names "of the variables before and
after the operation, the invariants that ensure that the two
states are indeed SM states, and the relationships between
before and after variables.

a

We can make the description of operations more concise by
using schema inclusion and decoration.

Example 22:
The operation of resetting a storage manager can also be
written as

— Reset
SM
SM
free =B
dir = {}

O

Since the inclusion of a schema describing the state before
and after an operation occurs so very frequently, we often
include both in another schema, and conventionally spell its
name with an initial delta (A), to conjure up the idea of
change.

Example 23 :
Let the following schema describe a state change for a
simple storage manager operation:

— ASMOp
SM
S©M

§ This is only a convention, and other conventions are also pos-
sible. For example, in VDM (Ref. 7), a convention is adopted
whereby before variables are decorated with an overhook (£, for
example) to distingush them from after variables, which go
undecorated.
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Using this, our reset operation may be written as

__Reset
ASMOp

free =B
dir = {}

a

The use of the A-convention leads to shorter specifications,
which we hope are easier to read, because we have encapsu-
lated just what it means to operate on a state — in this case
we must preserve the state invariant, which is the essence
of what it is to be a storage manager.

Sometimes we may wish to add a further predicate that
must be true for all operations on a state of a particular
kind: an operation invariant. We can include this predicate
as part of the A-schema, so long as this is not likely to
cause confusion to the reader. If there are several kinds of
operations, each with different predicates characterising
them, then some naming convention should be adopted
which distinguishes between them.

The ? and ! conventions:

Not all state transitions can be described in the manner
discussed above; some require input or output. Convention-
ally we decorate the names of inputs with a final query (?),
and those of outputs with a final shriek ().

Example 24 :

The interface to the storage manager consists of two com-
plementary operations: one to request a block of storage,
and one to release a block of storage. Both of these oper-
ations will involve an output that indicates what has hap-
pened; the value of this output will be drawn from the
datatype Report, which is defined as

Report:.okay | nospace | blockfree | notowner

We shall describe the declaration of this output once and for
all in an augmented version of ASMOp:

__ASM
ASMOp
r!: Report
(]
Example 25:

The following operation corresponds to user u?
requesting and being allocated a free block b!:

— Request,
ASM
u?:U
b!:B

Jree # {}
bl e free
Sree' = free\ {b!}
dir = dir v {b!—u?}
r! = okay

That is, there must be a free block to allocate; the block
58
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being allocated to #? must be free; and after the operation it
is no longer free, but is allocated to #?. The state invariant
holds before and after the operation.

O

The = convention:

Some operations are nothing more than an interrogation
of the state. In such an operation, inputs and outputs may
occur, but no state component changes. A schema which
records the fact that no change in the state takes place is
usually written with an initial xi (Z), to conjure up the idea
of equality.

Example 26 :

We can describe an operation which interrogates the
storage manager’s state, returning the number of free
blocks; it has no side effects:

__ReadFreeSize
=SM
st N

sl = #free

where

=SM
ASM

0SM = 6SM

By including SSM, we say that ReadFreeSize is an oper-
ation on the state that leaves the variables of SM equal to
the variables of SM'.

O

3 Logical schema operators

The use of the basic schema operations and associated con-
ventions allows us some convenience in writing specifi-
cations: they are useful, but not very powerful. In this
section we describe some very simple combinators which
allow us to structure specifications in a very powerful way.
The idea is to explain aspects of a system in the simplest
possible context, and then explain more about the system
by combining the simpler parts. If schemas are the pieces,
then logical schema operations are the glue that allows us
to stick them together.

3.1 Schema conjunction

Conjunction is a very powerful specification combinator:
we can say what a system must do by listing a number of
requirements, and then saying that we must satisfy them all
— their comjunction. This is a natural way to specify a
system.

In the schema notation we have a combinator that corre-
sponds to conjunction of requirements: it is called simply .
schema conjunction. 1f schema, and schema, are both
schemas, then so is

schema, A schema,
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We form the conjunction of two schemas by merging their
signatures, identifying any common variables, whose types
must agree, and then conjoining their predicates. Thus
schema, N schema, has all the components of schema,
and of schema,, and they satisfy both schema,’s predicate,
and schema,’s predicate.

Example 27

Suppose that we have a more restricted storage manager
than before: not all the blocks are available for use, some
are reserved for operating system use, and only a certain
number of users are privileged enough to be allowed to own
blocks. We can describe the components in our new state as

RSM.
blocks : PB
users . PU
alloc . B+ U

Of course, we need to restrict the components to reflect our
requirements, and we can do this by considering each
requirement separately. First, only certain blocks are allo-
cated to users:

__ RegisteredBlocks
RSM

dom alloc < blocks

Secondly, only certain users are allowed to own the regis-
tered blocks:

__RegisteredUsers
RSM

ran alloc < users

Now, the state of the restricted storage manager can be
described as the conjunction of the requirements that we
have presented:

RSMState = RegisteredBlocks N RegisteredUsers

This example is so small that it hardly warrants the struc-
ture that we have imposed upon it; however it is nice to
name requirements, and this becomes indispensable once
they become numerous. This technique is known in soft-
ware engineering as separation of concerns. Expanding our
definition we get

— RSMState
blocks : PB
users : PU
alloc:B+ U

dom alloc < blocks
ran alloc < users

a

Note that in the example we could have described RSM-
State as
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RSMState
(Regz’steredBlocks

RegisteredUsers

So, inclusion is just a special case of schema conjunction.

Schema disjunction :

Another powerful specification combinator is disjunction;
it allows us to offer alternatives in the behaviour of a
system. This may be to include some non-determinism in
the description, or to present partial descriptions of a
system, and then make the description total by combining
the parts in disjunction. If schema, and schema, are both
schemas, then so is

schema, V schema,

We form the disjunction of two schemas by merging their
signatures — identifying common variables, whose types
must agree — and then disjoining their predicates. Thus
schema, NV schema, has all the components of schema, and
of schema,, and either they satisfy schema,’s predicate, or
schema,’s predicate, or both. Schema disjunction is similar
to schema conjunction: the signatures of the schemas are
merged, common variables are identified, but the predicate
parts are disjoined.

Example 28:
The operation of requesting a block from the storage
manager is a partial operation:

— Request,
ASM
u?: U
b!:B

free # 4}

b! € free

Jree' = free\ {b!}

dir =dir v {bl—u?}
r! = okay

It is obvious that Request cannot proceed successfully if
free = {}: if we try to apply the operation when no free
block can be allocated, then we are in considerable trouble!
To prevent this unsatisfactory state of affairs, we must
specify what should happen in the unsuccessful case, when
free = {}: the error response ‘nospace’ is returned, and there
are no side-effects, the state being left unchanged:

— RequestErr
=SM

free = {}

r! = nospace

Now our complete request operation — which is total — is
defined as

RequestBlock = Request, V RequestErr

We can undo all our good work and partially expand the
definition of RequestBlock:

59

|



__RequestBlock
ASM

u?:U

b N
(b'eB

free # {}

b! € free
free' = free\{b!}

dir = dir v {bl—u?}
r! = okay)

\%

(free = {}

r! = nospace
OSM = 6SM’)

Note that since we were merging the signatures of the two
schemas, the requirement that

bleB

occurs only in the first disjunct, since b! was not mentioned
at all in the schema RequestErr. If ‘nospace’ is returned,
then nothing can be assumed about the value of b!; it need
not even be a block name. The user of the schema notation
should be careful about the need to normalise schemas
before combining them with schema disjunction. We return
to this point in the next section.

|

Example 29:

When a user who has been allocated a particular block
has finished with it, it can be released so that it may be
allocated to another user. The block being released, b?,
really must be owned by the user releasing it, ?:

b? e domdir A dir b? = u?

The second case occurs when the block is owned by some
user, but not by #?:

__ RelOwmerErr
=SM

u? .U

b?:B

b? € dom dir
dir b? # u?
r! = notowner

Now the total user interface for the release operation can be
described:

Release = Release, V' RelFreeErr N RelOwnerErr

As an informal argument for the totality of Release, first
note that, by appeal to the state invariant, there are two
cases: either b? is free, or it is in the domain of the direc-
tory. In the former case RelFreeErr is applicable. In the
latter case, either b? is allocated to «?, and thus Release, is
applicable, or it is allocated to someone else, and thus Res
OwnerErr is applicable. This exhausts all possibilities. This
is the kind of informal argument that is often carried out in
a design review. Later, we shall see how to be more rigor-
ous with the argument.

O

Schema negation:
We can form the negation of a schema:

—schema

The effect is to leave the signature part unchanged and to
negate the predicate part. The warnings about normalising
the schema first had better be heeded if silly results are not
to follow.

Example 30:
. The initial storage manager’s state is defined as
or more concisely, (b?+>u?) € dir. The block is removed
from the directory and put into the free set. The successful __SMinit
operation is described by the following definition of SM
Release,: dir = {}
__Release, Jree =B
ASM
u?:U We can imagine some later point in the system, where the
b?:B storage manager has a state different from that which it

b?—u?) e dir
free' = free U {b?}
dir = {b?} Qdir
r! = okay

There are two situations in which it would be wrong to
release a block b?. The first of these is when b? is actually
already free:

__RelFreeErr
=SM
b?:B

b? € free
r! = blockfree

had initially:
NotSMinit = — SMinit

Now, if we expand the definition, not forgetting to normal-
ise the declaration, and not forgetting de Morgan’s law, we
obtain

— NotSMinit.
dir 1 P(N x U)
free' : PN

dir ¢ B+->U V
free' ¢ PB V
dir #{} V
free' # B
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So clearly NotSMinit includes all those states in the schema
type SMnorm except those described by SMinit, but includ-
ing those states which fail to satisfy the state invariant for
SM. If we meant to describe those states of a storage
manager that satisfy the state invariant, other than the
initial one, then we should have written

SM A —SMinit
a

Existential and universal schema quantifications :

Schema quantification is an operation on a schema; i.e. it
takes a schema and in turn produces a schema. The effect is
to quantify certain named variables within the schema.
They must indeed occur within the schema already, and, as
usual, the types must be in agreement:

I decs ® schema
VY decs ® schema

Example 31:
Suppose that we have our storage management system
more economically described as merely a directory

ESM = [dir : B+ U]

The free blocks are all those not being used; it is not too
difficult to prove the following theorem:

ESM + 3 free: PB ¢ SM
Expanding this we get

ESM \ [dir : B+ U| 3 free : PB o free = B\ (dom dir)}
or rather more concisely

ESM F 3 free . PB e free = B\ (dom dir)

which is so, since ¢\’ and ‘dom’ are both total.

O
'Schema hiding :

Of more frequent use than schema quantification is
schema hiding. It is one of the schema language’s mecha-
nisms for abstraction — the most important weapon in the
war against complexity. We abstract by making certain
components part of the internal mechanism of some specifi-
cation of no concern at the level at which we wish to work.
We can hide component names from view as follows:

schema\ (name |, name,, ...)

The act of hiding a name corresponds to existentially quan-
tifying the name in the schema.

Example 32:

The release operation described earlier required the user
to input the name of the block being released, as well as the
name of the user. We can imagine a less secure, anonymous
release operation where only the name of the block is
required:

AReleasey, = Release, \ (1?)
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Expanding the definition we can discover the full definition:

__ARelease,
ASM
b?:B

Ju?:Ue
b?—u?) e dir
Jree' = free U {b?}
dir = {b?} < dir
¥! = okay

In other words, an anonymous release is just like the ‘ordi-
nary release, because we can find just what the input «?
should have been. We can go through one further step and
eliminate the quantifier, since the value of #? that we are
looking for is obviously simply dir b?, and (dir b?) is
defined, since b? is in (dom dir):

Ju?:Ue(b?—u?)edir
< Ju?:Ueb?edomdir N\ dir b? = u?
(property of functions)
<> b? edom dir (existential elimination)
— ARelease,,
ASM
b?:B

b € dom dir

Sree' = free U {b?}
dir = {b?} g dir
r! = okay

We could have described our anonymous operation as

ARelease, = 3u? : U o Release,
0

3.2 Schema composition

We can view transitions as relations between states; this
prompts us to consider the composition of these relations.
The expression

schema, 3 schema,

denotes the (forward) relational composition of the two
schemas. They must follow the convention about dashing
variables in the state after an operation. The effect is that
the after state of schema, is identified with the before state
of schema, and then hidden; the signatures are then
merged, identifying common variables; and finally the pre-
dicate parts are conjoined. It is as though schema, follows
schema,.

Example 33:
Let S and T be two very simple schemas describing oper-
ations on a state containing the component »:

S
vv:V
P, v)
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_T
vv:V

Q, v)

Then the composition of S with 7" is defined as follows:

S5T = (S[ve/v'] A Tlve/v)\(vo)

The transient state produced by S and consumed by 7 has
been hidden from view, and it occurs existentially quanti-
fied in the expanded form of the schema:

vv:V
vy :V e Av, v) A o, V)

O

Example 34:

A desirable property of the storage management system
is that if a block is successfully allocated to a user it may
then be successfully released by that user, and the system
will be unchanged. We can formalise this requirement as
follows:

(Request,[b/b"]s Releasey[b/b?])\ (b) F ESM

Because of the identification of common variables, the user
u? and the report r! are the same in both operations. The
proof of this theorem in our system is straightforward.
First, define

Op = (Request[b/b!]s Release,[b/b?])\ (b)

If we expand the definition of Op we obtain

—Op
ASM
u?:U

3b:B; free,: PB; dirg : B+~ U e
Jreeq = B\ (dom dir,)
Sree # {}
b € free
free, = free\ {b}
diry = dir v {b—u?}
(b—u?) e diry
free' = free, U {b}
dir = {b} g dir,
r! = okay

Since we know exactly what values are assumed by dir,
and free,, we can use existential elimination to remove
them:

62

T HAENECImT o

—Op

ASM
u?:U

3b:Be
free\{b} = B\(dom (dir U {b—u?}))
Sree # {}
b € free
(b u?) e dir v {b—u?)
free' = (free\{b}) u {b}
dir = {b} Qdir v {b—u?})
r! = okay

Consider the predicate that corresponds to the invariant on
the intermediate state: it follows from the invariant on the
before state, and some simple properties of the domain and
set difference functions:

B\ (dom (dir v {b—u?}))
= B\((dom dir) U dom {b—u?}

(distributivity of dom)
= B\ ((dom dir) U {b}) (property of dom)
= (B\(dom dir))\ {b} (property of \)
= free\ {b} (invariant on SM)

In the intermediate state, b is temporarily allocated to u?.
This is described by the predicate

(b—u?)edir v {b—u?}

which is actually just a simple property of set membership.
If & is in free, then removing it and then putting it back
again leaves free unchanged. Thus

b efree N free' = (free\{b}) L {b}
<> (free\{b}) U {b} = free N free'
= (free\{b}) u {b}

<> free’ = free

If b is in free, then it is not in the domain of the directory;
thus allocating b to #? and then removing it from the direc-
tory leaves the directory unchanged. Note that

b € free
<> b € B\ (dom dir)
<beB A b¢(dom dir)

(invariant on SM)
(property of \)

Thus
{b} Qdir = dir

Remembering that b is free, consider the final value of the
directory:

dir = {b} Q(dir v {br>u?})
<dir = ({b} Gdir) v ({b} G {b—u?})
(distributivity of <)

«dir = ({b}gdir) v {} (property of <)
<dir = ({b} Gdir) (property of L)
<dir = dir (b is free)

Using these simplifications, we can reduce Op to
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—Op
ASM
w?: U

ib:Be
Jree # {}
b € free
free' = free
diy = dir
r! = okay

Of course we can always find an element in a non-empty
set, S0 we can use existential elimination once more:

—Op
ASM
u?: U

Sree # {}

b € free
free' = free
dir' = dir
r! = okay

the precise precondition, rather than asserting it. In fact,
any asserted precondition would have to be at least as
strong as the precondition which may be calculated in the
manner suggested. The VDM specification (true, false) has
no equivalent in Z; it simply cannot be written. It denotes
the operation which can always be applied, but which can
achieve no result.

Example 35:

Recall the definition of the successful operation of
requesting and being allocated a block of storage from the
storage manager:

— Request,
ASM
u?: U
b':B

Sree # {}

b! € free

Sfree' = free\ {b'}

dir =dir 0 {bl—u?}
r! = okay

Remembering the = convention, we can rewrite this as

—O0p
=SM
u?: U

free # {}
b € free
r! = okay

Whence our result.

d

We should pose and prove such desirable properties as
theorems of our specifications. The presence of these theo-
rems and their proofs distinguishes better specifications
from poorer ones.

4 Precondition investigation

A precondition for an operation describes all the states from
which it is guaranteed that a final state can be reached.

The style of specifying state transitions that we have
touched upon in this paper involves just a single predicate
relating the state before and the state after an operation.
After all, a state transition is just a relation. Those familiar
with the VDM style (Ref. 7) may have expected — but
failed to find — a pair of predicates: a precondition and a
postcondition. The answer to this riddle is that in the
schema language the single predicate serves both purposes.
In fact, we can calculate the precondition of an operation
defined in a schema:

pre schema

is defined to be schema with all the after variables and
outputs hidden in the manner described above. A precondi-
tion in Z is something that guarantees that a final state can
in fact be reached. There is some advantage in calculating
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Although we have specified that the state invariant is pre-
served by including ASM, and therefore SM’, how can we
tell that this operation really does just that? We must calcu-
late the precondition.

Theorem 1:
The precondition for Request, is just free # {}. Let

PreRequest,, = pre Request,
i.e. PreRequest, is the schema
ISM'; b!: B;r!: Report @ Request,
Then we must show that PreRequest, is simply
— PreRequest,,
SM
u?: U
Sree # {}

Proof:

__PreRequest,
SM
u?:U

3dir : B+ U, free' : PB; b : B; r!: Report e
Sree # {}
b! € free
free' = free\ {b!}
dir =dir v {bl—u?}
r! = okay
free' = B\(dom dir))

First, since we have three equations giving us alternative
expressions for di7, free’ and 7!, then we can use existential
elimination to remove them from the quantified predicate.
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Note that we still retain two proof obligations:

e dir' is not just a relation between B and U, but a partial
function.
e free' is not just a subset of N, but a subset of B.

—_ PreRequest,
SM
u?: U

3b!:Be
dir v {bl>u?} e B U
free' (b} = B
free # {}
bl e free
free {bY} = B'\(dom (dir u {b\—u?}))

It is fairly easy to dispose of the first of the quantified con-
juncts which requires that the enlarged directory remains
functional, since it happens to be equivalent to the directory
already being functional (a fact known from SM) and b!
being free:

dir v {bl—u? e B+ U
<dire B+ U A blé¢domdir N bl eB
(property of functions)
=direb+U A bl e B\ (dom dir) (property of \)
<direb+ U A blefree (invariant on SM)

If b! is in free, then removing b! from free leaves it still a
subset of B:

free' bt = B A ble free
= (free’ {b!}) U (b} = B {b!} A blefree
(monotonicity of v)
= (free' {b!}) U {b!} € B A b€ free
(b! quantified over B)
= free = B A b! e free (property of <)

In fact, we can strengthen this to an equivalence:

free = B
= free . {b!} = B (anti-monotonicity of )
Operation = Input . Output . - Precondition
InitSM true
Request, u?:U  bl:B free # {}
r!: Report
RequestErr ri:Report  free = {}
Release, u?:U r!: Report (b?—u?) edir
b?:8B
RelFreeErr b?:B r!: Report b? € free
RelOwnerErr u?:U r!: Report b? € dom dir
b?:8B dir b? #u?

We saw earlier that
free ' (b!} = B\ (dom (dir u {bl—>u?}))
follows from the invariant on SM and some properties of

the operators. Using these results, we can rewrite our
schema as

— PreRequest,
SM
u?: U

Jb':Be
free # |}
dire B—U
bl e free
free < B

Of course, the functionality of dir follows from the invariant
on SM, as does the fact that free:PB, and therefore
free < B. Making these simplifications, we have

— PreRequest,
SM
u?: U

3b!:Be
free # 4}
b! € free

But of course, if free is not empty, then we can always find
an element in it. So finally, we can use existential elimi-
nation to reniove reference to b!, giving us

—— PreRequest,
SM
w?: U

free # {}

QED.

So, the operation of requesting a block from the storage
manager is a partial one: Request, cannot proceed suc
cessfully if free = |}. If we try to apply the operation when
no free block can be allocated, then we are in considerable
trouble!

O

Whenever we describe a system, we should investigate
the preconditions of the operations. It often helps to present
the results of these investigations in an easily readable
form.} To summarise the operations, we present their pre-
conditions in Fig. 1.

5 A concise history of the schema

In this paper I have tried to give an account of the role
played by schemas in structuring specifications written in
Z. Although the illustrations are novel, I have merely
chronicled the work of many other people. In this section 1
would like briefly to set out how the notion of schemas
developed. Although I have gathered details from those

Fig. 1 Preconditious for the storage allocation
operations
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+ This method of presentation was suggested by John Words-
worth, a colleague at IBM UK Laboratories, Hursley Park.
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close to hand when this section was written,t I am to blame
for any inaccuracies in this history.

By 1982, researchers at Oxford and elsewhere, including
Jean-Raymond Abrial, Tim Clement, Steve Schuman, Ib
Holm Sgrensen and Bernard Sufrin, had started to use
schemas. They used them more or less as though they were
textual macros, though there was already some debate
about this. They appeared in contexts which would be fam-
iliar if you have read this paper: for example, in lambda
abstractions, set comprehensions and quantifications in
logical formulas. Like macros, schemas could always be
expanded by replacing the name of the schema by its body;
thus the underlying mathematics could always be recov-
ered.

Specifications were given structure by using classes and
chapters, containing definitions of state and operations in
terms of variables, types, relations and functions. Non-
determinism was thought to be captured by functions that
returned arbitrary elements of sets — using y-terms.

The specification of operations by schemas as well as
merely states was introduced by Carroll Morgan following a
suggestion by Tony Hoare, after discussions with Bernard
Sufrin. The first schema operators appeared soon after —
semi-colon and disjunction — both first used by Carroll
Morgan. It was this last application that first separated the
description of errors from that of the successful part of the
operation. This presentation style — now a widely used Z
style — using primes, queries, shrieks, As and Zs was
further developed by the Distributed Computing Software
project and then taken over by the CICS formalisation
project (see Ref. 1). The A was suggested by Steve
Schuman. Promotion — or framing — was worked out by
Bernard Sufrin and Carroll Morgan (see Ref. 8).

As these schema operators were shown to be useful in
practice, so the ideas were more fully worked out and other
logical operators appeared, such as conjunction and piping
— the latter invented by Jan Hayes. The name schema cql-
culus was coined by Bernard Sufrin to describe the various
logical operators between schemas. The meaning of the cal-
culus, however, was still inspired by macros.

In defiance of popular advice at the time, Mike Spivey
gave a denotational description of the meaning of schemas
(Ref. 3). History has shown that this has been a most suc-
cessful course.

Further developments in the language of schemas are still
taking place: in particular, Mike Spivey has recently sug-
gested the idea of nesting schemas, one inside another, to
give a hierarchical structure, as opposed to the rather flat
results of schema inclusion. This would allow the pack-
aging of abstract data types, for example. Another applica-
tion, being worked upon by the author, is in the description
of process structures in Concurrent Z.
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8 Appendix — laws used in proofs

In this section, we describe only those laws which we used
to justify our proofs. Most of them come from the Z refer-
ence manual (Ref. 4); those that do not are easily proved
from others which are.

8.1 Properties of functions

The following equivalence is often used to rewrite a pro-
perty in a specification, because the right-hand side is a
more concise expression. There is usually a trade-off in
these matters: the left-hand side is often more useful in a
proof:

[ X+Y,x:X;y: Y}
xedomf A fr=ya(@x—yef
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When we unite two functions, the result is a function just in
case the functions’ domains are disjoint:

f,g: X+ Yt
fugeXoYe(domf)u(domg) = {}

8.2 Properties of the domain function
The dom function is distributive:
fg: X+ Yhdom(fug =(domf)u (domg)
Its effect on the singleton function is simple:
2:X;y:Yrdom {x—y} =x
8.3 Properties of set difference

The set difference operator may be defined by its mem-
bership property:

x:X;A,B:PX+txeA\B<xecA AN x¢B

If we subtract the union of two sets it is the same as if we
subtracted each set individually:

A B C:PX+A\(Bu O =(A\B\C

In a special case, set difference and union can act as
inverses:

AB:PX+tBcA<(A\BlUB=A4A

Set difference is anti-monotonic in its second argument; i.e.
it reverses the inclusion ordering:

ABC:PX+-BcsC=A\Cc A\B
A useful special case of anti-monotonicity gives us

A B:PX+A\B<A
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This property relies on the inclusion ordering having a least
element.

84 Properties of set union
The set union operator has the empty set as an identity:

A:PXFAU{}=A

It is monotonic, in the sense that it respects the inclusion
ordering:

ABC:PXtAcB=>AuCcBu(C

8.5 Properties of set inclusion
The inclusion ordering on sets has a least element:
A:PXH{}cA

It is a transitive relation
ABC:PXFAcBAB<cC=AcC

Transitivity together with the special case of anti-
monotonicity of set difference gives us the property

ABC:PXFAcSB=A\CcB
8.6 Properties of domain subtraction
Domain subtraction§ is distributive:

[8: XoYV,A:PXFAL(fug)
=A<49Hvidds

We find the following trivial property helpful:

Xy YH{x} Qlxoy) ={}

§ Also called ‘domain anti-restriction’ in Ref. 4.
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