Jiazzi Network Simulator

Douglas Creager

Todd Nightingale

16 May 2002

Abstract

JNS utilizes the modularization and separate com-
pilation features of the Jiazzi extensions to Java.
By doing so, the major components of a simulated
network can be defined completely independently of
each other. Futhermore, by redefining the core com-
ponents of the simulator itself, Jiazzi’s modularity
can allow different simulation engines to perform the
analysis, without having to redefine or recompile any
other portion of the simulator. Most importantly, the
mixin capabilities of Jiazzi allow component design-
ers to extend existing components piecewise, with-
out having to worry about the details of the underly-
ing component implementation. These features make
JNS an extremely extensible and pluggable network
simulation tool.

1 Motivations

An important tool for the network protocol designer
is the network simulator. It allows the designer to
test their protocols in a contained, well-defined en-
vironment, providing feedback on the protocol’s be-
havior in various circumstances. Several tools already
exist to perform and analyze such simulations. How-
ever, they have several drawbacks. For instance, the
standard tool used in academia, NS, suffers from an
incrementally-designed system that leaves several fea-
tures implemented in an extremely ad hoc manner.
For instance, routing, one of the most important fea-
tures of any collection of network protocols, has to
be implemented as a special case; it is not a simple
extension of the base system. Because of this, all
connections between two computers must contain in
their representation hard references to their target.
(See the dotted lines in figure 1.) These references do
not represent any physical connections between the
protocols; ideally, this means that the simulated sys-
tem should be able to work like the real-world system,
without these links.

The Jiazzi Network Simulator (JNS) is designed
from the ground up to be extremely extensible and

| uopB/1 |-eeeee- {uopast | [ubpas2 feeeeee { uopcy1 |

[wren | [wan || waz2 | [wen |

IP Router B

IP Router A

IP Router C

Figure 1: Network topology

pluggable. By using the units framework provided
by Jiazzi, an extension to the Java programming lan-
guage, these goals are accomplished. New protocols
can be implemented and compiled completely sepa-
rately from the rest of the system. Existing protocols
can be extended piecewise using the Jiazzi’s mixin
support. Core components of the system can be re-
implemented for speed or efficiency, and linked into
the rest of the code base without requiring any extra
recompiling. Finally, network topologies are defined
in terms of which general type of protocol is used
(e.g., TCP, UDP, ICMP, etc.), rather than any spe-
cific implementation. The necessary pieces are not
linked together until simulation time, and all of these
links are specified in one, compact place.

2 Standard interfaces

To prevent unnecessary module dependencies from
arising, all network components in JNS implement
one of the interfaces defined in the interfaces.base sig-
nature (see table 1). An alternative design to this
would be to declare all components in terms of Ji-
azzi class signatures. However, doing so would limit
the connectivity between the JNS components. For
instance, the scheduler, as defined, can handle any
implementation of the Event interface, without intro-
ducing any dependencies between the scheduler and
the module that defines the event.

3 BASE CLASSES AND UNITS

Event Scheduler events
OutputHandler | Output handlers

Packet Data packets
PipelineElement | Packet pipeline elements
Queue Packet queues

Table 1: Standard interfaces

An Event represents anything that be scheduled to
happen at a particular simulation time. Links, for
instance, will define an implementation of Event to
represent a packet arriving at its destination. Out-
putHandlers can be defined to handle any debug or
trace output that the network components generate.
Packets represent the pieces of data being sent around
the network; typically, each network protocol will also
define its own type of Packet. As such, Packets are
defined with a default encapsulation behavior; each
Packet implementation must define a getlnnerPacket()
method. A base Packet, which would just contain a
sequence of arbitrary application data, would define
this method to return null. The Queue interface de-
fines the methods necessary for a packet queue, which
is used by links and protocols alike to allow different
queuing strategies to be investigated in a similarly
pluggable fashion.

The PipelineElement interface requires slightly
more explanation. The simulated network topology
and protocol is abstracted out to a slightly more gen-
eral view, that of a packet pipeline. In this view, all
nodes and protocols are merely connections in large
collection of packet plumbing. Each element of this
plumbing determines the method by which packets
are transported around. To model this, these ele-
ments of the simulation all implement the PipelineEle-
ment interface, which specifies the methods for send-
ing packets in both the upstream and downstream
directions.

Since new protocols and new packet types are most
often defined together, a module.def signature is pro-
vided to supply protocols and packets to the simula-
tor as a pair. New modules will implement signatures
that extend module.def to provide the appropriate
constructors and accessors to their dependent units.

The core components around which the entire sim-
ulator is defined are not defined in terms of a Java in-
terface like the individual components. Rather, they
are defined strictly as Jiazzi units, with the appropri-
ate package signatures. Since, in the current model,
every component in a given network must refer to a
single, specific simulation engine, these are specified
as module dependencies and linked in as Jiazzi units.

One of these core components is the event sched-
uler, defined by the scheduler.base signature. The
event scheduler publishes methods to deal with queu-
ing new events into the scheduler and sending output
to the user. Various output handlers can be regis-
tered with the scheduler; when any network compo-
nent subsequently calls one of the scheduler’s output
functions, this call is propagated to all registered out-
put handlers.

To further eliminate module dependencies between
the scheduler core and the various network compo-
nents, a second core unit is defined. Prior to passing
control of the simulation to the scheduler, the simu-
lation engine delegates the initialization of a network
topology to an initializer unit, which implements the
initializer.base signature. Doing so confines to a very
specific, limited portion of the code both the descrip-
tion of the topology itself, and the specification of
which component modules are needed for a given sim-
ulation.

The last core component in the system is the pro-
gram.base signature, which defines the entry point to
the simulation engine. The provided implementation
provides the glue between the initializer unit and the
scheduler unit.

3 Base classes and units

In addition to the interfaces and signatures described
above, the base JNS system also includes some ab-
stract classes to aid in the development of new com-
ponents, as well as a default implementation of base
data packets and the IP, UDP, and TCP protocols
(defined by the module.base, module.ip, module.udp,
and module.tcp signatures).

3.1 General plumbers and protocols

As described above, most elements of a simulated
network deal with the transport of packets through
a pipeline, as defined by the PipelineElement inter-
face. A default implementation of this interface is
provided, where pipeline elements can be connected
in a tree structure. Each element has a single parent
downstream, and multiple children upstream. The
GeneralPlumber class, defined by the plumber.base sig-
nature, provides methods for registering and dereg-
istering children, and implements the default trans-
port behavior in both directions. Typically, a net-
work node will be the parent of a tree of protocols,
providing the standard end-to-end layout of function-
ality.

5 SIMULATION EXECUTION

A futher generalization comes from the fact that
most network protocols behave in the same way, very
similar in function to the generalized plumber de-
scribed in the previous paragraph. Like plumbers,
they exist in a tree of pipeline elements; however,
they almost always perform the additional task of
encapsulating a packet within another before passing
it further downstream. The GeneralProtocol class, de-
fined by the protocol.base signature, extends the Gen-
eralPlumber class to provide this behavior.

Note that this tree of pipeline elements exists at
a single network node, where there is assumed to be
instantaneous communication between the layers of
the protocol stack. Because of this, no new sched-
uled events are needed to completely process a packet
traversing the tree.

3.2 Network topology

The actual topology of a network is constructed with
the Node and Link classes, defined in the graph.base
signature. An example topology can be found in fig-
ure 1. As mentioned in the introduction, the dotted
lines indicate extra links that would appear in an NS
representation of the topology; in JNS, only the solid-
line connections are needed.

Nodes in a network are implemented as PipelineEle-
ments, with a null downstream parent and a stack of
protocols upstream. For instance, in a representa-
tion of a standard TCP /IP network, each node would
be connected to an IP protocol object for each open
connection on the node. Each of these IP protocols
would be connected to an appropriate TCP or UDP
protocol. Finally, each of the TCP and UDP proto-
cols would be attached to the appropriate application
protocols (HTTP, FTP, etc.).

In the opposite direction of the protocol stack is
the network itself, where Nodes are connected to each
other via Links. These Links are not defined as Pipeli-
neElements, since there is no inherent notion of up-
stream or downstream. It is true that some network
layouts impose an upstream/downstream view onto
the topology; however, this is a property of the spe-
cific topology in use, not of topologies in general.
Futhermore, in the case of a router, a Node would
have more than one Link in the “downstream” direc-
tion, violating the tree structure of the PipelineEle-
ment design.

Instead of defining Links in terms of the PipelineEle-
ment interface, they are defined as unidirectional con-
nections between two nodes, with physical delay and
bandwidth parameters, respectively expressed in sec-
onds and bytes per second. When a source Node

receives a downstream-traveling packet, it sends it
to the specified Link. This Link sends it across the
simulated physical link to its destination by schedul-
ing a packet arrival Event for the appropriate time
in the future. When the appropriate simulation time
occurs, the Link processes the Event by sending the
packet upstream to the destination Node.

Every Link also has an associated Queue, which
handles the Link’s behavior when its source Node is
sending data faster than the physical link can trans-
port. The Queue can also handle prioritization of the
Packets in the queue to simulate bandwidth-sharing
protocols. However, “smart” queues like this will usu-
ally not be inserted into the topology at the Link level;
rather, they will most likely be used with a more com-
plicated protocol further upstream at the appropriate
Nodes.

4 Mixins

One of the features of JNS most useful to the compo-
nent designer is Jiazzi’s mixin capabilities. By using
this language feature, the component designer can
create new implementations of an existing protocol
by redefining a few small aspects of the component’s
behavior. Furthermore, these behavioral changes are
defined independent of the underlying implementa-
tion.

For instance, there are several extra features that
can be turned on or off in TCP, yielding different per-
formances based on the circumstances of the individ-
ual network. By specifying each of these features as
a separate mixin, they can be successively applied to
a base implementation of TCP, yielding a fully func-
tional protocol with the desired behavior, all specified
at simulation time.

5 Simulation execution

Assuming that the necessary protocol units are avail-
able, the simulation user must currently write two Ji-
azzi units, one atomic and one compound, in order to
perform a simulation. The atomic unit is an instance
of the initializer.base signature, which is responsible
for setting up the network topology and providing
any initial Events to the scheduler. Since this ini-
tializer is defined as an atomic unit, its dependencies
are still expressed as package signatures, not concrete
package implementations. This flexibility allows the
same topology initializer to be used with different im-
plementations of the desired protocols in the network.

The second unit written by the user is a compound

CONCLUSIONS

net.tnight.jns.interfaces
net.tnight.jns.scheduler
net.tnight.jns.core
net.tnight.jns.graph
net.tnight.jns.plumber
net.tnight.jns.protocol

Standard interfaces
Event scheduler
Component glue
Network topology
GeneralPlumber
GeneralProtocol

Table 2: Necessary units

net.tnight.jns.stderr

net.tnight.jns.base
net.tnight.jns.ip
net.tnight.jns.udp
net.tnight.jns.tcp
net.tnight.jns.taildrop

Standard error output
handler

Base data packages
IP protocol

UDP protocol

TCP protocol

Naive tail-drop packet

queue

Table 3: Other predefined units

unit which glues together concrete implementations
of all the units necessary for the simulation. In gen-
eral, all of the units listed in table 2 will be required,
along with units implementing necessary protocols
(see table 3), and the initializer unit written by the
user. Because of the number of units necessary in the
linking stage, an effort has been made to name unit
dependencies in a consistent manner. This allows the
user to use the compact bind to *@package syntax,
reducing the size of the bind package clause of the
unit specification.

6 Conclusions

Once the proper underlying framework was designed,
the Jiazzi units allowed the base protocols to be
designed extremely quickly. True, there is nothing
cutting-edge about the provided protocols; however,
these simple versions of the protocols were surpris-
ingly quick and easy to implement. Jiazzi’s separate
compilation features really helped facilitate rapid de-
sign and implementation.

If designed properly, however, the modularity and
pluggability features of JNS could easily have been
accomplished using standard Java. While the Jiazzi
units allow the modularity of the design to be ex-
pressed explicitly, they are by no means necessary.
The scheduler is defined to work strictly on instances
of standard Java interfaces; there is no inherent re-
liance on Jiazzi units. By using a bit of the Reflection
API, we can even use a Java-based initializer class to

eliminate any name-dependency of the scheduler on
the specific protocols, just as in the Jiazzi version.

The place where Jiazzi really benefits the JNS, and
where Java cannot help, is in the use of mixins to
help extend existing protocols piecewise. Especially
in a field where networking research involves incre-
mental changes and tweaking of existing algorithms,
this form of piecewise subclassing can be extremely
invaluable.

In conclusion, the extensions to the Java language
provided by Jiazzi helped JNS achieve a level of mod-
ularity, pluggability, and quick, piecewise extensibil-
ity that existing network simulators do not exhibit.

7 APPENDIX: CODE

7 Appendix: Code

Attached are illustrative excerpts from the JNS code.
Presented first are the signatures of several key com-
ponents of the system: the standard interfaces unit,
the default network topology unit, the scheduler unit,
the packet/protocol module prototype, the output
handler prototype, and the initializer prototype (fig-
ures 2 through 7).

Following the signatures is the code to the Graph
unit’s Link class (figures 8 and 9), showing an example
of scheduling Events to handle events that take place
over a defined period of time.

Finally, the implementation of UDP is presented as
an example of extending the module.def signature to
add a protocol and packet to the simulator (figures
10 through 12).

7 APPENDIX: CODE

signature interfaces.base =

{

package interfaces;

public interface Packet

{
public int getSize();
public interfaces.Packet getInnerPacket();
public int getID();
//public String toString();

}

public interface PipelineElement

{
public boolean canAcceptPacket(interfaces.Packet p);
public void send(interfaces.Packet p, int path);
public void recv(interfaces.Packet p);

b

public interface Event

{
public void process();

}

public interface OutputHandler

{
public static final int ERROR;
public static final int WARNING;
public static final int DEBUG;
public void log(int level, String message) ;

}

public interface Queue

{
public boolean isEmpty();
public void enqueue(interfaces.Packet packet);
public interfaces.Packet dequeue();

}

}

Figure 2: interfaces.base

7 APPENDIX: CODE

signature graph.base = {
package interfaces, graph, plumber, scheduler;

public class Node
extends plumber.GeneralPlumber

{
public Node(String name);
public void addLink(graph.Link link);
public void removelLink(graph.Link link);
}
public class Link
{
public Link(graph.Node from,
graph.Node to,
double delay,
double bandwidth,
interfaces.Queue queue,
String name) ;
public void enqueuePacket(interfaces.Packet packet);
}

Figure 3: graph.base

signature scheduler.base = {
package interfaces, scheduler;

public class Scheduler
{
public static void schedule(interfaces.Event event, double time);
public static double now();
public static void run();
public static void run(double timeout);

public static void registerOutputHandler (interfaces.OutputHandler handler);
public static void log(int level, String message);

Figure 4: scheduler.base

7 APPENDIX: CODE

signature module.def = {
package interfaces;

public class Packet implements interfaces.Packet {3}
public class Protocol implements interfaces.PipelineElement
{
public interfaces.Packet encapsulate(interfaces.Packet);
public interfaces.Packet decapsulate(interfaces.Packet);

Figure 5: module.def

signature output.base =
{

package interfaces;

public class OutputHandler implements interfaces.OutputHandler {}

Figure 6: output.base

signature initializer.base =

{
public class Initializer
{
public static void setup(String[] args);
public static void cleanup();
}
}

Figure 7: initializer.base

7 APPENDIX: CODE

package out;

import interfaces.*;
import scheduler.*;
import java.util.x*;

public class Link
{
private Node from, to;
private double delay, bandwidth;
private String name;
private Queue waiting;
private List pipe;
private boolean idle = true;

public Link(Node from, Node to, double delay,
double bandwidth, Queue queue, String name)

{
this.from = from;
from.addLink(this);
this.to = to;
this.delay = delay;
this.bandwidth = bandwidth;
this.name = name;
this.waiting = queue;
this.pipe = new ArrayList();
}
private class PacketArrivalEvent implements Event
{
Packet packet;
private PacketArrivalEvent (Packet packet) { this.packet = packet; }
public String toString() { return "Packet arrival on "+name; }
public void process() { packetArrived(packet); }
}
private class LinkIdleEvent implements Event
{
public String toString() { return "Link "+name+" idle"; }
public void process() { linkIdle(); }
}
public void enqueuePacket (Packet packet)
{
Scheduler.log(25, "enqueue "+packet);
waiting.enqueue(packet);
processWaitingQueue() ;
}

Figure 8: Link class

7 APPENDIX: CODE

private void processWaitingQueue()

{

}

if (idle && !waiting.isEmpty())

{

Packet packet = waiting.dequeue();

Scheduler.log(25,"piping "+packet) ;

pipe.add(packet);

Scheduler.schedule(new PacketArrivalEvent (packet) ,delay) ;
Scheduler.schedule(new LinkIdleEvent () ,packet.getSize()/bandwidth);
idle = false;

private void packetArrived(Packet expected)

{

}

Packet received = (Packet) pipe.get(0);
if (!expected.equals(received))

Scheduler.log(5,"Packet arrival out of order on link "+name);

pipe.remove(received) ;
to.recv(received) ;

private void linkIdle()

{

idle

= true;

processWaitingQueue() ;

Figure 9: Link class (cont.)

10

7 APPENDIX: CODE

signature module.udp = z: module.def + {
package interfaces, protocol;
bind package interfaces to z@interfaces;

public class Packet implements interfaces.Packet
{
public Packet(interfaces.Packet inside,
int sourcePort,
int destinationPort);
public int getSourcePort();

public int getDestinationPort();
}

public class Protocol
extends protocol.GeneralProtocol
implements interfaces.PipelineElement

{
public Protocol(String name,
interfaces.PipelineElement target,
int source, int dest);
}

Figure 10: module.udp

11

7 APPENDIX: CODE

package out;

public class Packet
implements interfaces.Packet

{
private interfaces.Packet inside;
private int sourcePort, destinationPort;

public Packet(interfaces.Packet inside,
int sourcePort,
int destinationPort)

this.inside = inside;
this.sourcePort = sourcePort;
this.destinationPort = destinationPort;

}

public int getSourcePort() { return sourcePort; }
public int getDestinationPort() { return destinationPort; }

public interfaces.Packet getInnerPacket() { return inside; }
public int getSize() { return 8+inside.getSize(); }

public String toString() { return "UDP["+inside+"]"; }
public int getID() { return inside.getID(); }

Figure 11: UDP Packet class

12

7 APPENDIX: CODE

package out;

import interfaces.PipelineElement;
import protocol.GeneralProtocol;

public class Protocol
extends GeneralProtocol
implements PipelineElement

{
private int source, dest;
public Protocol(String name, PipelineElement target, int source, int dest)
{
super (name, target) ;
this.source = source;
this.dest = dest;
}
public boolean canAcceptPacket(interfaces.Packet p)
{
if (p instanceof Packet)
{
Packet udp = (Packet) p;
return (udp.getSourcePort() == source) && (udp.getDestinationPort() == dest);
}
return false;
}
public interfaces.Packet encapsulate(interfaces.Packet p)
{
return new Packet(p,source,dest);
}
public interfaces.Packet decapsulate(interfaces.Packet p)
{
if (p instanceof Packet)
{
Packet udp = (Packet) p;
return p.getInnerPacket();
}
scheduler.Scheduler.log(0, "Decapsulating non-UDP packet");
return null;
}
public void send(interfaces.Packet p, int path) { super.send(p,path); }
public void recv(interfaces.Packet p) { super.recv(p); }
}

Figure 12: UDP Protocol class

13

