
Algorithms and Lower Bounds
in the Streaming and Sparse Recovery Models

by

Khanh Do Ba

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2012

c© Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 2, 2012

Certified by .
Piotr Indyk

Professor
Thesis Supervisor

Accepted by .
Leslie Kolodziejski

Chairman, Department Committee on Graduate Students

2

Algorithms and Lower Bounds
in the Streaming and Sparse Recovery Models

by

Khanh Do Ba

Submitted to the Department of Electrical Engineering and Computer Science
on May 2, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

In the data stream computation model, input data is given to us sequentially (the data stream),
and our goal is to compute or approximate some function or statistic on that data using a
sublinear (in both the length of the stream and the size of the universe of items that can
appear in the stream) amount of space; in particular, we can store neither the entire stream
nor a counter for each possible item we might see.

In the sparse recovery model (also known as compressed sensing), input data is a large
but sparse vector x ∈ Rn, and our goal is to design an m× n matrix Φ, where m� n, such
that for any sufficiently sparse x we can efficiently recover a good approximation of x from
Φx.

Although at first glance these two models may seem quite different, they are in fact
intimately related. In the streaming model, most statistics of interest are order-invariant,
meaning they care only about the frequency of each item in the stream and not their position.
For these problems, the data in the stream can be viewed as an n-dimensional vector x, where
xi is the number of occurrences of item i. Using this representation, one of the high-level
tools that have proven most popular has been the linear sketch, where for some m×n matrix
Φ, we maintain Φx (the sketch) for the partial vector x as we progress along the stream. The
linearity of the mapping Φ allows us to efficiently do incremental updates on our sketch, and
as in its use in sparse recovery, the linear sketch turns out to be surprisingly powerful. In
this thesis, we try to answer some questions of interest in each model, illustrating both the
power and the limitations of the linear sketch.

In Chapter 2, we provide an efficient sketch for estimating the (planar) Earth-Mover
Distance (EMD) between two multisets of points. The EMD between point sets A,B ⊆ R2

of the same size is defined as the minimum cost of a perfect matching between them, with
each edge contributing a cost equal to its (Euclidean) length. As immediate consequences,
we give an improved algorithm for estimating EMD between point sets given over a stream,
and an improved algorithm for the approximate nearest neighbor problem under EMD.

In Chapter 3, we prove tight lower bounds for sparse recovery in the number of rows in
the matrix Φ (i.e., the number of measurements) in order to achieve any of the three most
studied recovery guarantees. Specifically, consider a matrix Φ and an algorithm R such that
for any signal x, R can recover an approximation x̂ from Φx satisfying

‖x− x̂‖p ≤ C min
k-sparse x′

∥∥x− x′∥∥
q
,

where (1) p = q = 1 and C = O(1), (2) p = q = 2 and C = O(1), or (3) p = 2, q = 1 and

3

C = O(k−1/2). We show that any such Φ must have at least Ω(k log(n/k)) rows. This is
known to be optimal in cases (1) and (2), and near optimal for (3).

In Chapter 4, we propose a variant of sparse recovery that incorporates some additional
knowledge about the signal that allows the above lower bound to be broken. In particular,
we consider the scenario where, after measurements are taken, we are given a set S of size
s � n (s is known beforehand) that is supposed to contain most of the “large” coefficients
of x. The goal is then to recover x̂ satisfying

‖x− x̂‖p ≤ C min
k-sparse x′

supp(x′)⊆S

‖x− x′‖q .

We refer to this formulation as the sparse recovery with partial support knowledge problem
(SRPSK). We focus on the guarantees where p = q = 1 or 2 and C = 1 + ε, for which we
provide lower bounds as well as a method of converting algorithms for “standard” sparse
recovery into ones for SRPSK. We also make use of one of the reductions to give an optimal
algorithm for SRPSK for the guarantee where p = q = 2.

Thesis Supervisor: Piotr Indyk
Title: Professor

4

Contents

1 Introduction 7
1.1 Efficient Sketches for Earth-Mover Distance (Chapter 2) 8
1.2 Lower Bounds for Sparse Recovery (Chapter 3) 9
1.3 Sparse Recovery with Partial Support Knowledge (Chapter 4) 10

2 Efficient Sketches for Earth-Mover Distance 12
2.1 Sketching a Sum of Norms . 15

2.1.1 Sketch and Reconstruction Algorithm 15
2.1.2 Proof of Correctness . 16
2.1.3 Proofs of Lemmas 8 and 9 . 18

2.2 Sketching EMD . 22

3 Lower Bounds for Sparse Recovery 24
3.1 Deterministic Lower Bound . 27
3.2 Randomized Upper Bound for Uniform Noise 29
3.3 Randomized Lower Bound . 31

3.3.1 Discretizing Matrices . 32
3.3.2 Communication Complexity . 32
3.3.3 Lower Bound Theorem for `1/`1 . 33
3.3.4 Modifications for `2/`2 and `2/`1 . 34

4 Sparse Recovery with Partial Support Knowledge 36
4.1 Lower Bounds . 38

4.1.1 Lower Bound for `1/`1 . 38
4.1.2 Lower Bound for `2/`2 . 41

4.2 Upper Bounds . 42
4.2.1 Reductions to Noisy Sparse Recovery 42
4.2.2 Optimal Algorithm for `2/`2 . 45

5

6

Chapter 1

Introduction

The modern era has brought tremendous technological advances in nearly every area of science
and society. With those technologies, we now have access to massive amounts of data never
before available: network traffic data, genomic data, medical data, social media data, financial
markets data, etc. To tap into this tremendous new resource, however, we need the ability
to process this raw data into some useful form. Unfortunately, many existing algorithms are
incapable of handling this massive scale of data. This has spurred the development in recent
years of the broad area of massive data algorithmics.

In the traditional world of algorithms, the requirement for efficiency was polynomial
time/space (or any other scarce resource), and the gold standard was linear cost. Today, in
increasingly more problem settings, a sublinear cost is the bare minimum.

Streaming and Sketching Algorithms Capturing one type of such settings is the data
stream computation model (e.g., [Mut05, Ind07b]). Here, the input data is given to us
sequentially, and our goal is to compute or approximate some function or statistic on that
data using a sublinear (in both the length of the stream and the number of possible items
that can appear in the stream) amount of space; in other words, we can store neither the
entire stream nor a counter for each item we see.

Most streaming problems consider statistics that are invariant to the order of the stream.
In this case, the underlying data can be thought of as a vector x ∈ Rn, initialized to the zero
vector, to which each item in the stream indicates an update. Specifically, each update is a
pair (i, a), which says that a should be added to xi. The algorithm needs to maintain a small
data structure that can be updated very quickly with each new item in the stream, and from
which can be computed (an approximation of) the desired function of x.

Perhaps the simplest such data structure is the linear sketch. That is, we maintain Φx,
for some predefined m × n matrix Φ. On seeing an update (i, a), we simply add Φ(aei) to
the current sketch Φx to obtain the updated sketch (ei is the indicator vector for i). We
therefore get the ability to quickly update our data structure for free, and need only focus on
choosing the matrix Φ. It turns out that this seemingly very limiting framework is perhaps
the most powerful tool in the toolbox of a data stream algorithmicist.

Sparse Recovery In a second related model, consider a signal x ∈ Rn which we are trying
to measure (i.e., observe) in compressed form. The traditional approach would be to take
its full measurement, then compress the result. For example, a digital camera takes a photo

7

in raw bitmap format, then compresses it to a JPEG before saving it to memory card. This
can be very wasteful, as the bulk of the measurements taken end up discarded. In the new
approach, this waste is avoided by combining the measurement and compression steps into
one by taking instead a small number of non-adaptive linear measurements of the signal; in
other words, a linear sketch. In many settings, there are natural and efficient ways to take
such linear measurements (e.g., the camera example [DDT+08]).

Of course, the signal has to be “compressible” for this setting to make sense. Specifically,
we focus on signals that are almost k-sparse, that is, have at most k non-zero coefficients. In
fact, it suffices that the signal be almost sparse in some known basis, as is the case for natural
images. Variations of this framework are variously known as sparse recovery or compressed
sensing.

This problem can be loosely viewed as a special case of streaming algorithms, where the
“statistic” to estimate is the entire signal itself, and where we are required to use a linear
sketch. Variants of this special case have in fact been well-studied in the streaming literature
(e.g., [CM05]). In this thesis, we study several questions in these two models that help shed
light on our understanding of both the power and the limitations of the linear sketch.

1.1 Efficient Sketches for Earth-Mover Distance (Chapter 2)

For any two multisets A,B of points in R2, |A| = |B| = N , the (planar) Earth-Mover Distance
(EMD) between A and B is defined as the minimum cost of a perfect matching with edges
between A and B, i.e.,

EMD(A,B) = min
π:A→B

∑
a∈A
‖a− π(a)‖

where π ranges over all one-to-one mappings.
Recently, there has been a significant interest in developing methods for geometric rep-

resentation of EMD. The goal of this line of research is to provide mappings (say, f) that
map a set of points A into a vector f(A) in an m-dimensional space, such that the distance
EMD(A,B) between any two point sets can be approximated from the vectors f(A) and
f(B). To be useful, the space that f maps into must be “simple”, e.g., its dimension m
must be low, or its distance estimation function should be of simple form. For example,
[Cha02, IT03] provide a mapping f that works when the sets A,B are subsets of size N of
the discrete square grid [∆]2, mapping them into logO(1)(∆) dimensions and guaranteeing
that, for some absolute constant C > 0,

‖f(A)− f(B)‖1 ≤ EMD(A,B) ≤ C log ∆ · ‖f(A)− f(B)‖1 .1

One important application of geometric representations of EMD is in data stream compu-
tation. For this setting, the points of A and B are given one at a time in some arbitrary order,
and we need to approximate their EMD at the end of the stream. With geometric representa-
tions of A and B, as defined above, we can do this as long as f(A) and f(B) can be efficiently
updated over the course of the stream. Specifically, if f is a linear sketch, this becomes trivial.
In fact, the above mapping of EMD into `1, combined with `1-distance-preserving mappings
into low dimensions [Ind00], has been used to yield an efficient algorithm for the streaming
EMD problem [Ind04]. Specifically, the algorithm provides an O(log ∆) approximation in

1In this thesis, all logarithms are base 2 unless otherwise noted.

8

one pass over the data, using only logO(1)(∆N) space. Obtaining a better EMD estimation
algorithm has been an important open problem in the streaming literature [McG06].

However, representing EMD as vectors in the `1 space has limitations: it has been
shown [NS07] that any such mapping must incur a distortion of at least Ω(

√
log ∆). Thus, in

order to obtain more accurate representations, one must consider mappings into spaces other
than `1.

In Chapter 2, we provide a construction of such mappings. Specifically, for any ε > 0, we
give a (randomized) linear sketch of dimension only Õ(∆ε), but from which we can efficiently
recover an O(1/ε)-approximation of EMD. Note that for point sets in [∆]2, the standard
representation is as characteristic vectors of dimension ∆2, so our sketch size is significantly
sublinear.

This is the first sublinear embedding of EMD that yields a constant approximation. It also
immediately gives an improved algorithm (in approximation factor) for the streaming EMD
problem, as well as an improved algorithm for the approximate nearest neighbor problem
under EMD.

The results presented in this chapter are based on joint work with Alexandr Andoni, Piotr
Indyk and David Woodruff [ADIW09].

1.2 Lower Bounds for Sparse Recovery (Chapter 3)

The problem of stable sparse recovery is defined as follows: devise a matrix Φ ∈ Rm×n (or a
distribution over such matrices) and an algorithm R such that, given any signal x ∈ Rn, R
will recover from the sketch Φx a vector x̂ satisfying

‖x− x̂‖p ≤ C min
k-sparse x′

∥∥x− x′∥∥
q

(1.1)

(with probability 3/4 in the randomized case) for some norm parameters p and q and an
approximation factor C (in the case where p 6= q, possibly dependent on k). Sparse re-
covery has a tremendous number of applications in areas such as medical and geological
imaging [CRT06, Don06, DDT+08], genetic data acquisition and analysis [SAZ10, BGK+10]
and data stream algorithms [Mut05, Ind07b].

It is known that there exist matrices Φ and associated recovery algorithms that produce
approximations x̂ satisfying Equation (1.1) with p = q = 1 or p = q = 2 (i.e., the “`1/`1”
and “`2/`2” guarantees, respectively), constant C and sketch length

m = O(k log(n/k)). (1.2)

In particular, a random Gaussian matrix [CRT06] or a random sparse binary matrix ([BGI+08],
building on [CCFC02, CM04]) satisfies the `1/`1 guarantee with overwhelming probabil-
ity. A similar bound was later obtained for `2/`2 [GLPS10] (building on [CCFC02, CM04,
CM06]). Specifically, for C = 1 + ε, they provide a distribution over matrices Φ with
m = O((k/ε) log(n/k)) rows, together with an associated recovery algorithm. In compar-
ison, using a non-linear approach, one can obtain a shorter sketch of length O(k): it suffices
to store the k coefficients with the largest absolute values, together with their indices.

Surprisingly, it was not known whether the O(k log(n/k)) bound for linear sketching could
be improved upon in general, although such lower bounds were known to hold under certain

9

restrictions (see Chapter 3 for a more detailed overview). This raised hope that the O(k)
bound might be achievable even for general vectors x. Such a scheme would have been of
major practical interest, since the sketch length determines the compression ratio, and for
large n any extra log n factor worsens that ratio tenfold.

In Chapter 3, we show that, unfortunately, such an improvement is not possible; specif-
ically, that the bound in (1.2) is asymptotically optimal for C = O(1) and p = q = 1 or
p = q = 2, or C = O(k−1/2) and p = 2, q = 1. Thus, our results show that the linear
compression is inherently more costly than the simple non-linear approach.

The results presented in this chapter are based on joint work with Piotr Indyk, Eric Price
and David Woodruff [DIPW10].

1.3 Sparse Recovery with Partial Support Knowledge (Chap-
ter 4)

Although we have shown the “extra” logarithmic factor multiplying k to be necessary, in
many applications we may have some additional knowledge about the signal which allows us
to bypass this lower bound and achieve a smaller number of measurements.

The challenge of incorporating external knowledge into the sparse recovery process has
received a fair amount of attention in recent years [Def10]. Approaches include model-based
compressed sensing [BCDH10, EB09] (where the sets of large coefficients are known to exhibit
some patterns), Bayesian compressed sensing [CICB10] (where the signals are generated from
a known distribution) and support restriction (see Chapter 4 for an overview).

In Chapter 4, we study the last type of external knowledge. In particular, we consider
the scenario where, after the measurements are taken, we are given a set S of size s � n (s
is known beforehand) that is supposed to contain most of the “large” coefficients of x. The
goal is then to recover x̂ satisfying

‖x− x̂‖p ≤ C min
k-sparse x′

supp(x′)⊆S

‖x− x′‖q . (1.3)

We refer to this formulation as the sparse recovery with partial support knowledge problem
(SRPSK).

There are several scenarios where our formulation could be applicable. For example, for
tracking tasks, the object position typically does not change much between frames, so one
can limit the search for current position to a small set. The framework can also be useful for
exploratory tasks, where there is a collection S of sets, one of which is assumed to contain
the support. In that case, setting the probability of failure to O(1

|S|) enables exploring all
sets in the family and finding the one which yields the best approximation.

We show that SRPSK can be solved, up to an approximation factor of C = 1 + ε, using
O((k/ε) log(s/k)) measurements, for p = q = 2. Moreover, we show that this bound is
tight as long as s = O(εn/ log(n/ε)). This completely resolves the asymptotic measurement
complexity of the problem except for a very small range of the parameter s. We also give a
similar lower bound for the p = q = 1 case, as well as a general method to convert certain
“standard” sparse recovery algorithms into ones for SRPSK.

From a theoretical perspective, our results provide a smooth tradeoff between the Θ(k log(n/k))
bound for sparse recovery (i.e., s = n) and the Θ(k) bound known for the set query prob-
lem [Pri11], where we have full knowledge of the signal support (i.e., s = k). To the best

10

of our knowledge, this was the first variant of (1 + ε)-approximate sparse recovery to have
its asymptotic measurement complexity determined. More recently, [PW11] has presented
an optimal lower bound of Ω((k/ε) log(n/k)) for sparse recovery with the `2/`2 guarantee,
which matches what our lower bound for SRPSK would suggest (if the restriction on s could
be lifted).

The results presented in this chapter are based on joint work with Piotr Indyk [DI11].

11

Chapter 2

Efficient Sketches for Earth-Mover
Distance

Background

The Earth-Mover Distance was introduced in the vision community as a measure of (dis)similarity
between images that more accurately reflects human perception than the more traditional
`1-distance, and has since become an important notion in the field [PWR89, CG99, RTG00,
RT99]. Variants are also known as the transportation distance or bichromatic matching dis-
tance. Computing the minimum cost bichromatic matching is one of the most fundamental
problems in geometric optimization, and there has been an extensive body of work focused
on designing efficient algorithms for this problem [Law76, Vai89, AES95, AV99, Cha02, IT03,
AV04, Ind07a].

The particular form of the problem we focus on in this thesis is a geometric representation
of EMD. As mentioned, one application is in the problem of computing EMD over a stream,
which has been a standing open problem in the streaming community [McG06]. A second
application is in visual search and recognition. The embedding of [Cha02, IT03], together
with efficient nearest neighbor search methods, have been applied to fast image search in large
collections of images [IT03]. Kernel variants of that embedding, such as pyramid kernels and
spatial pyramid kernels, are some of the best known practical methods for image recognition
in large data sets [GD05, LSP06].

Main Results

In this chapter we will construct a strongly sublinear-sized linear sketch of point sets in the
plane, together with a reconstruction algorithm that yields a (1 + ε)-approximation of EMD.
Specifically, we will prove the following theorem.

Theorem 1. For any 0 < ε < 1, there is a distribution over linear mappings Φ : R∆2 → R∆εr,
for r = logO(1) ∆, as well as an estimator function E(·, ·) such that for any two multisets
A,B ⊆ [∆]2 of equal size, we have

EMD(A,B) ≤ E(Φx(A),Φx(B)) = O(1/ε) · EMD(A,B)

with probability 2/3. The estimator function E can be evaluated in time logO(1) ∆.

12

Note that E(·, ·) is not a metric distance function. Instead, it involves operations such as
median, and as a result it does not satisfy triangle inequality.

Theorem 1 immediately provides improved algorithms for streaming and nearest neighbor
search problems. Consider the aforementioned problem of computing the EMD between the
sets A and B of points given in a stream. Note that the linearity of the sketches Φx(A)
and Φx(B) allows them to be maintained under insertions of points to A and B (as well as
deletions of points from A and B). Moreover, per [Ind00], the random bits defining a linear
mapping Φ can be generated using a pseudo-random generator with bounded space [Nis90]
that requires generating and storing only ∆ε logO(1)(∆N) truly random bits. Finally, our
construction guarantees that the entries in the matrix defining Φ are integers in the range
{−∆O(1), . . . ,∆O(1)}. As a result, for any multiset A of size at most N , each coordinate of
Φx(A) is in the range {−(∆N)O(1), . . . , (∆N)O(1)} and can be stored using O(log(∆N)) bits.
We obtain the following theorem:

Theorem 2. For any 0 < ε < 1, there is a one-pass streaming algorithm that maintains an
O(1/ε)-approximation of the value of EMD between point-sets from [∆]2 given in a stream of
length N , using ∆ε logO(1)(∆N) space.

Another application of Theorem 1 is to give an improved data structure for the approxi-
mate nearest neighbor problem under EMD. Specifically, consider a collection S of s multisets
Ai ⊆ [∆]2, each of size at most N . By increasing the dimension of the mapping Φ by a factor
of O(log s) we can ensure that, for any fixed multiset B, one can estimate the distance be-
tween B and all sets in S up to a factor of O(1/ε) with probability 2/3. We build a lookup
table that, for each value of Φx(B), stores the index i that minimizes the value of the es-
timated distance E(Φx(Ai),Φx(B)). From the properties of the mapping Φ, we obtain the
following theorem:

Theorem 3. Let S be a collection of s multisets from [∆]2, each of size N . For any 0 < ε < 1,
there is a data structure that, given a “query” multiset B, reports an O(1/ε)-approximate
nearest neighbor under EMD of B in S with probability at least 2/3. The data structure uses

2∆ε logO(1)(s∆N) space and (∆ log(s∆N))O(1) query time.

Thus, we obtain a data structure with very fast query time and space sub-exponential in
the dimension ∆2 of the underlying EMD space. This improves over the result of [AIK09],
who obtained an algorithm with a similar space bound while achieving super-constant ap-
proximation and query time polynomial in the number of data points s.

Techniques

Our mapping utilizes two components: one old and one new. The first component, introduced
in [Ind07a], provides a decomposition of EMD over [∆]2 into a convex combination of closely
related metrics, called EEMD, defined over [∆ε]2. Specifically, consider an extension of EMD
to any sets A,B ⊆ [∆]2, not necessarily of the same size, defined as:

EEMD∆(A,B) = min
A′⊆A,B′⊆B,|A′|=|B′|

[EMD(A′, B′) + ∆(|A−A′|+ |B −B′|)]

(we often skip the subscript ∆ when it is clear from the context). It is known that the
EEMD metric can be induced by a norm ‖ · ‖EEMD, such that for any sets A,B we have

13

EEMD(A,B) = ‖x(A) − x(B)‖EEMD (see Preliminaries below for the definition), where
x(A) ∈ R∆2

denotes the characteristic vector of A. The decomposition from [Ind07a] can
now be stated as follows (after adapting the notation to the setup in this chapter):

Fact 4. For any 0 < ε < 1, there exists a distribution over T -tuples of linear mappings
〈Φ1, . . . ,ΦT 〉, for Φi : R∆2 → R∆ε

, such that for any x ∈ R∆2
, we have

• ‖x‖EEMD ≤
∑

i ‖Φi(x)‖EEMD with probability 1, and

• E [
∑

i ‖Φi(x)‖EEMD] ≤ O(1/ε) · ‖x‖EEMD.

It suffices to estimate the sum of the terms ‖Φi(x)‖EEMD in the decomposition. The
second component needed for our result (and the main technical development of this chapter)
is showing that this sum estimation can be accomplished by using an appropriate linear
mapping. In fact, the method works for estimating the sum of norms

∑
i ‖xi‖X of a vector

x = (x1, . . . , xT) ∈ XT for any normed space X = (Rm, ‖ · ‖X) . We denote ‖x‖1,X =∑
i∈[T] ‖xi‖X . This component is formalized in the following theorem.

Theorem 5 (Linear sketching of a sum of norms). Fix n ∈ N, a threshold M > 0, and
approximation γ > 1. For k = (γ log n)O(1), there exists a distribution over random linear
mappings ϕ : Xn → Xk, and a reconstruction algorithm A, such that for any x ∈ Xn

satisfying M/γ ≤ ‖x‖1,X ≤ M , the algorithm A produces w.h.p. an O(1)-approximation to
‖x‖1,X from ϕ(x).

Theorem 5 implies Theorem 1, since we can use the mapping from [Cha02, IT03] to obtain
an estimation M of ‖x‖1,EEMD with an approximation factor γ = O(log ∆). For completeness,
we include its proof in Section 2.2.

The main idea behind the construction of the mapping is as follows. First, observe that a
natural approach to the sum estimation problem would be to randomly sample a few elements
xi of the vector x. This does not work, however: the mass of the sum could be concentrated
in only a single element, and a random sample would likely miss it. An alternative approach,
used in the off-line algorithm of [Ind07a], is to sample each element xi with probability
approximately proportional to ‖xi‖X , or in the case of EMD, ‖xi‖EEMD. However, it is not
clear how this can be done from a small sketch. In particular, for a direct application to the
streaming problem, this would require the existence of a streaming algorithm that supports
such sampling. [JW09] provides a step towards achieving such an algorithm. However, it
applies to the case where one samples just individual coordinates, while we need to sample
and retrieve “blocks”, 1 in order to then compute the EMD on them directly. Although
the two problems are related in principle (having enough samples of block coordinates could
provide some information about the norm of the block itself), the tasks seem technically
different. Indeed, the sketching and recovery procedure for this sum of norms forms the main
technical part of the chapter, even though the final algorithm is quite simple.

Preliminaries

We start by defining the ‖ · ‖EEMD norm. For any x ∈ R∆2
, let x+ = (|x| + x)/2 be the

vector containing only the positive entries in x, and let x− = x − x+. Then, if A+ denotes

1There are other technical obstacles such as that their algorithm samples with probability proportional to
|xi|p for p > 2, while here we would need the sampling probability to be proportional to the `1-norm of xi,
i.e., p = 1.

14

the (possibly fractional) multiset for which x+ is the characteristic vector, and similarly A−

denotes the set with characteristic vector −x−, define ‖x‖EEMD = EEMD(A+, A−). Observe
that for any sets A,B ⊆ [∆]2 we have EEMD(A,B) = ‖x(A)− x(B)‖EEMD.

The notation χ[E] stands for 1 if expression E is true and 0 otherwise.

2.1 Sketching a Sum of Norms

2.1.1 Sketch and Reconstruction Algorithm

We start by giving some intuition behind our construction of the sketching function ϕ and of
the reconstruction algorithm A. The respective algorithms are presented in Figures 1 and 2.

Fix an input x ∈ Xn. We will refer to xi’s as the elements of x. As in [IW05] and several
further papers, the idea is to partition these elements into exponential levels, depending on
their X-norm. Specifically, for a level j ∈ N, we set the threshold Tj = M/2j and define the
level j to be the set

Lj =
{
i ∈ [n] | ‖xi‖X ∈ (Tj , 2Tj]

}
.

Let sj = |Lj | be the size of Lj . We will observe that ‖x‖1,X is approximated by
∑

j≥1 Tjsj .
Furthermore, it is sufficient to consider only levels j ≤ ` := log(4nγ). Henceforth, we will
drop the “j ∈ [`]” in the summation.

The main challenge is to estimate each sj for j ∈ [`]. We will do so for each j separately.
We will subsample the elements from [n] such that, with “good probability”, we subsample
exactly one element from Lj and no element from Lj′ for j′ < j. We refer to this event as
E. This “isolation” of an element of i is needed since in order to verify if i ∈ Lj , we need to
estimate ‖xi‖X , which requires the recovery of an “approximation” of xi.

The probability that E holds is in fact roughly proportional to the size of the set Lj ,
and thus it suffices to just estimate the probability that E holds. To ensure the “rough
proportionality” we subsample the elements at a rate for which E holds with a probability
that is inversely poly-logarithmic, log−Θ(1) n. We can then repeat the subsampling experiment
t = (γ log n)O(1) times and count the number of experiments wherein the event E holds; this
count gives an estimate for sj (appropriately scaled).

The following core problem remains: for each subsampling experiment u ∈ [t], we need
to actually verify that E holds in this experiment, i.e., whether exactly one element of Lj
is subsampled and no element from Lj′ for j′ < j. To do so, we hash the subsampled
elements, denoted Ij,u, into a table. Then, E holds roughly when there is one cell that has
norm in the right range, which is roughly (Tj , 2Tj], and all the other cells are small. Ideally,
if the hash table were huge, then the subsampled elements, Ij,u, do not collide, in which
case the verification procedure is accurate. Since the hash table size is much smaller, of
only polylogarithmic size, this verification procedure may fail. Specifically, the verification
procedure fails when either the elements from the “lighter” levels Lj′ for j′ > j contribute a
lot to one of the cells, or multiple elements from “heavier” levels Lj′ for j′ < j are subsampled
and collide. If we set the size w of the hash table sufficiently high, we will ensure that neither
of these two bad events happens with any significant probability.

The detailed algorithm for the sketch ϕ is presented in Figure 1. Note that the constructed
sketch ϕ is linear.

Before giving the reconstruction algorithm A, we need the following definition, which
describes our procedure of verifying that the event E from the above discussion occurs.

15

1 For each j ∈ [`], create t = 4γ`2 log n hash tables, denoted H(j,u) for u ∈ [t], each

with w = 640γ`2 log2 n cells, and assign to them independent hash functions
hj,u : [n]→ [w]

2 For each hash table H(j,u)

3 Subsample a set Ij,u ⊂ [n] where each i ∈ [n] is included independently with
probability pj = 2−j/(40`)

4 For each v ∈ [w]

5 H
(j,u)
v :=

∑
i∈[n] χ[i ∈ Ij,u] · χ[hj,u(i) = v] · xi

Algorithm 1: Construction of the sketch ϕ.

1 For each j ∈ [`], let cj count the number of accepting pairs (j, u) for u ∈ [t]
2 Return α =

∑
j Tj ·

cj
t ·

1
pj

Algorithm 2: Reconstruction algorithm A.

Definition 6. For j ∈ [`], u ∈ [t], call the pair (j, u) an accepting pair if the following holds:

• there is exactly one position v ∈ [w] such that ‖H(j,u)
v ‖X ∈ (0.9Tj , 2.1Tj], and

• for all other v′ ∈ [w], ‖H(j,u)
v′ ‖X ≤ 0.9Tj.

The resulting reconstruction algorithm is given in Figure 2.

2.1.2 Proof of Correctness

First we observe that the norm ‖x‖1,X is approximated by
∑

j∈[`] Tjsj up to a factor of
4. Indeed, ‖x‖1,X is 2-approximated by the same sum with unrestricted j, i.e.,

∑
j≥1 Tjsj .

Moreover, every element i ∈ [n] from a higher level j > ` contributes a norm that is at most

‖xi‖X ≤
M

2`
=

1

4n
· M
γ
≤ 1

4n
‖x‖1,X .

Thus the elements from the ignored levels contribute at most a quarter of ‖x‖1,X .
For notational convenience, we therefore assume that for j 6∈ [`], we have Lj = ∅, i.e.,

sj = 0. Also, we can assume that γ ≤ nc for some absolute constant c > 0, since, otherwise,
the construction with k = γ1/c is trivial.

We define s̃j =
cj
t ·

1
pj

, which is our estimate of sj . Then the reconstruction algorithm

returns the estimate α =
∑

j Tj s̃j of the norm ‖x‖1,X .
Our main challenge is to prove that s̃j is a good estimate of sj for each j ∈ [`]. While

we can prove a good upper bound on s̃j for all j ∈ [`], we cannot prove a good lower bound
on all s̃j ’s. Namely, if sj is very small, we cannot lower-bound s̃j (as we do not have enough
subsampling experiments). But in this case, the level j contributes a negligible mass to the
norm ‖x‖1,X , and thus it can simply be ignored.

To formalize the above point, we partition the levels j into two types — important and
unimportant levels — depending on both the number sj of elements in, and the norm range of,
each one. Intuitively, the unimportant levels are those which contribute a negligible amount
of mass to the norm ‖x‖1,X .

16

Definition 7. Call level j important if sj ≥ M/γ
Tj
· 1

8` = 2j

8γ` . Call level j unimportant if it is

not important. Let J denote the set of important levels.

The following two lemmas prove, respectively, lower and upper bounds on our estimates
s̃j .

Lemma 8. For every important level j ∈ J , with high probability,

s̃j ≥ sj/8.

Lemma 9. For every level j ∈ [`], with high probability,

s̃j ≤ 2

(
sj−1 + sj + sj+1 +

2j

8γ`

)
.

First, we show how the two lemmas are used to prove Theorem 5.

Proof of Theorem 5. We have already observed that
∑

j Tjsj approximates ‖x‖1,X up to a
factor of 4. Thus, by Lemma 9, we have

α =
∑
j

Tj s̃j

≤ O(1)
∑
j

Tj

(
sj−1 + sj + sj+1 +

2j

8γ`

)
≤ O(1)

∑
j

Tjsj +O(`) · M
8γ`

≤ O(1) · ‖x‖1,X ,

where we have used the fact that ‖x‖1,X ≥M/γ.
On the other hand, we can lower bound α by dropping all the unimportant levels j. By

Lemma 8, we have

α ≥
∑
j∈J

Tj s̃j ≥ Ω(1)
∑
j∈J

Tjsj .

The contribution of the unimportant levels is, by the definition of importance,∑
j /∈J

Tjsj < ` · M/γ

8`
≤ 1

8
‖x‖1,X .

Thus, we conclude∑
j∈J

Tjsj =
∑
j

Tjsj −
∑
j /∈J

Tjsj ≥
1

4
‖x‖1,X −

1

8
‖x‖1,X = Ω(1) · ‖x‖1,X ,

which completes the proof of Theorem 5.

17

2.1.3 Proofs of Lemmas 8 and 9

As mentioned before, at a given level j, we are trying to estimate the size sj of the set Lj .
We do so by subsampling the elements t times, each at a rate of roughly 1/sj , and counting
the number of times the subsampling produces exactly one element from Lj . The hope is
that the pair (j, u) is accepting iff the event E holds, that is, the subsample Ij,u contains
exactly one element from Lj and none from Lj′ for j′ < j − 1. The main difficulty turns
out to be bounding the contribution of the elements from the sets Lj′ for j′ ≥ j + 2: the
sets Lj′ may be much larger than Lj and thus a fraction of them is likely to be present in
the subsample. Fortunately, the elements from these sets Lj′ are small in norm and thus are
distributed nearly uniformly in the hash table H(j,u).

To formalize this intuition, we will prove the Noise Lemma (Lemma 10) that quantifies
the “noise” (norm mass) contributed by the elements from the sets Lj′ , for j′ ≥ j + 2, in a
hash table H(j,u). This will be used to prove both Lemma 8 and Lemma 9.

The Noise Lemma has two parts. The first part gives a strong bound on the noise in a
given cell of the hash table H(j,u), but the probability guarantee is for a given cell only. The
second part gives a somewhat weaker bound on the noise, but holds for all the cells of H(j,u)

simultaneously.
To simplify notation, denote by L≥j the union

⋃
j′≥j Lj′ , and similarly, L≤j .

Lemma 10 (Noise Lemma). Fix some j ∈ [l] and u ∈ [t]. Consider some cell v of the hash
table H(j,u). Then ∑

i∈L≥j+2

χ[i ∈ Ij,u] · χ[hj,u(i) = v] · ‖xi‖X ≤ 0.1Tj (2.1)

with probability at least 1− 1
2w .

Furthermore, with probability at least 1− log2 n
w , we have

max
v′∈[w]

∑
i∈L≥j+2

χ[i ∈ Ij,u] · χ[hj,u(i) = v′] · ‖xi‖X ≤ 0.6Tj . (2.2)

Proof. We begin by proving equation (2.1). Consider some level j′ ≥ j+ 2. Level j′ contains
sj′ ≤ 2j

′
elements, each subsampled with probability pj and hashed to v with probability

1/w. Thus, we can write

E

∑
i∈Lj′

χ[i ∈ Ij,u] · χ[hj,u(i) = v] · ‖xi‖X

 =
∑
i∈Lj′

pj
w
·‖xi‖X ≤ 2j

′ · 2−j

40`w
·2Tj′ =

Tj
20`w

. (2.3)

Then, denoting by LHS the left-hand side of Equation (2.1), we have

E[LHS] ≤
∑

j′≥j+2

Tj
20`w

≤ Tj
20w

.

Using the Markov bound, we can thus conclude that P[LHS ≥ 0.1Tj] ≤ 1
2w , which proves the

first part of the Noise Lemma.
We now prove the second part of the Noise Lemma, Equation (2.2). Note that we cannot

hope to prove that all cells will have noise at most 0.1Tj , because even just one element from

18

a set Lj+2 can contribute as much as Tj/2. To prove this part, we partition the elements in
L≥j+2 into two types: heavy elements (of mass close to Tj) and light elements (of mass much
smaller than Tj). For heavy elements, we will prove that we subsample only a few of them,
and thus they are unlikely to collide in the hash table. The light elements as so light that
they can be upper-bounded using a concentration bound.

Specifically, we define the following sets of light and heavy elements, respectively:

Ll :=
⋃

j′≥j+log logn+1

Lj′

Lh := L≥j+2 \ Ll =
⋃

j+2≤j′<j+log logn+1

Lj′ .

We first show that the light elements do not contribute more than 0.1Tj to any cell w.h.p.
Namely, we will bound the noise in a cell v′ ∈ [w] using a Hoeffding bound, and then use a
union bound over all v′. We use the following variant of Hoeffding’s inequality, which can be
deduced from [Hoe63].

Lemma 11 (Hoeffding). Let Z1, . . . , Zn be n independent random variables such that for
every i, Zi ∈ [0, D], for D > 0, and E[

∑
i Zi] = µ. Then, for any a > 0, we have that

P

[∑
i

Zi > a

]
≤ e−(a−2µ)/D.

We use the lemma for variables Zi = χ[i ∈ Ij,u] · χ[hj,u(i) = v′] · ‖xi‖X , where i ∈ Ll. To
get a bound D on each Zi, observe that, for i ∈ Ll, we have

‖xi‖X ≤ Tj+log logn = Tj/2
log logn = Tj/ log n .

We also have an upper bound on the expected sum of

µ = E[
∑
j∈Ll

Zi] ≤ Tj/(20w)

by summing up the bound in Equation (2.3) over all ` levels. Thus, applying Lemma 11, we
obtain

P

∑
i∈Ll

χ[i ∈ Ij,u] · χ[hj,u(i) = v′] · ‖xi‖X > (0.1)Tj

 ≤ e−(0.1−1/(10w))Tj/(Tj/ logn)

< e−0.05 logn = n−Ω(1) .

Taking the union bound over all cells, we obtain the same bound on all cells v′ ∈ [w].
We now analyze the behavior of the heavy elements, i.e., elements from the set Lh. We

can bound the expected number of subsampled heavy elements as follows:

E

∑
i∈Lh

χ[i ∈ Ij,u]

 ≤
j+log logn∑

j′=j+2

2j
′

 pj < 2j+log logn+1 · 2−j

40`
=

log n

20`
≤ O(1).

19

Applying the Hoeffding bound from above, we obtain

P

∑
i∈Lh

χ[i ∈ Ij,u] > log n

 ≤ e−Ω(logn) = n−Ω(1).

Thus, w.h.p., no more than log n heavy elements are subsampled. Given this, we can
further bound the probability that any two of them hash into the same cell via a union
bound by (

log n

2

)
/w ≤ log2 n

2w
.

To conclude, with probability at least

1− log2 n

2w
− n−Ω(1) > 1− log2 n

w
,

no cell receives a contribution of more than 0.1Tj from the light elements or more than Tj/2
from the heavy elements, for a total of 0.6Tj , as required.

We are now ready to prove Lemmas 8 and 9.

Proof of Lemma 8. Fix an important j ∈ J . For each hash table H(j,u), for u ∈ [t], let Aj,u
denote the event that (j, u) is an accepting pair. Define the following two events:

E1: exactly one element of Lj is subsampled in Ij,u, and

E2: no element from Lj′ is subsampled in Ij,u, for all j′ < j and j′ = j + 1.

We will prove the following claim.

Claim 12. For fixed u ∈ [t], if E1 and E2 hold, then Aj,u occurs with probability at least
1/2. Moreover, E1 and E2 occur simultaneously with probability at least 1

2sjpj.

Proof of Claim 12. To prove the first part, assume E1 and E2 hold. Let i∗ be the the element
in Ij,u ∩Lj (guaranteed to be unique by E1), and let v∗ be the cell that contains element i∗.
First, we note that, using the triangle inequality in X and the Noise Lemma 10, we have

‖H(j,u)
v∗ ‖X ≥ ‖xi∗‖X −

∑
i∈Ij,u\{i∗}

χ[hj,u(i) = v∗] · ‖xi‖X > Tj − 0.1Tj = 0.9Tj ,

and
‖H(j,u)

v∗ ‖X ≤ ‖xi∗‖X +
∑

i∈Ij,u\{i∗}

χ[hj,u(i) = v∗] · ‖xi‖X ≤ 2.1Tj ,

with probability at least 1− 1/(2w) ≥ 3/4. Furthermore, for every other cell v 6= v∗, we have
that, similarly to the above:

max
v 6=v∗

‖H(j,u)
v ‖X ≤ max

v 6=v∗

∑
i∈Ij,u

χ[hj,u(i) = v] · ‖xi‖X ≤ 0.6Tj

with probability at least 1 − log2 n/w ≥ 3/4. Thus, all three hold at the same time with
probability at least 1/2, in which case Aj,u occurs.

20

Next we show that E1 and E2 hold with probability at least 1
2sjpj . We have

P[E1] = sjpj(1− pj)sj−1 ≥ sjpj(1− sjpj) ≥ 2
3sjpj ,

where we use the fact that sj ≤ 2j = 1
40`pj

. To estimate P[E2], we first consider all j′ < j.

We can bound the probability that anything from
⋃
j′<j Lj′ is subsampled by

P

⋃
j′<j

Lj′ ∩ Ij,u 6= ∅

 ≤∑
j′<j

sj′pj ≤
∑
j′<j

2j
′
pj < 2jpj =

1

40`
.

Similarly, we have

P[Lj+1 ∩ Ij,u 6= ∅] ≤ sj+1pj ≤
1

20`
.

Thus we obtain P[E2] ≥ 1− 1
10` .

Note that E1 and E2 are indendent events since they concern different levels. We can
therefore conclude that

P[E1 ∧ E2] = P[E1] · P[E2] ≥ 2
3sjpj

(
1− 1

10`

)
≥ 1

2sjpj ,

which finishes the proof of Claim 12.

We now complete the proof of Lemma 8. We can lower bound the probability of Aj,u as
follows:

P[Aj,u] ≥ P[Aj,u ∧ E1 ∧ E2] = P[Aj,u | E1 ∧ E2] · P[E1 ∧ E2] ≥ 1
4sjpj .

Now, we can finally analyze the estimate s̃j of the size of the set Lj . Since s̃j =
cj
t ·

1
pj

, we

will lower bound cj . Observe that

E[cj] = tP[Aj,u] ≥ t

4
sjpj ≥

t

4
· 2j

8γ`
· 2−j

40`
≥ Ω(log n).

A standard application of the Chernoff bound suffices to conclude that cj ≥ t
8sjpj , w.h.p.,

and thus

s̃j =
cj
t ·

1
pj
≥ 1

8sjpj ·
1

pj
= 1

8sj ,

also w.h.p. This concludes the proof of Lemma 8.

We now prove Lemma 9 which upper-bounds the estimate s̃j .

Proof of Lemma 9. First, fix any important j, and consider any particular hash table H(j,u).
As before, let Aj,u denote the event that (j, u) is an accepting pair, and define the following
new event:

E3: at least one element of Lj−1 ∪ Lj ∪ Lj+1 is subsampled.

Claim 13. If E3 does not occur, Aj,u holds with probability at most pj

(
2j

8γ`

)
. Moreover, E3

holds with probability at most pj(sj−1 + sj + sj+1).

21

Proof. For the first part, we prove that, with probability at least 1 − pj

(
2j

8γ`

)
, no cell of

H(j,u) can have a norm that is in the accepting range of (0.9Tj , 2.1Tj]. A cell v of H(j,u) may
have a norm in the accepting range only when one of the following occurs: (1) more than one
element from L≤j−2 falls into v, or (2) the noise in v from elements in L≥j+2 exceeds 0.6Tj .
In particular, if neither (1) nor (2) hold, then either v contains no element from L≥j+2, in

which case ‖H(j,u)
v ‖X ≤ 0.6Tj ≤ 0.9Tj , or v contains exactly one element from L≥j+2, in

which case ‖H(j,u)
v ‖X > 4Tj − 0.6Tj > 2.1Tj .

Now, the probability that (2) holds for any cell v is at most log2 n
w by the Noise Lemma 10.

It remains to bound the probability of (1). We note that expected number of subsampled
elements from L≤j−2 is upper bounded by 2jpj ≤ O(1). Thus, with high probability, at most
log n of the elements in L≤j−2 appear in Ij,u. Furthermore, these log n elements collide with

probability at most log2 n
2w . It follows that the probability that (1) holds for any cell v is at

most log2 n
w .

Thus, we have that

P[Aj,u | E3] ≤ 2 · log2 n

w
≤ pj

(
2j

8γ`

)
=

1

320γ`2
.

For the second part, we need to bound P[E3]. But this follows from a simple union bound
over all elements in Lj−1 ∪ Lj ∪ Lj+1.

We can now finish the proof of the lemma. From the above claim, we obtain the following
bound on the probability of an accepting pair:

P[Aj,u] ≤ P[Aj,u | E3] + P[E3] ≤ pj
(
sj−1 + sj + sj+1 +

2j

8γ`

)
,

We can now upper bound the estimate s̃j :

E[s̃j] =

∑
u P[Aj,u]

t
· 1

pj
≤
(
sj−1 + sj + sj+1 +

2j

8γ`

)
.

Again, by the Chernoff bound, s̃j ≤ 2
(
sj−1 + sj + sj+1 + 2j

8γ`

)
w.h.p. This completes the

proof of Lemma 9.

2.2 Sketching EMD

We now prove our main Theorem 1. As mentioned in the introduction, its main ingredient
is Theorem 5.

Proof of Theorem 1. The sketch Φ consists of two parts. The first part is just a linear map
f of planar EMD into `1 as in [Cha02, IT03], that approximates the EMD distance up to
γ = O(log ∆) approximation.

The second part is a collection of O(log ∆) sketches νi. Each νi is a composition of two

linear maps: the map Φ(i) = 〈Φ(i)
1 , . . . ,Φ

(i)
T 〉 obtained from an application of Fact 4 and a

sketch ϕi obtained from an application of the Theorem 5. Specifically, for i ≤ log ∆, the

22

sketch ϕi is given by the Theorem 5 for M = 2i, n = T , and γ as defined above. The final
sketch is then the following linear map:

Φ = 〈f, ϕ1 ◦ Φ(1), . . . , ϕlog ∆ ◦ Φ(log ∆)〉.

The reconstruction algorithmA works in a straightforward manner. Given sketches Φx(A)
and Φx(B), compute first a γ-approximation to EMD(A,B) using the map f . Then, use the

corresponding map νi = ϕi◦Φ(i) to compute the estimate
∑

j ‖Φ
(i)
j (x(A)−x(B))‖EEMD. This

estimate is an O(1/ε) approximation to EMD(A,B) by Fact 4, completing our proof.

23

Chapter 3

Lower Bounds for Sparse Recovery

Background

There have been a number of earlier works that have, directly or indirectly, shown lower
bounds for various models of sparse recovery and certain classes of matrices and algorithms.
For example, one of the most well-known recovery algorithms used in compressed sensing is
`1-minimization, where a signal x ∈ Rn measured by matrix Φ is reconstructed as

x̂ := arg min
x′: Φx′=Φx

‖x′‖1.

Kashin and Temlyakov [KT07] (building on prior work on Gelfand width [GG91, Glu84,
Kas98], see also [Don06]) gave a characterization of matrices Φ for which the above recovery
algorithm yields the `2/`1 guarantee, i.e.,

‖x− x̂‖2 ≤ Ck−1/2 min
k-sparse x′

‖x− x′‖1

for some constant C, from which it can be shown that such an Φ must have m = Ω(k log(n/k))
rows.

The results on Gelfand width can be also used to obtain lower bounds for general recovery
algorithms (for the deterministic recovery case), as long as the sparsity parameter k is larger
than some constant. This was explicitly stated in [FPRU10], see also [Don06].

On the other hand, instead of assuming a specific recovery algorithm, Wainwright [Wai07]
assumes a specific (randomized) measurement matrix. More specifically, the author assumes
a k-sparse binary signal x ∈ {0, α}n, for some α > 0, to which is added i.i.d. standard
Gaussian noise in each component. The author then shows that with a random Gaussian
matrix Φ, with each entry also drawn i.i.d. from the standard Gaussian, we cannot hope to
recover x from Φx with any sub-constant probability of error unless Φ has m = Ω(1

α2 log n
k)

rows. The author also shows that for α =
√

1/k, this is tight, i.e., that m = Θ(k log(n/k))
is both necessary and sufficient. Although this is only a lower bound for a specific (random)
matrix, it is a fairly powerful one and provides evidence that the often observed upper bound
of O(k log(n/k)) is likely tight.

More recently, Dai and Milenkovic [DM08], extending on [EG88] and [FR99], showed
an upper bound on superimposed codes that translates to a lower bound on the number of
rows in a compressed sensing matrix that deals only with k-sparse signals but can tolerate
measurement noise. Specifically, if we assume a k-sparse signal x ∈ ([−t, t] ∩ Z)n, and that

24

arbitrary noise ν ∈ Rn with ‖ν‖1 < d is added to the measurement vector Φx, then if
exact recovery is still possible, Φ must have had m ≥ Ck log n/ log k rows, for some constant
C = C(t, d) and sufficiently large n and k.1

Main Results

We address two types of recovery schemes:

• A deterministic one, which involves a fixed matrix Φ and a recovery algorithm which
works for all signals x. The aforementioned results of [CRT06] and others are examples
of such schemes.

• A randomized one, where the matrix Φ is chosen at random from some distribution,
and for each signal x (the choice of Φ is independent of x) the recovery procedure is
correct with constant probability (say, 3/4). Some of the early schemes proposed in the
data stream literature (e.g., [CCFC02, CM05]) belong to this category.

Our main result is the following lower bound even in the stronger randomized case.

Theorem 14. For any randomized sparse recovery algorithm (Φ,R), with the `1/`1, `2/`2 or
`2/`1 guarantee and approximation factor C = O(1), Φ must have m = Ω(k log(n/k)) rows.

By the aforementioned results of [CRT06, BGI+08, GLPS10] this bound is tight.

Techniques

For simplicity of exposition we first restrict ourselves to the `1/`1 case. Mostly technical
modifications yield the result for the `2/`2 and `2/`1 cases.

At a high level, our approach is simple and natural, and utilizes the packing approach:
we show that any two “sufficiently” different vectors x and x′ are mapped to images Φx
and Φx′ that are “sufficiently” different themselves, which requires that the image space is
“sufficiently” high-dimensional. However, the actual arguments are somewhat subtle.

Consider first the (simpler) deterministic case. We focus on signals x = y + z, where y
can be thought of as the “head” of the signal and z as the “tail”. The “head” vectors y come
from a set Y that is a binary error-correcting code, with a minimum distance Ω(k), where
each code word has Hamming weight k. On the other hand, the “tail” vectors z come from
an `1 ball (denote B) with a radius that is a small fraction of k. It can be seen that for any
two elements y, y′ ∈ Y , the balls y +B and y′ +B, as well as their images under Φ, must be
disjoint. At the same time, since all vectors x live in a “large” `1 ball B′ of radius O(k), all
images Φx must live in a set ΦB′. The key observation is that the set ΦB′ is a scaled version
of Φ(y+B) and therefore the ratios of their volumes can be bounded by the scaling factor to
the power of the dimension m. Since the number of elements of Y is large, this gives a lower
bound on m.

Unfortunately, the aforementioned approach does not seem to extend to the randomized
case. A natural approach would be to use Yao’s principle, and focus on showing a lower
bound for a scenario where the matrix Φ is fixed while the vectors x = y + z are “random”.

1Here Φ is assumed to have its columns normalized to have `1-norm 1. This is natural since otherwise we
could simply scale Φ up to make the image points Φx arbitrarily far apart, effectively nullifying the noise.

25

However, this approach fails, in a very strong sense. Specifically, we are able to show that
there is a distribution over matrices Φ with only O(k) rows such that for a fixed y ∈ Y and z
chosen uniformly at random from the small ball B, we can recover y from Φ(y+ z) with high
probability. In a nutshell, the reason is that a random vector from B has an `2 norm that is
much smaller than the `2 norm of elements of Y (even though the `1 norms are comparable).
This means that the vector x is “almost” k-sparse in the `2 norm, which enables us to achieve
the O(k) measurement bound.

Instead, we resort to an altogether different approach, via communication complexity [KN97].
We start by considering a “discrete” scenario where both the matrix Φ and the vectors x
have entries restricted to the polynomial range {−nc, . . . , nc} for some c = O(1). In other
words, we assume that the matrix and vector entries can be represented using O(log n)
bits. In this setting we show the following: there is a method for encoding a sequence of
d = O(k log(n/k) log n) bits into a vector x, so that any sparse recovery algorithm can re-
cover that sequence given Φx. Since each entry of Φx conveys only O(log n) bits, it follows
that the number m of rows of Φ must be Ω(k log(n/k)).

The encoding is performed by taking

x =

logn∑
j=1

Djyj ,

where D = O(1) and the yj ’s are chosen from the error-correcting code Y defined as in the
deterministic case. The intuition behind this approach is that a good `1/`1 approximation to
x reveals most of the bits of ylogn. This enables us to identify ylogn exactly using error correc-

tion. We could then compute Φx − Φylogn = Φ(
∑logn−1

j=1 Djyj), and identify ylogn−1, . . . , y1

in a recursive manner. The only obstacle to completing this argument is that we would need
the recovery algorithm to work for all yi, which would require lower probability of algorithm
failure (roughly 1/ log n). To overcome this problem, we replace the encoding argument by
a reduction from a related communication complexity problem called Augmented Indexing.
This problem has been used in the data stream literature [CW09, KNW10] to prove lower
bounds for linear algebraic and norm estimation problems. Since the problem has communi-
cation complexity of Ω(d), the conclusion follows.

We apply the argument to arbitrary matrices Φ by representing them as a sum Φ′ + Φ′′,
where Φ′ has O(log n) bits of precision and Φ′′ has “small” entries. We then show that
Φ′x = Φ(x+σ) for some σ with ‖σ‖1 < n−Ω(1) ‖x‖1. In the communication game, this means

we can transmit Φ′x and recover ylogn from Φ′(
∑logn

j=1 D
jyj) = Φ(

∑logn
j=1 D

jyj + σ).
One catch is that σ depends on Φ. The recovery algorithm is guaranteed to work with

probability 3/4 for any x, but the choice of Φ must be independent of x. There is no guarantee
about recovery of x+σ when σ depends on Φ (even if σ is tiny). To deal with this, we choose
a u uniformly from the `1 ball of radius k. We can set ‖σ‖1 � k/n, so x+u and x+u+σ are
distributions with o(1) statistical distance. Hence recovery from Φ(x+u+σ) matches recovery
from Φ(x + u) with probability 1 − o(1), and ‖u‖1 is small enough that successful recovery
from Φ(x+u) identifies ylogn. Hence we can recover ylogn from Φ(x+u+σ) = Φ′x+Φu with
probability 3/4 − o(1) > 2/3, which means that the Augmented Indexing reduction applies
to arbitrary matrices as well.

26

Preliminaries

In this chapter we consider the following types of recovery guarantees: the `p/`p guarantee,
for p = 1 or 2, is that the recovered x̂ satisfies

‖x− x̂‖p ≤ C min
k-sparse x′

∥∥x− x′∥∥
p

for constant C, and the `2/`1 guarantee is that x̂ satisfies

‖x− x̂‖2 ≤ Ck
−1/2 min

k-sparse x′

∥∥x− x′∥∥
1
,

also for constant C.
We will denote a sparse recovery algorithm by a pair (Φ,R), where Φ is an m × n mea-

surement matrix (or, in the randomized case, a random variable with a distribution over such
matrices) and R is a recovery algorithm that, for any signal x ∈ Rn, maps Φx (called the
sketch of x) to some x̂ satisfying one of the above recovery guarantees (in the randomized
case, with probability at least 3/4).

We use Bn
p (r) to denote the `p ball of radius r in Rn; we skip the superscript n if it is

clear from the context.

3.1 Deterministic Lower Bound

We begin by proving a lower bound on m for any C-approximate deterministic recovery
algorithm. First we use a discrete volume bound (Lemma 15) to find a large set Y of points
that are at least k apart from each other. Then we use another volume bound (Lemma 16)
on the images of small `1 balls around each point in Y . The idea is that if m is too small,
some two images overlap. But the recovery algorithm, applied to a point in the collision,
must yield an answer close to two points in Y . This is impossible, so m must be large.

Lemma 15. (Gilbert-Varshamov) For any q, k ∈ N, ε > 0 and ε < 1 − 1/q, there exists
a set Y ⊆ {0, 1}qk of binary vectors with exactly k ones each, such that vectors in Y have
minimum Hamming distance 2εk and

log |Y | > (1−Hq(ε))k log q,

where Hq is the q-ary entropy function Hq(x) = −x logq
x
q−1 − (1− x) logq(1− x).

Proof. We will construct a code book X of block length k, alphabet q, and minimum Ham-
ming distance εk. Replacing each character i with the q-long standard basis vector ei will
create a binary qk-dimensional code book Y with minimum Hamming distance 2εk of the
same size as X, where each element of Y has exactly k ones.

The Gilbert-Varshamov bound, based on volumes of Hamming balls, states that a code
book of size L exists for some

L ≥ qk∑εk−1
i=0

(
k
i

)
(q − 1)i

.

We claim (analogous to [vL98], p. 21, proven below) that for ε < 1− 1/q,

εk∑
i=0

(
k

i

)
(q − 1)i < qHq(ε)k.

27

It would follow that logL > (1−Hq(ε))k log q, as desired.
To prove the claim, note that

q−Hq(ε) =

(
ε

(q − 1)(1− ε)

)ε
(1− ε) < (1− ε).

Then

1 = (ε+ (1− ε))k

>
εk∑
i=0

(
k

i

)
εi(1− ε)k−i

=
εk∑
i=0

(
k

i

)
(q − 1)i

(
ε

(q − 1)(1− ε)

)i
(1− ε)k

>

εk∑
i=0

(
k

i

)
(q − 1)i

(
ε

(q − 1)(1− ε)

)εk
(1− ε)k

= q−Hq(ε)k
εk∑
i=0

(
k

i

)
(q − 1)i.

Lemma 16. Take an m × n real matrix Φ, positive reals ε, p, λ, and Y ⊂ Bn
p (λ). If |Y | >

(1 + 1/ε)m, then there exist z, z ∈ Bn
p (ελ) and y, y ∈ Y with y 6= y and Φ(y + z) = Φ(y + z).

Proof. If the statement is false, then the images of all |Y | balls y + Bn
p (ελ), for y ∈ Y ,

are disjoint. However, those balls all lie within Bn
p ((1 + ε)λ) since Y ⊆ Bn

p (λ). A volume
argument gives the result, as follows.

Let P = ΦBn
p (1) be the image of the n-dimensional ball of radius 1 in m-dimensional

space. This is a polytope with some volume V . The image of Bn
p (ελ) is a linearly scaled

P with volume (ελ)mV , and the volume of the image of Bn
p ((1 + ε)λ) is again similar with

volume ((1+ ε)λ)mV . If the images of the small balls y+Bn
p (ελ) are all disjoint and lie inside

the image of the big ball Bn
p ((1 + ε)λ), we have

|Y | (ελ)mV ≤ ((1 + ε)λ)mV,

or |Y | ≤ (1+1/ε)m. If Y has more elements than this, the images of some two balls y+Bn
p (ελ)

and y +Bn
p (ελ) must intersect, implying the lemma.

Theorem 17. For any deterministic sparse recovery algorithm (Φ,R) with the `1/`1 guar-
antee and approximation factor C, Φ must have

m ≥
1−Hbn/kc(1/2)

log(4 + 2C)
k log

⌊n
k

⌋
rows.

28

Proof. Let Y be a maximal set of k-sparse n-dimensional binary vectors with minimum
Hamming distance k, and let ε = 1/(3 + 2C). By Lemma 15 with q = bn/kc we have
log |Y | > (1−Hbn/kc(1/2))k log bn/kc.

Suppose that the theorem is not true; then

m <
log |Y |

log(4 + 2C)
=

log |Y |
log(1 + 1/ε)

,

or |Y | > (1 + 1
ε)
m. Hence Lemma 16 gives us some y, y ∈ Y and z, z ∈ B1(εk) with

Φ(y + z) = Φ(y + z).
Let x̂ be the result of running the recovery algorithm on Φ(y + z). By the definition of a

deterministic recovery algorithm, we have

‖y + z − x̂‖1 ≤ C min
k-sparse x′

∥∥y + z − x′
∥∥

1

⇒‖y − x̂‖1 − ‖z‖1 ≤ C ‖z‖1
⇒‖y − x̂‖1 ≤ (1 + C) ‖z‖1 ≤ (1 + C)εk = 1+C

3+2C k,

and similarly ‖y − x̂‖1 ≤
1+C
3+2C k, so

‖y − y‖1 ≤ ‖y − x̂‖1 + ‖y − x̂‖1 =
2 + 2C

3 + 2C
k < k.

But this contradicts the definition of Y , so m must be large enough for the guarantee to
hold.

Corollary 18. For C = O(1), m = Ω(k log(n/k)).

3.2 Randomized Upper Bound for Uniform Noise

The standard way to prove a randomized lower bound is to find a distribution of hard inputs,
and to show that any deterministic algorithm is likely to fail on that distribution. In our
context, we would like to define a “head” random variable y from a distribution Y and a
“tail” random variable z from a distribution Z, such that any algorithm given the sketch of
y + z must recover an incorrect y with non-negligible probability.

Using our deterministic bound as inspiration, we could take Y to be uniform over a set
of k-sparse binary vectors of minimum Hamming distance k and Z to be uniform over the
ball B1(εk) for some constant ε > 0. Unfortunately, as the following theorem shows, one can
actually perform a recovery of such vectors using only O(k) measurements; this is because
‖z‖2 is very small (namely, Õ(k/

√
n)) with high probability.

Theorem 19. Let Y ⊆ Rn be a set of signals with the property that for every distinct y, y ∈ Y ,
‖y − y‖2 ≥ α, for some parameter α > 0. Consider “noisy signals” x = y + z, where y ∈ Y
and z is a “noise vector” chosen uniformly at random from B1(β), for another parameter
β > 0. Then using an m×n Gaussian measurement matrix Φ = (1/

√
m)(gij), where gij’s are

i.i.d. standard Gaussians, we can recover any y ∈ Y from Φ(y + z) with probability 1− 1/n
(where the probability is over both Φ and z), as long as

β ≤ O

(
αm1/2n1/2−1/m

|Y |1/m log3/2 n

)
.

29

To prove the theorem we will need the following two lemmas.

Lemma 20. For any δ > 0, y, y ∈ Y , y 6= y, and z ∈ Rn, each of the following holds with
probability at least 1− δ:

• ‖Φ(y − y)‖2 ≥ δ1/m

3 ‖y − y‖2, and

• ‖Φz‖2 ≤ (
√

(8/m) log(1/δ) + 1)‖z‖2.

Proof. By standard arguments (see, e.g., [IN07]), for any D > 0 we have

P
[
‖Φ(y − y)‖2 ≤

‖y − y‖2
D

]
≤
(

3

D

)m
and

P[‖Φz‖2 ≥ D‖z‖2] ≤ e−m(D−1)2/8.

Setting both right-hand sides to δ yields the lemma.

Lemma 21. A random vector z chosen uniformly from B1(β) satisfies, for any γ > 1,

P[‖z‖2 > γβ log n/
√
n] < 1/nγ−1.

Proof. Consider the distribution of a single coordinate of z, say, z1. The probability density

of |z1| taking value t ∈ [0, s] is proportional to the (n−1)-dimensional volume of B
(n−1)
1 (s−t),

which in turn is proportional to (s− t)n−1. Normalizing to ensure the probability integrates
to 1, we derive this probability as

p(|z1| = t) =
n

sn
(s− t)n−1.

It follows that, for any D ∈ [0, s],

P[|z1| > D] =

∫ s

D

n

sn
(s− t)n−1 dt = (1−D/s)n.

In particular, for any α > 1,

P[|z1| > αs log n/n] = (1− α log n/n)n < e−α logn = 1/nα.

Now, by symmetry this holds for every other coordinate zi of z as well, so by the union bound

P[‖z‖∞ > αs log n/n] < 1/nα−1.

Since ‖z‖2 ≤
√
n‖z‖∞ for any vector z, the lemma follows.

Proof of Theorem 19. Lemma 20 says that Φ cannot bring faraway signals too close together,
and cannot blow up a small noise vector too much. Now, we already assumed the signals to
be far apart, and Lemma 21 tells us that the noise is indeed small (in `2 distance). The result
is that in the image space, the noise is not enough to confuse different signals. Quantitatively,
applying the second part of Lemma 20 with δ = 1/n2, and Lemma 21 with γ = 3, gives us

‖Φz‖2 ≤ O

(
log1/2 n

m1/2

)
‖z‖2 ≤ O

(
β log3/2 n

(mn)1/2

)
(3.1)

30

with probability at least 1−2/n2. On the other hand, given signal y ∈ Y , we know that every
other signal y ∈ Y satisfies ‖y−y‖2 ≥ α, so by the first part of Lemma 20 with δ = 1/(2n|Y |),
together with a union bound over every y ∈ Y ,

‖Φ(y − y)‖2 ≥
‖y − y‖2

3(2n|Y |)1/m
≥ α

3(2n|Y |)1/m
(3.2)

holds for every y ∈ Y , y 6= y, simultaneously with probability 1− 1/(2n).
Finally, observe that as long as ‖Φz‖2 < ‖Φ(y− y)‖2/2 for every competing signal y ∈ Y ,

we are guaranteed that

‖Φ(y + z)− Φy‖2 = ‖Φz‖2
< ‖Φ(y − y)‖2 − ‖Φz‖2
≤ ‖Φ(y + z)− Φy‖2

for every y 6= y, so we can recover y by simply returning the signal whose image is closest
to our measurement point Φ(y + z) in `2 distance. To achieve this, we can chain Equations
(3.1) and (3.2) together (with a factor of 2), to see that

β ≤ O

(
αm1/2n1/2−1/m

|Y |1/m log3/2 n

)

suffices. Our total probability of failure is at most 2/n2 + 1/(2n) < 1/n.

The main consequence of this theorem is that for the setup we used in Section 3.1 to prove
a deterministic lower bound of Ω(k log(n/k)), if we simply draw the noise uniformly randomly
from the same `1 ball (in fact, even one with a much larger radius, namely, polynomial in n),
this “hard distribution” can be defeated with just O(k) measurements:

Corollary 22. If Y is a set of binary k-sparse vectors, as in Section 3.1, and noise z is
drawn uniformly at random from B1(β), then for any ε > 0, m = O(k/ε) measurements
suffice to recover any signal in Y with probability 1− 1/n, as long as

β ≤ O

(
k3/2+εn1/2−ε

log3/2 n

)
.

Proof. The parameters in this case are α = k and |Y | ≤
(
n
k

)
≤ (ne/k)k, so by Theorem 19, it

suffices to have

β ≤ O

(
k3/2+k/mn1/2−(k+1)/m

log3/2 n

)
.

Choosing m = (k + 1)/ε yields the corollary.

3.3 Randomized Lower Bound

Although it is possible to partially circumvent this obstacle by focusing our noise distribution
on “high” `2 norm, sparse vectors, we are able to obtain stronger results via a reduction from
a communication game and the corresponding lower bound.

31

The communication game will show that a message Φx must have a large number of bits.
To show that this implies a lower bound on the number of rows of Φ, we will need Φ to be
discrete. Hence we first show that discretizing Φ does not change its recovery characteristics
by much.

3.3.1 Discretizing Matrices

Before we discretize by rounding, we need to ensure that the matrix is well conditioned. We
argue that without loss of generality, the rows of Φ are orthonormal.

We can multiply Φ on the left by any invertible matrix to get another measurement
matrix with the same recovery characteristics. Consider the singular value decomposition
Φ = UΣV ∗, where U and V are orthonormal and Σ is 0 off the diagonal. We can eliminate U
and make the entries of Σ be either 0 or 1. The result is a matrix consisting of m orthonormal
rows. For such matrices, we prove the following:

Lemma 23. Consider any m × n matrix Φ with orthonormal rows. Let Φ′ be the result
of rounding Φ to b bits per entry. Then for any v ∈ Rn, there exists an σ ∈ Rn with
Φ′v = Φ(v − σ) and ‖σ‖p < n22−b ‖v‖p, for p = 1 and 2.

Proof. Let Φ′′ = Φ− Φ′ be the roundoff error when discretizing Φ to b bits, so each entry of
Φ′′ is less than 2−b. Then for σ = ΦTΦ′′v, we have Φσ = Φ′′v and

‖σ‖p =
∥∥ΦTΦ′′v

∥∥
p
≤ n

∥∥Φ′′v
∥∥
p
≤ mn2−b ‖v‖p ≤ n

22−b ‖v‖p .

3.3.2 Communication Complexity

We use a few definitions and results from two-party communication complexity. For further
background see the book by Kushilevitz and Nisan [KN97]. Consider the following commu-
nication game. There are two parties, Alice and Bob. Alice is given a string a ∈ {0, 1}d. Bob
is given an index i ∈ [d], together with ai+1, ai+2, . . . , ad. The parties also share an arbitrar-
ily long common random string ρ. Alice sends a single message M(a, ρ) to Bob, who must
output ai with probability at least 2/3, where the probability is taken over ρ. We refer to
this problem as Augmented Indexing. The communication cost of Augmented Indexing is the
minimum, over all correct protocols, of the length of the message M(a, ρ) on the worst-case
choice of ρ and a.

The next theorem is well-known and follows from Lemma 13 of [MNSW98] (see also
Lemma 2 of [BJKK04]).

Theorem 24. The communication cost of Augmented Indexing is Ω(d).

Proof. First, consider the private-coin version of the problem, in which both parties can
toss coins, but do not share a random string ρ (i.e., there is no public coin). Consider any
correct protocol for this problem. We can assume the probability of error of the protocol
is an arbitrarily small positive constant by increasing the length of Alice’s message by a
constant factor (e.g., by independent repetition and a majority vote). Applying Lemma 13
of [MNSW98] (with, in their notation, t = 1 and a = c′d for a sufficiently small constant
c′ > 0), the communication cost of such a protocol must be Ω(d). Indeed, otherwise there

32

would be a protocol in which Bob could output ai with probability greater than 1/2 without
any interaction with Alice, contradicting the fact that Bob has no information about ai. The
theorem then follows from Newman’s theorem (see, e.g., Theorem 2.4 of [KNR99]), which
states that the communication cost of the best public coin protocol is at least that of the
private coin protocol minus O(log d).

3.3.3 Lower Bound Theorem for `1/`1

We can now prove the chapter’s main result. We will first prove the theorem under the `1/`1
guarantee, then point out the modifications necessary to obtain the `2/`2 and `2/`1 cases.

Proof of Theorem 14 under `1/`1 guarantee. We shall assume, without loss of generality, that
n and k are powers of 2 and that the rows of Φ are orthonormal. The proof for the general
case follows with minor modifications.

Let (Φ,R) be such a recovery algorithm. We will show how to solve Augmented Index-
ing on instances of size d = Ω(k log(n/k) log n) with communication cost O(m log n). The
theorem will then follow by Theorem 24.

Let Y be a maximal set of k-sparse n-dimensional binary vectors with minimum Hamming
distance k. From Lemma 15 we have log |Y | = Ω(k log(n/k)). Let d = blog |Y |c log n, and
define D = 2C + 3.

Alice is given a string a ∈ {0, 1}d, and Bob is given i ∈ [d] together with ai+1, ai+2, . . . , ad,
as in the setup for Augmented Indexing. Alice splits her string a into log n contiguous chunks
a1, a2, . . . , alogn, each containing blog |Y |c bits. She uses aj as an index into Y to choose yj .
Alice defines

x = D1y1 +D2y2 + · · ·+Dlognylogn.

Alice and Bob use the common randomness ρ to agree upon a random matrix Φ with orthonor-
mal rows. Both Alice and Bob round Φ to form Φ′ with b = d(4 + 2 logD) log ne = O(log n)
bits per entry. Alice computes Φ′x and transmits it to Bob.

From Bob’s input i, he can compute the value j = j(i) for which the bit ai occurs in aj .
Bob’s input also contains ai+1, . . . , an, from which he can reconstruct yj+1, . . . , ylogn, and in
particular can compute

z = Dj+1yj+1 +Dj+2yj+2 + · · ·+Dlognylogn.

Set w = x − z =
∑j

i=1D
iyi. Bob then computes Φ′z, and using Φ′x and linearity, Φ′w.

Observe that

‖w‖1 ≤
j∑
i=1

kDi < k
Dj+1

D − 1
< kD2 logn. (3.3)

So from Lemma 23, there exists some σ with Φ′w = Φ(w − σ) and

‖σ‖1 < n22−4 logn−2 logD logn ‖w‖1 < k/n2. (3.4)

Bob chooses another vector u uniformly from Bn
1 (k), the `1 ball of radius k, and computes

Φ(w−σ−u) = Φ′w−Φu. He runs the recovery algorithm R on Φ and Φ(w−σ−u), obtaining
ŵ. We have that u is independent of w and σ, and that ‖u‖1 ≤ k(1− 1/n2) ≤ k− ‖σ‖1 with
probability

Vol(B1(k(1− 1/n2)))

Vol(B1(k))
= (1− 1/n2)n > 1− 1/n.

33

But
{w − u | ‖u‖1 ≤ k − ‖σ‖1} ⊆ {w − σ − u | ‖u‖1 ≤ k},

so the ranges of the random variables w−σ−u and w−u overlap in at least a 1−1/n fraction
of their volumes. Therefore, w− σ− u and w− u have statistical distance at most 1/n. The
distribution of w − u is independent of Φ, so running the recovery algorithm on Φ(w − u)
would work with probability at least 3/4. Hence, with probability at least 3/4 − 1/n ≥ 2/3
(for n large enough), ŵ satisfies the recovery criterion for w − u, meaning

‖w − u− ŵ‖1 ≤ C min
k-sparse w′

∥∥w − u− w′∥∥
1
. (3.5)

Now, ∥∥Djyj − ŵ
∥∥

1
≤

∥∥w − u−Djyj
∥∥

1
+ ‖w − u− ŵ‖1

≤ (1 + C)
∥∥w − u−Djyj

∥∥
1

≤ (1 + C)(‖u‖1 +

j−1∑
i=1

∥∥Diyi
∥∥

1
)

≤ (1 + C)k

j−1∑
i=0

Di

< k · (1 + C)Dj

D − 1

= kDj/2. (3.6)

And since the minimum Hamming distance in Y is k, this means
∥∥Djyj − ŵ

∥∥
1
<
∥∥Djy′ − ŵ

∥∥
1

for all y′ ∈ Y, y′ 6= yj . So Bob can correctly identify yj with probability at least 2/3. From
yj he can recover aj , and hence the bit ai that occurs in aj .

Hence, Bob solves Augmented Indexing with probability at least 2/3 given the message
Φ′x. The entries in Φ′ and x are polynomially bounded integers (up to scaling of Φ′), and
so each entry of Φ′x takes O(log n) bits to describe. Hence, the communication cost of this
protocol is O(m log n). By Theorem 24, m log n = Ω(k log(n/k) log n), or m = Ω(k log(n/k)).

3.3.4 Modifications for `2/`2 and `2/`1

We make the straightforward changes to obtain the `2/`2 result:

Proof of Theorem 14 under `2/`2 guarantee. The protocol for Alice and Bob remains identi-
cal except in two places. First, Bob chooses u from B2(

√
k), the `2 ball of radius

√
k, instead

of B1(k). Second, in the final step, having recovered ŵ, he selects the code word yj such that
Djyj is closest to ŵ in `2-distance instead of `1.

In the analysis, the observation of (3.3) simply becomes ‖w‖2 <
√
kD2 logn, and similarly,

(3.4) becomes ‖σ‖2 <
√
k/n2. The statistical distance between w− σ− u and w− u remains

1/n, so that the ŵ that Bob recovers satisfies the recovery criterion for w−u with probability
at least 2/3. However, this time the `1-norms in (3.5) are replaced by `2-norms. Finally, the
inequality (3.6) becomes

∥∥Djyj − ŵ
∥∥

2
<
√
kDj/2, so that, with code words in Y being a

minimum of
√
k in `2-distance apart, Bob recovers the correct one to get his bit, completing

the protocol.

34

The `2/`1 guarantee requires only slightly trickier modifications:

Proof of Theorem 14 under `2/`1 guarantee. This time we need both an `1 bound and an `2
bound on u, so Bob will simply choose u uniformly from the intersection of the two balls
B1(k) and B2(

√
k). Now, we will have ‖u‖1 ≤ k(1 − 1/n2) ≤ k − ‖σ‖1 and, simultaneously,

‖u‖2 ≤
√
k(1− 1/n2) ≤

√
k − ‖σ‖2, with probability

Vol(B1(k(1− 1/n2)) ∩B2(
√
k(1− 1/n2)))

Vol(B1(k) ∩B2(
√
k))

= (1− 1/n2)n > 1− 1/n,

since the two intersections are still just scaled versions of each other, with a scaling factor of
(1− 1/n2). As before,

{w − u | ‖u‖1 ≤ k − ‖σ‖1 and ‖u‖2 ≤
√
k − ‖σ‖2} ⊆ {w − σ − u | ‖u‖1 ≤ k and ‖u‖2 ≤

√
k},

so w − σ − u and w − u still have statistical distance only 1/n. Note that we have used the
fact Lemma 23 gives us the same σ satisfying ‖σ‖1 < k/n2 and ‖σ‖2 <

√
k/n2.

It follows this time that Bob, running R on Φ(w − σ − u), obtains with probability 2/3
a ŵ satisfying the `2/`1 guarantee:

‖w − u− ŵ‖2 ≤
C√
k

min
k-sparse w′

∥∥w − u− w′∥∥
1
.

Following (3.6), but making use of both bounds on u, we have∥∥Djyj − ŵ
∥∥

2
≤

∥∥w − u−Djyj
∥∥

2
+ ‖w − u− ŵ‖2

≤

(
‖u‖2 +

√
k

j−1∑
i=1

Di

)
+

(
C√
k
‖u‖1 + C

√
k

j−1∑
i=1

Di

)

≤ (1 + C)
√
k

j−1∑
i=0

Di

<
√
kDj/2.

Finally, selecting the code word similarly to the `2/`2 case completes the protocol.

35

Chapter 4

Sparse Recovery with Partial
Support Knowledge

Background

Several formulations utilizing partial support information to improve sparse recovery have
been studied in the literature. In [LV10a], the authors study exact reconstruction when given
a set S very close to the true support of x. Specifically, their recovery guarantee is to return
the approximation x̂ which is sparsest outside S, which they do by solving the corresponding
`1-minimization problem along the lines of [CRT06, Don06]. In [Jac10], the ideas of [LV10a]
are extended to give the following `2/`1-type guarantee:

‖x− x̂‖2 ≤ C‖xS̄ − x(k)‖1 .1

Intuitively, we are being told that the signal is mostly supported by the set S, while it is
k-sparse outside of S. In contrast, in our formulation we target signals that are sparse within
the set S.

In [FMSY10], the authors give the complicated guarantee:

‖x− x̂‖2 ≤ C(ω‖x− x(k)‖1 + (1− ω)‖(x− x(k))S̄‖1),

where 0 ≤ ω ≤ 1 is a parameter. Roughly, the smaller ω is the less we penalize the signal’s
“tail” (the components not among the k largest), as long as it lies mostly inside S.

In [Pri11], the author considers the set-query problem, where essentially full knowledge of
the signal support is assumed. The reconstruction guarantee there can be written as

‖x− x̂‖2 ≤ (1 + ε) min
supp(x′)⊆S

‖x− x′‖2 .

This setting is a special case of SRPSK, namely, where k = s.
Several other works address variants of sparse recovery with partial knowledge of sig-

nal support in some form [KXAH09, vBMP07, LV10c, LV10b], but these had significantly
different model assumptions and/or recovery objectives from ours.

1See Preliminaries for the “xS” and “x(k)” notation.

36

Main Results

In this chapter we will focus only on randomized measurement matrices and the `1/`1 and
`2/`2 guarantees. We first prove the following lower bound on the number of measurements
for any (1 + ε)-approximate solution to SRPSK with either guarantee.

Theorem 25. Any (1 + ε)-approximate solution to SRPSK with the `1/`1 or the `2/`2 guar-
antee requires, for s = O(εn/ log(n/ε)), at least Ω ((k/ε) log(s/k)) measurements.

We then give an algorithm that matches Theorem 25 in the `2/`2 case.

Theorem 26. There exists an (1 + ε)-approximate solution to SRPSK with the `2/`2 guar-
antee, where the measurement matrix Φ has m = O((k/ε) log(s/k)) rows. Moreover, Φ has,
in expectation, O(log2 k log(s/k)) non-zeros per column, and the recovery algorithm R runs
in O(s log2 k + (k/ε) logO(1) s) time.

Techniques

Consider the upper bound first. The general approach of our algorithm is to reduce SRPSK
to the noisy sparse recovery problem (NSR). The latter is a generalization of sparse recovery
where the recovery algorithm is given Φx + ν, where ν is the measurement noise. The
reduction proceeds by representing Φx as ΦxS + ΦxS̄ , and interpreting the second term as
noise. Since the vector xS has dimension s, not n, we can use Φ with only O(k log(s/k))
rows. This yields the desired measurement bound.

To make this work, however, we need to ensure that for any fixed S, the sub-matrix
ΦS of Φ (containing the columns with indices in S) is a valid sparse recovery matrix for s-
dimensional vectors. This would be almost immediate if (as often happens, e.g. [CRT06]) each
column of Φ was an i.i.d. random variable chosen from some distribution: we could simply
sample the n columns of Φ from the distribution parametrized by k and s. Unfortunately,
the algorithm of [GLPS10] (which has the best known dependence on ε) does not have this
independence property; in fact, the columns are highly dependent on each other. However,
we show that it is possible to modify it so that the independence property holds.

Our lower bound argument mimics the approach of Chapter 3. Specifically, fix s and let
α = n/s. We show how to encode α code words y1, . . . , yα, from some code Y containing
2Θ(k log(s/k)) code words, into a vector x, such that a (1+ε)-approximate algorithm for SRPSK
can iteratively decode all yi’s, starting from yα and ending with y1. This implies that one
can “pack” Ω(αk log(s/k)) bits into Φx. Then by showing that each coordinate of Φx yields
only O(εα) bits of information, it follows that Φx has to have Ω((k/ε) log(s/k)) coordinates.

The caveat is that the argument of Chapter 3 applied to the case of when ε is a constant
bounded away from 0 (i.e., ε = Ω(1)). For ε = o(1), use of the triangle inequality prevents
us from strengthening the lower bound by the desired factor of 1/ε. We show that the
formulation of SRPSK avoids this problem. Intuitively, this is because we can choose the
yi’s to have disjoint supports, and SRPSK enables us to restrict sparse approximation to a
particular subset of coordinates. For technical reasons we need to put a restriction on how
big s can be for the full argument to go through.

37

Preliminaries

For positive integer n, let [n] = {1, 2, . . . , n}. For positive integer s ≤ n, let
(

[n]
s

)
denote the

collection of subsets of [n] of cardinality s.
Consider v ∈ Rn, positive integers k ≤ s, and set S ∈

(
[n]
s

)
. Denote by v(k) ∈ Rn the

vector comprising the k largest components of v, breaking ties by some canonical ordering
(say, leftmost-first), and 0 elsewhere. Denote by vS ∈ Rn the vector comprising of components
of v indexed by S, with 0 elsewhere, and denote by vS,k ∈ Rn the vector comprising the k
largest components of v among those indexed by S, with 0 elsewhere.

Let ΠS ∈ Rs×n denote the projection matrix that keeps only components indexed by S
(the dimension n will be clear from context). In particular, ΠSv ∈ Rs consists of components
of v indexed by S, and for any matrix Φ ∈ Rm×n, ΦΠT

S ∈ Rm×s consists of the columns of Φ
indexed by S.

Define the `p/`p sparse recovery with partial support knowledge problem (denoted SRPSKp)
to be the following:

Given parameters (n, s, k, ε), where 1 ≤ k ≤ s ≤ n and 0 < ε < 1, design an algorithm
R and a distribution over matrices Φ ∈ Rm×n, where m = m(n, s, k, ε), such that for any
x ∈ Rn, given Φx and a specified set S ∈

(
[n]
s

)
, R recovers (with knowledge of Φ) a vector

x̂ ∈ Rn such that, with probability 3/4, supp(x̂) ⊆ S and

‖x− x̂‖pp ≤ (1 + ε)‖x− xS,k‖pp .

Define the `p/`p noisy sparse recovery problem (NSRp) to be the following:
Given parameters (n, k, ε), where 1 ≤ k ≤ n and 0 < ε < 1, design an algorithm R and

a distribution over matrices Φ ∈ Rm×n, where m = m(n, k, ε), such that for any x ∈ Rn and
ν ∈ Rm, R recovers from Φx + ν (with knowledge of Φ) a vector x̂ ∈ Rn such that, with
probability 3/4,

‖x− x̂‖pp ≤ (1 + ε)‖x− x(k)‖pp + ε‖ν‖pp .

The distribution of Φ must be “normalized” so that for any v ∈ Rn, E[‖Φv‖p] ≤ ‖v‖p.
For all four problems, we will denote a solution by a pair (Φ,R), where Φ is the measure-

ment matrix and R is the recovery algorithm. For the recovery algorithms of SRPSK1 and
SRPSK2, we will also sometimes indicate the parameter S by a subscript, i.e., RS .

4.1 Lower Bounds

Recall the Augmented Indexing problem from communication complexity, defined in Chap-
ter 3. Making use of Theorem 24 and Lemma 23 from Chapter 3 to lower bound the com-
munication complexity of Augmented Indexing and to discretize any measurement matrix,
respectively, we will now prove our lower bounds for SRPSK1 and SRPSK2.

4.1.1 Lower Bound for `1/`1

Proof of Theorem 25 under `1/`1. For α = n/s, divide [n] into α equal-sized disjoint blocks,
Si for i = 1, . . . , α. For each block Si, we will choose a binary error-correcting code Yi ⊆
{0, 1}n with minimum Hamming distance k, where all the code words have Hamming weight

38

exactly k and support contained in Si. Since |Si| = s = n/α, we know each Yi can be chosen
big enough that

log |Yi| = Θ(k log(n/(αk))) .

Now, we will use any solution to SRPSK1 to design a protocol for Augmented Indexing
with instance size

d = Θ(αk log(n/(αk))) .

The protocol is as follows:
Alice divides her input a into α equal-sized blocks, a1, . . . , aα, each of size

d/α = Θ(k log(n/(αk))) .

Interpreting each block ai as a binary number, she uses it to index into Yi (notice that Yi
has sufficiently many code words for each ai to index a different one), specifying a code word
yi ∈ Yi. She then computes

x = D1y1 +D2y2 + · · ·+Dαyα

for some fixed D dependent on ε. Then, using shared randomness, and following the hypothet-
ical protocol, Alice and Bob agree on a matrix Φ (without loss of generality, with orthonormal
rows), which they both round to Φ′ so that each entry has b bits. Alice computes Φ′x and
sends it to Bob.

Bob, knowing his input i, can compute the j = j(i) for which block aj of Alice’s input
contains i, and hence knows the set Sj supporting block aj . Moreover, he knows aj

′
, and

thereby yj′ , for every j′ > j, so he can compute

z = Dj+1yj+1 + · · ·+Dαyα .

Let w = x−z =
∑j

i=1D
iyi. From Alice’s message, using linearity, he can then compute Φ′w.

Now, similarly to the proof of Theorem 14, by Lemma 23, there must exist some σ ∈ Rn with
Φ′w = Φ(w − σ) and

‖σ‖1 < n22−b‖w‖1 < n22−bkD
j+1

D−1 .

Bob chooses another vector u uniformly from Bn
1 (n42−bkD

j+1

D−1) and computes Φ(w−σ−u) =
Φ′w − Φu. He runs the recovery algorithm R on Φ(w − σ − u), with target support set Sj ,
obtaining ŵ. Now, u is independent of σ, so

‖u‖1 ≤ n
42−bkD

j+1

D−1 − ‖σ‖1

with probability

Vol(B1(n42−bkD
j+1

D−1 − ‖σ‖1))

Vol(B1(n42−bkD
j+1

D−1))
≥ (1− 1/n2)n > 1− 1/n.

Moreover,

{w − u | ‖u‖1 ≤ n
42−bkD

j+1

D−1 − ‖σ‖1} ⊆ {w − u− σ | ‖u‖1 ≤ n
42−bkD

j+1

D−1 },

39

so w−u and w−σ−u have statistical distance at most 1/n. It follows that with probability
2/3, ŵ satisfies the recovery criterion for w − u, namely, that supp(ŵ) ⊆ Sj and

‖w − u− ŵ‖1 ≤ (1 + ε)
∥∥w − u− (w − u)Sj ,k

∥∥
1

≤ (1 + ε)
∥∥w − u−Djyj

∥∥
1

≤ (1 + ε)(kD
j−D
D−1 + ‖u‖1) . (4.1)

Bob then finds the code word in Yj that is closest in `1-distance to ŵ/Dj (which he hopes is
yj) and, looking at the index of that code word within Yj (which he hopes is aj), he returns
the bit corresponding to his index i.

Now, suppose that Bob was wrong. This means he obtained a ŵ that, appropriately scaled,
was closer or equidistant to another code word in Yj than yj , implying that ‖Djyj − ŵ‖1 ≥
kDj/2. Since supp(ŵ) ⊆ Sj and all the yj ’s have disjoint support, we can write

‖w − u− ŵ‖1 ≥ ‖w − ŵ‖1 − ‖u‖1

= k

j−1∑
i=1

Di +
∥∥Djyj − ŵ

∥∥
1
− ‖u‖1

≥ k
(
Dj−D
D−1 +Dj/2

)
− ‖u‖1 . (4.2)

We will show that for appropriate choices of D and b, (4.1) and (4.2) contradict each other,
implying that Bob must have correctly extracted his bit and solved Augmented Indexing. To
this end, it suffices to prove the following inequality:

‖u‖1 <
kDj

3

(
1

2
− ε

D − 1

)
, (4.3)

where we assumed ε < 1 to simplify things.
Let us fix D = 1 + 4ε. (4.3) becomes

‖u‖1 <
k
3 (1 + 4ε)j

(
1

2
− 1

4

)
= k(1 + 4ε)j/12 .

By our choice of u, we know that

‖u‖1 < n42−bkD
j+1

D−1 = n42−bk(1 + 4ε)j+1/(4ε) ,

so we need only choose b large enough that 2b ≥ 3(1 + 4ε)n4/ε, i.e., b = Θ(log(n/ε)) suffices.
Recall that b is the number of bits per component of Φ′, and each component of x can require
up to α logD = O(εα) bits, so the message Φ′x which Alice sends to Bob contains at most
O(m(b+ εα)) = O(m(log(n/ε) + εα)) bits, with which they solve Augmented Indexing with
problem size d = Θ(αk log(n/(αk))). It follows from Theorem 24 that

m = Ω

(
αk log(n/(αk))

log(n/ε) + εα

)
.

Finally, as long as εα = Ω(log(n/ε)), or equivalently, s = n/α = O(εn/ log(n/ε)), this
simplifies to

m = Ω((k/ε) log(s/k)) .

40

4.1.2 Lower Bound for `2/`2

Proof of Theorem 25 under `2/`2. We will only make the modifications necessary to adapt
the proof of the `1/`1 case.

Alice and Bob will follow an almost identical protocol to solve Augmented Indexing (with
the same instance size). The only differences are that, first, he selects u from an `2-ball (of
the same radius) instead of an `1-ball, and second, having recovered ŵ, he picks the code
word that is closes in `2-distance to ŵ/Dj instead of in `1-distance.

In the analysis, we again apply Lemma 23 as before, so that there must exist some σ ∈ Rn
with Φ′w = Φ(w − σ) and

‖σ‖2 ≤ ‖σ‖1 < n22−bkD
j+1

D−1 . (4.4)

The new choice of u still ensures that w − u and w − σ − u have statistical distance at most
1/n. Thus, with probability 2/3, ŵ satisfies the `2/`2 guarantee for w − u, namely, that
supp(ŵ) ⊆ Sj and

‖w − u− ŵ‖2 < (1 + ε) ‖w − u− (w − u)S,k‖2
≤ (1 + ε)

∥∥w − u−Djyj
∥∥

2

≤ (1 + ε)

((
kD

2j−D2

D2−1

)1/2
+ ‖u‖2

)
. (4.5)

Now, if Bob fails to recover yj , it must be that ‖Djyj− ŵ‖2 ≥
√
kDj/2 (since the code words

have minimum `2-distance
√
k). Since supp(ŵ) ⊆ Sj and the yj ’s have disjoint support, we

can write

‖w − u− ŵ‖2 ≥ ‖w − ŵ‖2 − ‖u‖2

=

(
j−1∑
i=1

∥∥Diyi
∥∥2

2
+
∥∥Djyj − ŵ

∥∥2

2

)1/2

− ‖u‖2

≥
√
k
(
D2j−D2

D2−1
+D2j/4

)1/2
− ‖u‖2 . (4.6)

We will show, as before, that for appropriate choices of D and b, (4.5) and (4.6) contradict
each other, implying that Bob must have correctly extracted his bit and solved Augmented
Indexing. To this end, it suffices to prove, after a little algebra and assuming ε < 1,

3k−1/2 ‖u‖2 ≤
(
D2j−D2

D2−1
+D2j/4

)1/2
−
(

(1 + 3ε)D
2j−D2

D2−1

)1/2
. (4.7)

Now, choose D = (1 + 24ε)1/2. Plugging this into (4.7), it remains to prove

3k−1/2 ‖u‖2 <
(

(1+24ε)j−(1+24ε)
24ε + (1+24ε)j

4

)1/2
−
(

(1+24ε)j−(1+24ε)
24ε + (1+24ε)j

8

)1/2
. (4.8)

But, since the square root function
√
· is concave and has derivative 1

2
√
· , we know that, as

long as ε ≤ 1/6, the right-hand side of (4.8) is at least

(1 + 24ε)j

8
· 1

2 ((1 + 24ε)j/(12ε))1/2
=

(1 + 24ε)j/2

8/
√

3ε
.

41

Applying the `2 bound on u, it remains to show

3n42−b
√
k

(1 + 24ε)(j+1)/2

(1 + 24ε)1/2 − 1
<

(1 + 24ε)j/2

8/
√

3ε
,

which reduces to b > Θ(log(n/ε)) as in the SRPSK1 case. The rest of the proof remains
unchanged.

4.2 Upper Bounds

4.2.1 Reductions to Noisy Sparse Recovery

First we prove a general black box reduction from SRPSK1 to NSR1 that works if the solution
to NSR1 has certain additional properties:

Lemma 27. Suppose we have a solution to NSR1 with parameters (n, k, ε), where the m×n
measurement matrix Ψ has m = m(n, k, ε) rows. Suppose in addition that the columns of Ψ
are generated i.i.d. from some distribution. Then there exists a solution (Φ,R) to SRPSK1

with parameters (n, s, k, ε) that uses O(m(s, k,Θ(ε))) measurements. Moreover, if Ψ has, in
expectation, h(n, k, ε) non-zeros per column, and the NSR1 recovery time is t(n, k, ε), then Φ
has, in expectation, O(h(s, k,Θ(ε))) non-zeros, and R runs in O(t(s, k,Θ(ε))) time.

Proof. We construct our solution (Φ,R) to SRPSK1 as follows:

1. Let δ > 0 be a constant to be specified later. Consider an instantiation of the solution
to NSR1 with parameters (s, k, δε), so that its measurement matrix Ψ is m× s, where
m = m(s, k, δε). Generate the n columns of our m × n measurement matrix Φ i.i.d.
from the same distribution used to generated the i.i.d. columns of Ψ (note that the
number of rows m is the same for both Φ and Ψ).

2. Given S ⊆ [n], |S| = s, let R′S denote the recovery algorithm for NSR1 corresponding
to the parameters (s, k, δε) and given the matrix ΦΠT

S (recall that a recovery algorithm
for NSR1 is allowed to behave differently given different instances of the measurement
matrix). Define our recovery procedure RS by RS(·) = ΠT

S (R′S(·)); in words, we run
R′S on our m-dimensional measurement vector to obtain an s-dimensional vector, which
we embed into an n-dimensional vector at positions corresponding to S, filling the rest
with zeros.

Note that the number of non-zeros per column of Φ and the running time of R follow
immediately.

Observe that, thanks to the independence of the columns of Φ, the submatrix comprised
of any s of them (namely, ΦΠT

S) is a valid m × s measurement matrix. Thus we have the
guarantee that for any signal x′ ∈ Rs and noise vector ν ∈ Rm, R′S recovers from ΦΠT

Sx
′ + ν

a vector x̂′ ∈ Rs satisfying, with probability 3/4,

‖x′ − x̂′‖1 ≤ (1 + ε)‖x′ − x′(k)‖1 + δε‖ν‖1 .

Now, let x ∈ Rn be our signal for SRPSK1. We interpret ΠSx ∈ Rs to be the sparse signal
and ΦxS̄ ∈ Rm to be the noise, so that running R′S on ΦΠT

S (ΠSx) + ΦxS̄ returns x̂′ ∈ Rs

42

satisfying, with probability 3/4,

‖ΠSx− x̂′‖1 ≤ (1 + ε)‖ΠSx− (ΠSx)(k)‖1 + δε‖ΦxS̄‖1
= (1 + ε)‖xS − xS,k‖1 + δε‖ΦxS̄‖1 .

Finally, consider the x̂ ∈ Rn recovered by RS in our procedure for SRPSK1 when run on

Φx = ΦxS + ΦxS̄ = ΦΠT
S (ΠSx) + ΦxS̄ .

We have x̂ = ΠT
S x̂
′, or, equivalently, ΠS x̂ = x̂′, so

‖x− x̂‖1 = ‖xS̄‖1 + ‖xS − x̂‖1 = ‖xS̄‖1 + ‖ΠSx− x̂′‖1
≤ ‖xS̄‖1 + (1 + ε)‖xS − xS,k‖1 + δε‖ΦxS̄‖1
= ‖xS̄‖1 + (1 + ε)(‖x− xS,k‖1 − ‖xS̄‖1) + δε‖ΦxS̄‖1
= (1 + ε)‖x− xS,k‖1 − ε‖xS̄‖1 + δε‖ΦxS̄‖1 .

Thus, if we can ensure that ‖ΦxS̄‖1 ≤ (1/δ)‖xS̄‖1, we would obtain the desired guarantee for
SRPSK1 of

‖x− x̂‖1 ≤ (1 + ε)‖x− xS,k‖1 .

Now, we claim that E[‖ΦxS̄‖1] ≤ ‖xS̄‖1, so that by the Markov bound

P [‖ΦxS̄‖1 > (1/δ)‖xS̄‖1] ≤ δ .

Choosing, say, δ = 1/12 would give us an overall success probability of at least 2/3, which can
be amplified by independent repetitions and taking a componentwise median in the standard
way.

All that remains is then to prove the above claim. By definition of NSR1, we know that for
every v ∈ Rs and an m×s matrix Ψ generated according to the specified distribution, we have
E[‖Ψv‖1] ≤ ‖v‖1. But since the columns are by assumption generated i.i.d., combining any
s such columns together results in a matrix with this normalization property. In particular,
for our m× n matrix Φ, we can split Φ into groups of s consecutive columns, each of which
will have the normalization property. Namely, if ci denotes the ith column of Φ, we have, for
any u ∈ Rn, and in particular for u = xS̄ (for simplicity, assume s divides n),

Φu = (c1u1 + · · ·+ csus) + · · ·+ (cn−s+1un−s+1 + · · ·+ cnun),

where

E[‖c1u1 + · · ·+ csus‖1] ≤
s∑
i=1

|ui|,

and similarly for the other s-term groups. As a result,

E[‖Φu‖1] ≤ E[‖c1u1 + · · ·+ csus‖1 + · · ·+ ‖cn−s+1un−s+1 + · · ·+ cnun‖1]

≤
n∑
i=1

|ui| = ‖u‖1,

as required.

43

Mostly straightforward modification of the above proof yields the `2/`2 version, which for
technical reasons we will see requires an additional assumption:

Lemma 28. Suppose we have a solution to NSR2 with parameters (n, k, ε), where the m×n
measurement matrix Ψ has m = m(n, k, ε) rows. Suppose in addition that the columns of Ψ
are generated i.i.d. from some distribution with zero mean. Then there exists a solution (Φ,R)
to SRPSK2 with parameters (n, s, k, ε) that uses O(m(s, k,Θ(ε))) measurements. Moreover, if
Ψ has, in expectation, h(n, k, ε) non-zeros per column, and the NSR2 recovery time is t(n, k, ε),
then Φ has, in expectation, O(h(s, k,Θ(ε))) non-zeros, and R runs in O(t(s, k,Θ(ε))) time.
2

Proof. Following the proof of Lemma 27, we can simply replace ‖ · ‖1 with ‖ · ‖22 to arrive at
the sufficient claim that for m × n matrix Φ with columns generated i.i.d. according to the
specified distribution, and any u ∈ Rn, E[‖Φu‖22] ≤ ‖u‖22. Unfortunately, with `2 we cannot
avoid square roots and make use of triangle inequality at the same time, so the trick of
grouping columns of Φ that worked for the `1 case does not work here. Instead, consider the
u that maximizes f(u) := E[‖Φu‖22]/‖u‖22. Since f(u) is clearly invariant under scaling, this
is equivalent to maximizing E[‖Φu‖22] subject to ‖u‖2 = 1. Expanding this, and expressing
the elements of Φ as (φij), we have

E[‖Φu‖22] = E

∑
j

φ1juj

2

+ · · ·+

∑
j

φnjuj

2 . (4.9)

Taking the first term and expanding further, we get

E

∑
j

φ1juj

2 = E

∑
j

φ2
1ju

2
j + 2

∑
j<j′

φ1jφ1j′ujuj′

 . (4.10)

But observe that for j < j′, φ1j and φ1j′ are independent and have zero mean, so E[φ1jφ1j′] =
0. Equation (4.10) therefore simplifies to

E

∑
j

φ1juj

2 = E

∑
j

φ2
1ju

2
j

 =
∑
j

u2
j E[φ2

1j].

Returning to Equation (4.9), and simplifying all its terms similarly, we get

E[‖Φu‖22] =
∑
j

u2
j

∑
i

E[φ2
ij].

But since the columns of Φ are i.i.d., for each j,
∑

i E[φ2
ij] must be the same value. It follows

that we are simply maximizing ‖u‖22, so any u with ‖u‖2 = 1 is a maximizer. Thus, if we
choose u consisting of s 1’s followed by n− s 0’s, to prove the lemma it suffices to show that
for the submatrix ΦΠT

[s] consisting of the first s columns of Φ,

E[‖ΦΠT
[s](Π[s]u)‖22] ≤ ‖Π[s]u‖22.

But we know this is true by definition of NSR2, completing our proof.

2Note that this recovery time is based on the assumption that the solution to NSR generated the columns
of its measurement matrix i.i.d. In our application of this reduction (Lemmas 29 and 30), we will need to
modify the NSR solution to enforce this requirement, which will increase its recovery time.

44

 w1 w2 w3 w4 w5 w6

 w1 w2 w3 w4

 w1 w2 w3 w4 w5 B(j)

1

B(j)
2

B(j)
3

…
Figure 4.1: Example of an i.i.d. submatrix in D(j) consisting of kcj blocks. Each grey
rectangle represents a code word, and white space represents zeros.

4.2.2 Optimal Algorithm for `2/`2

By a modification of the algorithm of [GLPS10], we prove the following result:

Lemma 29. There exists a solution (Φ,R) to SRPSK2 with parameters (n, s, k, ε) that uses
m = O((k/ε) log(s/k)) measurements.

Proof. To apply a NSR2 solution to SRPSK2 using Lemma 28, we need the columns of
the measurement matrix to be generated independently. However, this requirement does
not hold with the algorithm in [GLPS10] as is. Therefore, we show how to modify it to
satisfy this requirement without changing its recovery properties and asymptotic number of
measurements. For simplicity, we will ignore pseudo-randomness considerations, and replace
all k-wise independence by full independence in the construction of [GLPS10].

We begin by describing the measurement matrix Φ of [GLPS10] (also denoted by Φ
in that paper). At the highest level, Φ is formed by vertically stacking matrices Φ(j), for
j = 1, . . . , log k. Each Φ(j) is formed by vertically stacking two matrices, E(j) and D(j). It
will suffice for our purposes if the columns of each E(j) and each D(j) are independent.

Consider, first, E(j), which consists of several i.i.d. submatrices, again stacked vertically,
in each of which every entry is set i.i.d. (to 1, −1 or 0). Thus, every entry, and therefore
every column, of E(j) is already independent without modification.

Next, consider D(j), which consists of several similarly stacked i.i.d. submatrices. For

some constant c < 1, each one of these submatrices consists of kcj i.i.d. “blocks”B
(j)
1 , B

(j)
2 , . . . , B

(j)

kcj
,

which will be the smallest unit of vertically stacked submatrices we need to consider (see

Fig. 4.1). Within each block B
(j)
i , each column is independently chosen to be non-zero with

some probability, and the ith non-zero column is equal to the ith code word wi from some
error-correcting code C. The code C has a constant rate and constant fractional distance.
Therefore, each block has O(log h) rows (and C needs to have O(h) code words), where h is
the expected number of non-zero columns per block.

The problem with the construction of D(j) (from our perspective) is that each column

45

chosen to be non-zero is not independently chosen, but instead is determined as a code
word that depends on how many non-zero columns are to its left. In order to overcome this
obstacle, we observe that the algorithm of [GLPS10] only requires that the code words of
the consecutive non-zero columns are distinct, not consecutive. Thus, we use as our code C ′

with the same rate and error-correction, but with O(h3) code words instead of O(h); for each
column chosen to be non-zero, we set it to a code word chosen uniformly at random from C ′,
with replacement. In terms of Fig. 4.1, each grey rectangle, instead of being the code word
from C specified in the figure, is instead a random code word from a larger code C ′. Note
that each block still has O(log h) rows as before.

A block is good if all code words corresponding to it are distinct. Observe that for any
given block, the probability it is not good is at most O(1/h). If there are fewer than O(h)
blocks in all of D(j), we could take a union bound over all of them to show that all blocks
are good with constant probability. Unfortunately, for j = 1, we have h = O(n/k) while the
number of blocks is Ω(k). The latter value could be much larger than h.

Instead, we will simply double the number of blocks. Even though we cannot guarantee
that all blocks are good, we know that most of them will be, since each one is with probability
1 − O(1/h). Specifically, by the Chernoff bound, at least half of them will be with high
probability (namely, 1−e−Ω(k)). We can use only those good blocks during recovery and still
have sufficiently many of them to work with.

The result is a solution to NSR2 still with O((k/ε) log(n/k)) rows (roughly 6 times the
solution of [GLPS10]), but where each column of the measurement matrix is independent,
as required by Lemma 28. The last component we need is that the column distribution has
zero mean, but this is guaranteed by the random sign flip applied to every non-zero element.
A direct application of the lemma gives us the theorem.

Lemma 30. The matrix Φ of Lemma 29 has, in expectation, O(log2 k log(s/k)) non-zeros
per column, and R runs in O(s log2 k + (k/ε) logO(1) s) time.

Proof. It suffices to show that the modifications we made to [GLPS10] do not change the
asymptotic expected number of non-zeros in each column and does not increase the recovery
time by more than an additive term of O(n log2 k). Lemma 28 then gives us this lemma (by
replacing n with s in both quantities).

Consider, first, the number of non-zeros. In both the unmodified and the modified ma-
trices, this is dominated by the number of non-zeros in the (mostly dense) code words in the
Dj ’s. But in the modified Dj , we do not change the asymptotic length of each code word,
while only doubling, in expectation, the number of code words (in each column as well as
overall). Thus the expected number of non-zeros per column of Φ remains O(log2 k log(n/k))
as claimed.

Next, consider the running time. The first of our modifications, namely, increasing the
number of code words from O(h) to O(h3), and hence their lengths by a constant factor, does
not change the asymptotic running time since we can use the same encoding and decoding
functions (it suffices that these be polynomial time, while they are in fact polylogarithmic
time). The second of our modifications, namely, doubling the number of blocks, involves a
little additional work to identify the good blocks at recovery time. Observe that, for each
block, we can detect any collision in time linear in the number of code words. In D(j) there are
O(jkcj) blocks each containing O(n/(kcj)) code words, so the time to process D(j) is O(jn).
Thus, overall, for j = 1, . . . , log k, it takes O(n log2 k) time to identify all good blocks. After

46

that, we need only work with the same number of blocks as there had been in the unmodified
matrix, so the overall running time is O(n log2 k + (k/ε) logO(1) n) as required.

Lemmas 29 and 30 together give us Theorem 26.

47

Bibliography

[ADIW09] A. Andoni, K. Do Ba, P. Indyk, and D. Woodruff. Efficient sketches for earth-
mover distance, with applications. FOCS, 2009.

[AES95] P. K. Agarwal, A. Efrat, and M. Sharir. Vertical decomposition of shallow levels
in 3-dimensional arrangements and its applications. Proceedings of the ACM
Symposium on Computational Geometry (SoCG), 1995.

[AIK09] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Overcoming the `1
non-embeddability barrier: Algorithms for product metrics. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 865–874,
2009.

[AV99] P.K. Agarwal and K. Varadarajan. Approximation algorithms for bipartite and
non-bipartite matching in the plane. Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms (SODA), 1999.

[AV04] P. Agarwal and K. Varadarajan. A near-linear constant factor approximation
for euclidean matching ? Proceedings of the ACM Symposium on Computational
Geometry (SoCG), 2004.

[BCDH10] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based compres-
sive sensing. IEEE Transactions on Information Theory, 56, No. 4:1982–2001,
2010.

[BGI+08] R. Berinde, A. Gilbert, P. Indyk, H. Karloff, and M. Strauss. Combining geom-
etry and combinatorics: a unified approach to sparse signal recovery. Allerton,
2008.

[BGK+10] A. Bruex, A. Gilbert, R. Kainkaryam, John Schiefelbein, and Peter Woolf.
Poolmc: Smart pooling of mRNA samples in microarray experiments. BMC
Bioinformatics, 2010.

[BJKK04] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Ap-
proximating edit distance efficiently. In Proceedings of the IEEE Symposium on
Foundations of Computer Science (FOCS), pages 550–559, 2004.

[CCFC02] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data
streams. Proceedings of International Colloquium on Automata, Languages and
Programming (ICALP), 2002.

48

[CG99] Scott Cohen and Leonidas Guibas. The earth mover’s distance under transforma-
tion sets. In ICCV ’99: Proceedings of the International Conference on Computer
Vision-Volume 2, page 1076, Washington, DC, USA, 1999. IEEE Computer So-
ciety.

[Cha02] M. Charikar. Similarity estimation techniques from rounding. In Proceedings of
the ACM Symposium on Theory of Computing (STOC), pages 380–388, 2002.

[CICB10] V. Cevher, P. Indyk, L. Carin, and R.G Baraniuk. Sparse signal recovery and
acquisition with graphical models. Signal Processing Magazine, pages 92 – 103,
2010.

[CM04] G. Cormode and S. Muthukrishnan. Improved data stream summaries: The
count-min sketch and its applications. LATIN, 2004.

[CM05] G. Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. J. Algorithms, 55(1):58–75, 2005.

[CM06] G. Cormode and S. Muthukrishnan. Combinatorial algorithms for Compressed
Sensing. In Proc. 40th Ann. Conf. Information Sciences and Systems, Princeton,
Mar. 2006.

[CRT06] E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete
and inaccurate measurements. Comm. Pure Appl. Math., 59(8):1208–1223, 2006.

[CW09] K. L. Clarkson and D. P. Woodruff. Numerical linear algebra in the streaming
model. In STOC, pages 205–214, 2009.

[DDT+08] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Bara-
niuk. Single-pixel imaging via compressive sampling. IEEE Signal Processing
Magazine, 2008.

[Def10] Defense Sciences Office. Knowledge enhanced compressive measurement. Broad
Agency Announcement, DARPA-BAA-10-38, 2010.

[DI11] K. Do Ba and P. Indyk. Sparse recovery with partial support knowledge. AP-
PROX, 2011.

[DIPW10] K. Do Ba, P. Indyk, E. Price, and D. Woodruff. Lower bounds for sparse recovery.
SODA, 2010.

[DM08] W. Dai and O. Milenkovic. Weighted superimposed codes and constrained integer
compressed sensing. Preprint, 2008.

[Don06] D. L. Donoho. Compressed Sensing. IEEE Trans. Info. Theory, 52(4):1289–1306,
Apr. 2006.

[EB09] Y.C. Eldar and H. Bolcskei. Block-sparsity: Coherence and efficient recovery.
IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2009.

[EG88] T. Ericson and L. Györfi. Superimposed codes in Rn. IEEE Trans. on Informa-
tion Theory, 34(4):877–880, 1988.

49

[FMSY10] Michael P. Friedlander, Hassan Mansour, Rayan Saab, and Özgür Yilmaz. Re-
covering compressively sampled signals using partial support information. CoRR,
abs/1010.4612, 2010.

[FPRU10] S. Foucart, A. Pajor, H. Rauhut, and T. Ullrich. The gelfand widths of lp-balls
for 0 < p ≤ 1. J. Complexity, 2010.

[FR99] Z. Füredi and M. Ruszinkó. An improved upper bound of the rate of euclidean
superimposed codes. IEEE Trans. on Information Theory, 45(2):799–802, 1999.

[GD05] Kristen Grauman and Trevor Darrell. The pyramid match kernel: Discriminative
classification with sets of image features. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Beijing, China, October 2005.

[GG91] A. Gersho and R.M. Gray. Vector Quantization and Data Compression. Kluwer,
1991.

[GLPS10] A. Gilbert, Y. Li, E. Porat, and M. Strauss. Approximate sparse recovery: opti-
mizing time and measurements. STOC, 2010.

[Glu84] E. D. Gluskin. Norms of random matrices and widths of finite-dimensional sets.
Math. USSR-Sb., 48:173182, 1984.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association, 58(301):13–30, 1963.

[IN07] P. Indyk and A. Naor. Nearest neighbor preserving embeddings. ACM Trans.
on Algorithms, 3(3), Aug. 2007.

[Ind00] P. Indyk. Dimensionality reduction techniques for proximity problems. Proceed-
ings of the Ninth ACM-SIAM Symposium on Discrete Algorithms, 2000.

[Ind04] P. Indyk. Algorithms for dynamic geometric problems over data streams. Pro-
ceedings of the ACM Symposium on Theory of Computing (STOC), 2004.

[Ind07a] P. Indyk. A near linear time constant factor approximation for euclidean bichro-
matic matching (cost). In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2007.

[Ind07b] P. Indyk. Sketching, streaming and sublinear-space algorithms. Graduate course
notes, available at http://stellar.mit.edu/S/course/6/fa07/6.895/, 2007.

[IT03] P. Indyk and N. Thaper. Fast color image retrieval via embeddings. Workshop
on Statistical and Computational Theories of Vision (at ICCV), 2003.

[IW05] P. Indyk and D. Woodruff. Optimal approximations of the frequency moments
of data streams. Proceedings of the ACM Symposium on Theory of Computing
(STOC), 2005.

[Jac10] L. Jacques. A short note on compressed sensing with partially known signal
support. Signal Processing, 90, 2010.

50

[JW09] T.S. Jayram and David Woodruff. The data stream space complexity of cascaded
norms. FOCS, 2009.

[Kas98] S. Kaski. Dimensionality reduction by random mapping: Fast similarity compu-
tation for clustering. Proceedings of IJCNN, International Joint Conference on
Neural Networks, 1998.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University
Press, 1997.

[KNR99] I. Kremer, N. Nisan, and D. Ron. On randomized one-round communication
complexity. Computational Complexity, 8(1):21–49, 1999.

[KNW10] D. Kane, J. Nelson, and D. Woodruff. On the exact space complexity of sketching
and streaming small norms. In SODA, 2010.

[KT07] B. S. Kashin and V. N. Temlyakov. A remark on compressed sensing. Preprint,
2007.

[KXAH09] M. A. Khajehnejad, W. Xu, A. S. Avestimehr, and B. Hassibi. Weighted l1
minimization for sparse recovery with prior information. ISIT, 2009.

[Law76] E. Lawler. Combinatorial optimization: Networks and Matroids. Holt, Rinehart
and Winston, 1976.

[LSP06] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2006.

[LV10a] W. Lu and N. Vaswami. Modified-cs: Modifying compressive sensing for problems
with partially known support. IEEE Transactions on Signal Processing, 58(9),
2010.

[LV10b] W. Lu and N. Vaswami. Regularized Modified-BPDN for compressive sensing
with partially known support. CoRR, abs/1002.0019, 2010.

[LV10c] W. Lu and N. Vaswani. Modified basis pursuit denoising(modified-bpdn) for
noisy compressive sensing with partially known support. In Acoustics Speech
and Signal Processing (ICASSP), 2010 IEEE International Conference on, pages
3926 –3929, march 2010.

[McG06] Andrew McGregor. Open problems in data streams and related top-
ics. IITK Workshop on Algorithms For Data Streams, 2006. Available at
http://www.cse.iitk.ac.in/users/sganguly/workshop.html.

[MNSW98] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data structures and
asymmetric communication complexity. J. Comput. Syst. Sci., 57(1):37–49, 1998.

[Mut05] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and
Trends in Theoretical Computer Science, 2005.

51

[Nis90] N. Nisan. Pseudorandom generators for space-bounded computation. Proceedings
of the ACM Symposium on Theory of Computing (STOC), pages 204–212, 1990.

[NS07] A. Naor and G. Schechtman. Planar earthmover is not in l1. SIAM Journal on
Computing, 37(3):804–826, 2007. An extended abstract appeared in FOCS’06.

[Pri11] E. Price. Efficient sketches for the set query problem. SODA, 2011.

[PW11] E. Price and D. Woodruff. (1 + ε)-approximate sparse recovery. FOCS, 2011.

[PWR89] Shmuel Peleg, Michael Werman, and Hillel Rom. A unified approach to the
change of resolution: Space and gray-level, 1989.

[RT99] M. A. Ruzon and C. Tomasi. Corner detection in textured color images. In Com-
puter Vision, 1999. The Proceedings of the Seventh IEEE International Confer-
ence on, volume 2, pages 1039–1045 vol.2, 1999.

[RTG00] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth mover’s distance
as a metric for image retrieval. Int. J. Comput. Vision, 40(2):99–121, November
2000.

[SAZ10] N. Shental, A. Amir, and Or Zuk. Identification of rare alleles and their carriers
using compressed se(que)nsing. Nucleic Acids Research, 38(19):1–22, 2010.

[Vai89] P. Vaidya. Geometry helps in matching. SIAM Journal on Computing, 18:1201–
1225, 1989.

[vBMP07] R. von Borries, C. J. Miosso, and C. Potes. Compressed sensing using prior
information. CAMPSAP, 2007.

[vL98] J.H. van Lint. Introduction to coding theory. Springer, 1998.

[Wai07] M. Wainwright. Information-theoretic bounds on sparsity recovery in the high-
dimensional and noisy setting. IEEE Int’l Symp. on Information Theory, 2007.

52

	Abstract
	Table of Contents
	Introduction
	Efficient Sketches for Earth-Mover Distance (Chapter 2)
	Lower Bounds for Sparse Recovery (Chapter 3)
	Sparse Recovery with Partial Support Knowledge (Chapter 4)

	Efficient Sketches for Earth-Mover Distance
	Sketching a Sum of Norms
	Sketch and Reconstruction Algorithm
	Proof of Correctness
	Proofs of Lemmas 8 and 9

	Sketching EMD

	Lower Bounds for Sparse Recovery
	Deterministic Lower Bound
	Randomized Upper Bound for Uniform Noise
	Randomized Lower Bound
	Discretizing Matrices
	Communication Complexity
	Lower Bound Theorem for L1/L2
	Modifications for L2/L2 and L2/L1

	Sparse Recovery with Partial Support Knowledge
	Lower Bounds
	Lower Bound for L1/L1
	Lower Bound for L2/L2

	Upper Bounds
	Reductions to Noisy Sparse Recovery
	Optimal Algorithm for L2/L2

