
FlexGP 2.0: Multiple Levels of Parallelism in

Distributed Machine Learning via Genetic

Programming
by

Dylan J. Sherry
Submitted to the Department of Electrical Engineering

and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

c© Dylan J. Sherry, MMXIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to

distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author .

Department of Electrical Engineering
and Computer Science

September 12, 2013

Certified by. .
Kalyan Veeramachaneni

Research Scientist
Thesis Supervisor

Certified by. .
Una-May O’Reilly

Principal Research Scientist
Thesis Supervisor

Accepted by .
Prof. Albert R. Meyer

Chairman, Masters of Engineering Thesis Committee

2

FlexGP 2.0: Multiple Levels of Parallelism in Distributed

Machine Learning via Genetic Programming

by

Dylan J. Sherry

Submitted to the Department of Electrical Engineering
and Computer Science

on September 9, 20131, in partial fulfillment of the
requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents FlexGP 2.0, a distributed cloud-backed machine learning system.
FlexGP 2.0 features multiple levels of parallelism which provide a significant boost in
speed and accuracy. The amount of computational resources used by FlexGP 2.0 can
be scaled along several dimensions to support large and complex datasets. FlexGP
2.0’s core genetic programming (GP) learner includes multithreaded C++ model
evaluation and a multi-objective optimization algorithm which is extensible to pursue
any number of objectives simultaneously in parallel. FlexGP 2.0 parallelizes the entire
learner to obtain a large distributed population size and leverages communication
between learners to increase performance via the sharing of search progress. FlexGP
2.0 features parallelized subsampling of training data and other parameters to boost
performance and to enable support for increased data size and complexity.

We provide rigorous experimental verification of the efficacy of FlexGP 2.0’s multi-
level parallelism. Experiments are on a large dataset from a real-world regression
problem. The results FlexGP 2.0 provides an increase in the speed of computation and
an overall increase in accuracy, and illustrate the value of FlexGP 2.0 as a platform
for machine learning.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Research Scientist

Thesis Supervisor: Una-May O’Reilly
Title: Principal Research Scientist

1This thesis is a revised version of the physical copy originally submitted to MIT EECS. Revisions
were made with the full approval and consent of the thesis supervisors.

3

4

Acknowledgments

I have spent almost three years benefiting from the guidance of and collaboration with

Kalyan Veeramachaneni & Una-May O’Reilly. You’re both top-notch researchers and

fantastic people; I’ve deeply enjoyed working with you and thank you for all you’ve

done for me.

Owen Derby was my primary collaborator on FlexGP. His work on FlexGP and

on factorization is a valuable cornerstone of this thesis. His ability to get at the crux

of a problem is second to none. Owen is solid proof Mainers are the best. Thanks

Owen.

I must thank Ignacio Arnaldo for his keen advice and for his crucial contributions

on FlexGP’s C++ fitness evaluation.

Thank you to all my friends from 32-D433 and to the rest of the ALFA group for

the company, the many tea times, and for providing me with a constant reminder of

how incredible the people at MIT are.

To all the folks in the course VI undergrad office, and in particular to Anne Hunter,

I send my thanks for five years of friendship and guidance. I’d also like to thank the

entire MIT community for granting me my first true intellectual home.

To Maryam Yoon and to my family for their love and support over many years: I

am an unfathomably lucky person to have you in my life.

Last but not least, I am deeply grateful to GE Global Research for their support

of this project.

5

6

Contents

1 Introduction 15

1.1 FlexGP 1.0 . 16

1.2 FlexGP 2.0 . 17

1.3 Evaluating FlexGP 2.0 . 18

1.4 Preview of Results . 18

1.5 Index . 18

2 Search-Level Parallelism 21

2.1 Motivation and Goals . 21

2.1.1 Multi-Objective Optimization v.s. Operator Equalization . . . 23

2.1.2 Advantages of Multi-Objective Optimization 24

2.1.3 Goals of Search-Level Parallelism 25

2.2 Integration of Search-Level Parallelism 25

2.2.1 Objective Functions and Evaluation 25

2.2.2 Learning Algorithm Modifications 29

2.3 Experimental Evaluation . 38

2.3.1 Experimental Setup . 38

2.3.2 Results . 40

2.3.3 Analysis . 41

3 Evaluation-Level Parallelism 49

3.1 Motivation and Goals . 49

3.2 Integration of Evaluation-Level Parallelism 52

7

3.2.1 C++ Model Evaluation . 53

3.2.2 Adding Shared Memory Multithreading 55

3.3 Experimental Evaluation . 56

3.3.1 Experimental Setup . 56

3.3.2 Results . 57

3.3.3 Analysis . 59

4 Population-Level Parallelism 63

4.1 Motivation and Goals . 63

4.2 Integration of Population-Level Parallelism 67

4.2.1 Initial Resource Acquisition 68

4.2.2 Establishing a Sub-Network 68

4.2.3 Modifications to the GP Learner 69

4.3 Experimental Evaluation . 70

4.3.1 Experimental Setup . 71

4.3.2 Results . 72

4.3.3 Analysis . 73

5 FlexGP 2.0: Multi-Level Parallelism 77

5.1 Integration of Multi-Level Parallelism 78

5.1.1 Integration of Evaluation-Level Parallelism 79

5.1.2 Integration of Search-Level Parallelism 79

5.1.3 Integration of Population-Level Parallelism 80

5.1.4 Integration of Factor-Level Parallelism 80

5.2 Experimental Evaluation . 81

5.2.1 FlexGP 2.0 v.s. FlexGP 1.0 81

5.2.2 Comparison of FlexGP 2.0 with vowpal wabbit 85

6 Future Work 89

7 Conclusion 91

8

A Dataset Organization and Partitioning 93

A.1 Background and Problem Definition 93

A.2 Dataset Partitioning . 94

A.3 Avoiding the Producer Effect in the MSD 95

B Collection and Organization of Results 97

B.1 Experimental Organization . 97

B.2 Organization of Results . 99

B.3 Analysis of Results . 101

C Calculation of Fused Performance 103

C.1 Motivation . 103

C.2 Background . 103

C.3 Fusion Process . 104

C.4 Thresholding Metrics . 104

D GP Parameters 107

E Cloud Infrastructure 109

9

10

List of Figures

1-1 Performance Preview of FlexGP 2.0 v.s. FlexGP 1.0 19

1-2 Performance Preview of FlexGP 2.0 v.s. FlexGP 1.0 20

2-1 Pareto Front . 23

2-2 Pareto Front Knee . 37

2-3 Performance of Four Search-Parallel Experiments 44

2-4 Performance of Four Search-Parallel Experiments 45

2-5 Performance of Four Search-Parallel Experiments 46

2-6 Performance of Four Search-Parallel Experiments 47

3-1 Standard Evolutionary Loop . 50

3-2 New Evolutionary Loop . 52

3-3 Translation of Models to Sequential Steps 54

3-4 Model Evaluations v.s. Time of Three Evaluation-Parallel Experiments 58

3-5 Gain in Performance of Three Evaluation-Parallel Experiments 60

4-1 Population-Level Parallelism . 64

4-2 Performance of Three Population-Parallel Experiments 76

5-1 Comparison of Three Multi-Level Parallelism Experiments 84

A-1 Data Partitioning Diagram . 95

11

12

List of Tables

2.1 Search-Parallel Function Sets . 39

2.2 First Generation Model evaluations of Four Search-Parallel Experiments 40

2.3 Elapsed model evaluations of Four Search-Parallel Experiments . . . 41

2.4 Performance of Four Search-Parallel Experiments by Time 41

2.5 Performance of Four Search-Parallel Experiments by Model Evaluations 42

3.1 Number of Model Evaluations . 58

3.2 Performance of Three Evaluation-Level Experiments 59

4.1 Model Evaluations of Three Population-Parallel Experiments 72

4.2 Performance of Three Population-Parallel Experiments 73

5.1 FlexGP 2.0 Experiment Parameters 82

5.2 Performance of Three Multi-Level Experiments 83

5.3 Performance of vowpal wabbit with Data Factorization 86

5.4 Performance Comparison of vowpal wabbit and FlexGP 2.0 86

B.1 JSON Log Contents . 99

13

14

Chapter 1

Introduction

Recent years have seen much growth and change in the size and availability of data.

Technological proliferation has allowed data to be more easily collected, organized

and stored. The diversity of data size, structure and topic has seen similar growth.

Data has become available in a variety of domains which previously were sparsely

populated, including the documentation of social interaction, semantic content, med-

ical instrumentation and measurements, and educational information. At present it

appears the growth in data size, availability and diversity will continue indefinitely.

The increased availability of data in each domain represents a greater opportunity

to learn about the world, given the ability to leverage the data effectively.

However, many existing learning algorithms cannot provide high accuracy in a

short amount of time, relative to the size and complexity of data under consideration.

A larger data size translates to increased runtime which can easily be super-linear

in relation to the data size and complexity. Datasets which represent an expression

of more complex relationships require increasingly more complex models to provide

desirable results, which further contributes to the computational slow-down. From

the perspective of search, a greater size and complexity of data increases the likelihood

the search will eventually find itself stuck in undesirable local minima or maxima.

The FlexGP Distributed Machine Learning System (FlexGP) provides swift and

accurate machine learning on large and complex data sets. FlexGP seeks to be able

to scale with data size and complexity in a graceful and tractable manner. FlexGP’s

15

goals are two-fold:

Faster Learning: decrease the time required to obtain accurate results.

Better Learning: provide an accuracy which was previously unobtainable.

Modern cloud frameworks provide a vast wealth of computational resources; FlexGP

was designed to run in a cloud environment where the system is able to scale the

amount of computational resources to fit the difficulty of the problem at hand.

FlexGP’s primary focus is on the goals stated above; measuring the efficiency of

the system relative to the amount of computational resources under utilization is not

the focus of this thesis.

FlexGP uses genetic programming (GP) as its underlying learning algorithm. A

form of evolutionary algorithm (EA), GP is a sophisticated technique for search and

optimization which is easily adapted to solve traditional machine learning problems

of regression, classification and clustering[11]. For addressing these challenges it is

particularly effective for GP to use Genetic Programming for Symbolic Regression

(GPSR), where solutions are modeled as evaluable trees of operators and terminals

representing variables from the training data [21]. Several commercial systems have

demonstrated similar applications of GP to machine learning and data mining, no-

tably Eureqa[12] and DataModeler1.

1.1 FlexGP 1.0

Version one of FlexGP (FlexGP 1.0) represented a giant leap forward from an original

prototype for cloud-backed machine learning via GP [13]. FlexGP 1.0 introduced the

concept of factorization, whereby data and other select parameters may be randomly

subsampled or permuted to provide an unique configuration for a set of parallelized

learners. FlexGP 1.0 demonstrated a marked improvement of performance with the

addition of the factorization of training data. FlexGP 1.0 was focused on addressing

1http://evolved-analytics.com/?q=datamodeler

16

http://evolved-analytics.com/?q=datamodeler

regression challenges; it incorporated a means of fusing regression models to form

ensembles which provided a noticeable performance boost[19][6].

As a framework FlexGP 1.0 was designed to support the usage of any learning

algorithm. As mentioned earlier, the learner used in this thesis and in previous work

on FlexGP is a GP learner implemented with our custom Java library for GP called

evogpj. At the time of its inclusion in FlexGP 1.0 the evogpj library performed model

evaluation in Java via a simple recursive evaluation procedure. The core algorithm

used Silva’s operator equalization for controlling the bloating of models[15]. A de-

tailed, rigorous description of the design and performance of FlexGP 1.0 can be found

in a previous publication[6].

1.2 FlexGP 2.0

This thesis presents FlexGP 2.0, which introduces several key improvements over

FlexGP 1.0. FlexGP 2.0 includes four levels of parallelism which each provide distinct

benefits:

Search-Level Parallelism: allows GP to pursue multiple user-specified objectives.

This improves the flexibility of evogpj’s GP learner and enhances the clarity of

expression of machine learning problems.

Evaluation-Level Parallelism: translates model evaluation to batch-processing in

C++ and distributes model evaluations across multiple CPUs, resulting in a

dramatically faster runtime.

Population-Level Parallelism: distributes the population across multiple GP learn-

ers on separate machines. This results in potentially super-linear gain in accu-

racy and further reducing the runtime required to obtain an accurate solution.

Factor-Level Parallelism: boosts accuracy through factorization of the data and

problem parameters. Factor-level parallelism also reduces the overall runtime

by providing each GP learner with a smaller training dataset. Factor-level-

17

parallelism is included from FlexGP 1.0; a detailed description and analysis of

factorization can be found in a previous publication on FlexGP 1.0 [6].

A more in-depth discussion of each level of parallelism is provided in the subsequent

chapters.

1.3 Evaluating FlexGP 2.0

To provide a thorough evaluation of the performance of FlexGP 2.0 we introduce a

type of assessment and comparison which is used throughout this thesis.

Time: a comparison of experiments by the elapsed wall-clock time since FlexGP

was initiated. The x axis displays the elapsed time since the beginning of the

experiment, and the y axis displays either the MSEtest or the MAEtest of the

best model from the most recent generation. Points are shown at regularly

spaced intervals in time.

This comparison provides insight into the performance of FlexGP by clearly showing

any improvement in accuracy v.s. elapsed time.

1.4 Preview of Results

Figure 1-1 provides a preview comparison of the performance of FlexGP 2.0 v.s.

FlexGP 1.0 on the MSD dataset described in Appendix A. With all four levels of

parallelism, FlexGP 2.0 outperforms FlexGP 1.0 by a wide margin. The body of this

thesis details how this performance gain was achieved.

1.5 Index

Chapter 2 covers search-level parallelism, Chapter 3 describes evaluation-level paral-

lelism and Chapter 4 details population-level parallelism. A comprehensive discussion

of the combination of the four levels of parallelism is provided in Chapter 5, as well as

18

100

102

104

106

108

110

112

FlexGP 1.0 FlexGP 2.0 (with migration)

M
S

E
te

st
 a

fte
r

fu
si

on

Comparison of the MSE
test

 of FlexGP 1.0 and 2.0 (with migration) at t=30min

Figure 1-1: A comparison of the performance of FlexGP 2.0 v.s. FlexGP 1.0 after
30 minutes of training. The boxplot represents the distribution of MSEtest values
obtained after the fusion process. The specifics of the two experiments can be found
in Section 5.2.1.

an experimental comparison of FlexGP 2.0 with FlexGP 1.0 and with another promi-

nent machine learning system called vowpal wabbit . Chapter 6 presents thoughts on

future work and Chapter 7 summarizes the findings of this thesis.

Appendix A presents the details of the problem addressed in this thesis’ exper-

iments and explains how the data was partitioned. Appendix B describes in detail

the parameters of each experiment and how the results were gathered and analyzed.

Appendix C describes the fusion process used in some experiments to boost perfor-

mance by combining predictions from multiple regression models. Appendix D pro-

vides the specific parameters and design notes regarding the configuration of evogpj’s

GP learner in the experiments. Finally, Appendix E includes information about the

cloud platform on which the experiments were conducted.

19

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
4

FlexGP 1.0 FlexGP 2.0 (with migration)

Model evaluations made by FlexGP 1.0 and FlexGP 2.0 (with migration) at t=30min

M
od

el
 E

va
lu

at
io

ns

Figure 1-2: A comparison of the model evaluations made by FlexGP 2.0 v.s. FlexGP
1.0 after 30 minutes of training. The boxplot represents the distribution of the number
of model evaluations made by each learner. The specifics of the two experiments can
be found in Section 5.2.1.

20

Chapter 2

Search-Level Parallelism

Search-level parallelism allows the simultaneous pursuit of multiple user-specified

search objectives. This form of parallelism represents an improvement in the flexibil-

ity of FlexGP, and allows a more clear expression for many optimization challenges,

including classification and regression.

2.1 Motivation and Goals

Most practical search and optimization problems require a balance between multiple

objectives. This is particularly true for problems in the domain of machine learning.

Regression problems seek solutions with both low predictive error and low model com-

plexity. Classification problems seek solutions with low rates of both false positives

and false negatives in addition to low model complexity.

Traditional optimization techniques which address these problems develop a means

of converting multiple objectives to a single objective. One example is the inclusion

of model complexity in the fitness score of a candidate solution. The efficacy of

such objective-dimensionality reduction metrics varies with the type of problem being

solved. More dangerously, objective-dimensionality reduction methods which are a

priori custom-tailored for a particular problem or domain could introduce bias [20].

However, it is possible to design an algorithm which can reduce the potential for

bias while pursuing a variety of objectives simultaneously. This form of optimization

21

process is known as multi-objective optimization. A multi-objective optimization

algorithm directly considers multiple objectives and thus eliminates the need for an

objective-dimensionality reduction metric.

Unlike single-objective optimization challenges, multi-objective optimization prob-

lems may have a range of solutions which are considered optimal. The multi-objective

optimization search algorithm maintains and updates a set of optimal solutions rather

than focusing on obtaining one best solution. The set of optimal solutions is known

as the Pareto-optimal front, or Pareto front. An example of a Pareto front is shown

in figure 2-1. This can prove advantageous when contrasted with single-objective op-

timization techniques which typically produce one candidate solution after a search

is complete. For example, multi-objective optimization applied to a regression prob-

lem would return a set of models ranging from higher error and lower complexity to

lower error and higher complexity. This provides a method to produce models which

yield desirable accuracy but are simpler than those obtained from a single-objective

optimization [5].

The inclusion of model complexity as an objective raises the possibility of using

multi-objective optimization to gauge variable importance. If a variable appears in

less complex solutions which still yield high accuracy, the variable is likely more

important than others. Similarly, this approach could be used to perform feature

selection. If a subtree appears frequently in trees which obtain high accuracy, that

subtree is a good candidate for feature extraction[17].

Multi-objective optimization allows the search process to pursue multiple optima

at once. Each member of the Pareto front represents a unique optimal solution to the

multi-objective optimization problem. Each member can only be replaced if another

model dominates it in fitness-space. Section 2.2.2 provides a discussion of dominance

and the non-dominated sorting algorithm.

22

Figure 2-1: An example of a Pareto front. The red dots represent models which
are members of the Pareto front, and the black dots represent other models under
consideration. The two objectives under minimization are shown on the two axes.

2.1.1 Multi-Objective Optimization v.s. Operator Equaliza-

tion

FlexGP 1.0 used Silva’s operator equalization technique to minimize the bloating of

models [14] [6]. FlexGP 2.0 uses multi-objective optimization to achieve a similar

goal by including minimization of model complexity as an additional objective.

Multi-objective optimization provides several features which operator equalization

does not. Using multi-objective optimization reduces the risk of bias by avoiding

the need for GP to rely on a method of objective-dimensionality reduction. Multi-

objective optimization maintains a set of optimal solutions rather than a single model.

Multi-objective optimization provides another advantage over operator equaliza-

tion: a fixed number of model evaluations made per generation. The NSGA-II multi-

objective optimization algorithm, discussed in Section 2.2.2, requires n model eval-

uations per generation. Operator equalization will always make at least n model

evaluations per generation but may require many multiples more to satisfy the equal-

izer. As shown in Section 2.3.2 we found this to be particularly prevalent in the first

23

generation. A fixed number of model evaluations per generation means the progress

and time consumption of the algorithm are more predictable.

FlexGP 1.0’s operator equalization algorithm placed a constraint on the indepen-

dence of model evaluation. An equalizer was used to maintain a distribution over

model complexity. The equalizer would either accept a model into the new popula-

tion or discard the model and move on to the next. The equalizer could only consider

a single model at once, which meant new offspring must be generated, evaluated and

considered by the equalizer one at a time. This constraint presented a complication

in the parallelization of model evaluation.1

With the introduction of multi-objective optimization as discussed in Section 2,

no equalizer is required to maintain a distribution over model complexity, removing

the sequential evaluation constraint imposed by operator equalization’s equalizer.

Further, the number of offspring to be bred per generation is fixed, which simplifies

parallelization and enables the use of techniques which rely on batch processing.

2.1.2 Advantages of Multi-Objective Optimization

In summary, the important advantages of multi-objective optimization are as follows:

Multiple objective functions: multi-objective optimization allows the inclusion of

any number of search objectives, which lends itself to increased flexibility.

Multiple optima: multi-objective optimization maintains a Pareto front consisting

of multiple solutions which are deemed as optimal.

Diversity of Complexity: if model complexity is included as an objective, the

Pareto front will represent models with a range of complexities. This demon-

strates a potential for multi-objective optimization to be an effective vehicle for

gauging variable performance and for performing feature selection.

Batch Model Evaluation: multi-objective optimization removes the sequential con-

straint imposed in FlexGP by operator equalization’s equalizer, enabling the

1It is certainly possible to design an equalizer which parallelizes more naturally; that is not the
focus of this thesis.

24

optimization of model evaluation through techniques like the C++ model eval-

uation discussed in Chapter 3.

2.1.3 Goals of Search-Level Parallelism

The goals of search-level parallelism are to accomplish the following:

1. Enable the simultaneous pursuit of multiple objectives.

2. Yield a spectrum of optimal solutions rather than a single solution.

3. Improve the predictability of FlexGP by fixing the number of model evaluations

made per generation.

4. Show that multi-objective optimization provides performance comparable to

that of operator equalization.

2.2 Integration of Search-Level Parallelism

Multi-objective optimization and operator equalization require different implemen-

tations of each component of the evolutionary loop. This section will describe the

implementation of multi-objective optimization used in FlexGP’s core library, evogpj.

2.2.1 Objective Functions and Evaluation

The evogpj library features a simple model fitness function class hierarchy. Any class

which seeks to become an objective function by inheriting from

fitness.FitnessFunction must implement an evalPop method which assigns a fit-

ness score to each model in the input population. In principle any type of model

evaluation can be included.

The following steps must be taken to define a custom objective function in evogpj:

1. Add an entry to the algorithm.Parameters class’ Operators static class with

the new objective function’s name.

25

2. Define a new class which subclasses the abstract class fitness.FitnessFunction,

and which is defined in the fitness package.

3. Define the FITNESS KEY field to point to the new objective function’s name in

algorithm.Parameters.Operators.

4. Implement the isMaximizingFunction method inside the new class, which re-

turns true if this objective should be maximized and false if it should be

minimized.

5. Implement the evalPop(pop) method inside the new class, which takes a pop-

ulation as input and assigns a fitness score to each individual.

6. Add support for the new objective function to the algorithm.AlgorithmBase

class’ create operators method by calling the new objective function’s con-

structor and adding it to the linked hash map of fitness functions called

fitnessFunction. The create operators method initializes the fitness func-

tions and operators used in evolution.

7. Add the new objective function’s name to the comma-separated list of objective

function names under the parameter fitness op in an evogpj properties file

which defines the problem at hand. Multi-objective optimization will be used if

more than one name is specified; otherwise operator equalization will be used.

This thesis focused on addressing regression challenges and therefore utilized two

fitness functions: a symbolic regression fitness function which seeks to minimize error

on a dataset, and a complexity minimizer.

The symbolic regression fitness function assigns higher fitness to models with

lower predictive error on the specified data. The mean squared error is calculated

using the l2 norm after scaling the output variable to be between 0 and 1. The scaling

allows GP to focus on replicating the correct form of equation rather than the specific

coefficients [21].

The complexity minimizer uses a subtree counting function to assess the complex-

ity of a model. Keijzer & Foster introduce this as “visitation length”, remarking the

26

Algorithm 1 SubtreeComplexity(tree)
tree: a tree with unfixed arity
complexity← 1
for subtree in children(tree) do

complexity ← complexity + SubtreeComplexity(subtree)
return complexity

method directly measures the degree of balance or skew in a tree [10] [21]. We refer

to this method as “subtree complexity.” The calculation of the subtree complexity of

a tree as described in Algorithm 1 is a simple recursive sum of the number of nodes

in every subtree of a tree.

Example Objective Function Definition: Subtree Complexity

We provide an example of defining an objective function in FlexGP 2.0 by considering

the definition of subtree complexity. The steps for doing so as follows:

Step 1: Add a line to the Operators static class in algorithm.Parameters:

public static final String SUBTREE_COMPLEXITY_FITNESS =

"fitness.SubtreeComplexity";

Steps 2 - 5: The fitness.SubtreeComplexityFitness class appears in its entirety

as follows:

package fitness;

import algorithm.Parameters;

import genotype.Tree;

import gp.Individual;

import gp.Population;

/**

* Evaluates an individual’s subtree complexity

* @author Dylan Sherry

27

*/

public class SubtreeComplexityFitness extends FitnessFunction {

public static final String FITNESS_KEY =

Parameters.Operators.SUBTREE_COMPLEXITY_FITNESS;

public Boolean isMaximizingFunction() {

return false;

}

@Override

public void eval(Individual ind) {

Tree t = (Tree) ind.getGenotype();

Integer complexity = t.getSubtreeComplexity();

ind.setFitness(SubtreeComplexityFitness.FITNESS_KEY,

(double) complexity);

}

@Override

public void evalPop(Population pop) {

for (Individual individual : pop) {

this.eval(individual);

}

}

}

This example includes the definition of an eval method which operates on sole mod-

els. This is an optional; only the evalPop method is invoked elsewhere in evogpj.

The getSubtreeComplexity method is defined elsewhere in evogpj, and provides an

implementation of Algorithm 1.

Step 6: Import the new fitness.SubtreeComplexity class in the

algorithm.AlgorithmBase class. Include a section in the

28

algorithm.AlgorithmBase class’ create operators method similar to:

if (fitnessOperatorName.equals(

Parameters.Operators.SUBTREE_COMPLEXITY_FITNESS)) {

fitnessFunctions.put(fitnessOperatorName,

new SubtreeComplexityFitness());

Refer to the algorithm.AlgorithmBase class’ create operators method for the full

context and to see other examples.

Step 7: The fitness functions specified for this problem were: fitness op =

fitness.SRFitness.ExternalData,fitness.SubtreeComplexityFitness where

fitness.SRFitness.ExternalData references the C++ model evaluation objective

discussed further in Chapter 3.

2.2.2 Learning Algorithm Modifications

We implemented NSGA-II , an elitist multi-objective optimization algorithm which

includes the previous generation’s population when selecting the next generation.

NSGA-II uses the non-dominated sorting algorithm to select the next generation’s

population, and uses a crowded tournament selection operator to choose which models

to breed during the generation of children [5].

Algorithm 2 provides a formal description of our implementation. The key pa-

rameters of the algorithm are the population size N , the list of fitness functions f , a

method B by which to select the best model and a stopping criterion STOP .

The specification of objective functions is detailed in Section 2.2.1. The options for

the method B for selecting the best model are described in this section. The stopping

criterion may be a desired number of generations to run, a desired maximum elapsed

runtime or a desired fitness threshold at which to stop if a model is found which

exceeds the threshold.

29

Initialization

• First an initial population of size N is generated using Koza’s ramped-half-and-

half [11].

• Each model in the initial population is then evaluated by all fitness functions

in f and assigned a non-domination rank and crowding distance.

• The initial population is sorted so that the best models are at the beginning of

the population.

• A single best model is chosen to be reported as the primary model obtained

from the initial population using selection method B. The model is scaled to

fit the output variable via linear regression and is exported to the user.

Each Generation

While the stopping criterion is not met, the algorithm is allowed to advance another

generation. During each generation:

• A set of N children are generated from the current population, using crowded

tournament selection to pick which parents are allowed to reproduce.

• The children are evaluated by each fitness function and combined with the

previous generation’s population to form a population of size 2N . The mixing

of parents and children is a form of archiving.

• The models in the 2N population are each given a non-domination rank and a

crowding distance, and the population is sorted.

• The next generation’s population is then obtained by keeping the top N of the

2N models.

• A single best model is chosen to be reported as the primary model obtained

from the current generation using selection method B. The model is scaled to

fit the output variable via linear regression and is exported to the user.

30

Algorithm 2 NSGA-II Multi-Objective Optimization (N , f , B, STOP)
N : size of population, f : list of M fitness functions
B: a method by which to select the best model, STOP : a stopping criterion
pop← initialize(n)
for function in f do

eval(pop,function)
CalculateNonDominationCount(pop)
CalculateCrowdingDistances(pop)
Sort(pop)
best← SelectBest(pop,B)
scaledBest← ScaleModel(best)
while not STOP do

children← BreedChildren(pop)
for function in f do

eval(children,function)
total ← pop+ children

CalculateNonDominationCount(total)
CalculateCrowdingDistances(total)
Sort(total)
pop← total[0, N − 1]
best← SelectBest(pop,B)
scaledBest← ScaleModel(best)

FlexGP scales the output variable to span the range [0, 1] so GP can focus on

learning the shape of the relation described in the data [20], as discussed in Appendix

D. Models are represented internally in their unscaled form for learning. To obtain

an external representation of a model FlexGP performs simple linear regression to

find a best fit between the models’ scaled predictions and the original unscaled output

variable. FlexGP provides fast model scaling which is compatible with both the Java

and C++ model evaluation schemes.

The user can elect to save all models from the Pareto front for each generation.

In this case all models are scaled before they are exported from FlexGP.

Non-Dominated Sort

Single-objective optimization algorithms rank models by their performance on the

sole objective under consideration. A multi-objective optimization algorithm must

consider all objectives when determining a ranking of models. Further, as there is

no implicit absolute ordering of models in a multi-objective optimization problem,

multiple models may be determined to represent optimal solutions. Multi-objective

31

Algorithm 3 CalculateNonDominationCount(pop, f)
pop: a population of size N

f : a list of M fitness functions
for a in 1 to N do

modelA ← pop[a]
for b in 1 to N s.t. a 6= b do

IB ← pop[b]
if Domination(modelA,modelB,f) then

IncrementDominationCount(modelB)
else if Domination(modelB,modelA,f) then

IncrementDominationCount(modelA)
else if Identical(modelA,modelB) then

if a < b then
IncrementDominationCount(modelB)

else
IncrementDominationCount(modelA)

optimization requires a substantially more complex method of sorting to identify the

set of optimal models.

The non-dominated sorting algorithm is the heart of multi-objective optimiza-

tion. Non-dominated sorting identifies the set of optimal models (which is referred

to as the Pareto front) and subsequent fronts by calculating the domination count of

each model, as shown in Algorithm 3. The non-dominated sorting algorithm spec-

ified here is not, strictly speaking, a sorting algorithm, but rather calculates the

non-domination count of each model to be used in the model sorting and selection

described later in this section. Our non-dominated sorting algorithm is an adapta-

tion of Deb’s O(MN2) algorithm [5]. Our algorithm removes the additional step of

calculating each model’s front number, as the non-domination count represents the

minimum information needed for ranking a population.

The calculation relies on a dominance relation between two models. As shown

in Algorithm 4, the dominance relation stipulates model modelA dominates modelB

if and only if modelA performs equivalent to or better than modelB for all objec-

tives, and strictly better than modelB for at least one objective. The references to

GetFitness(model,function) access the memoized fitness computed prior to the

non-dominated sorting.

32

Algorithm 4 Domination(modelA, modelB, f)
modelA and modelB: models to compare, f : a list of M fitness functions
for function in f do

fitnessA ← GetFitness(modelA,function)
fitnessA ← GetFitness(modelA,function)
if fitnessA > fitnessB then

return false;

Crowded Tournament Selection

Tournament selection methods are those used to select a parent or parents from a

population in order to breed children to be considered for inclusion in the next gen-

eration’s population [7]. A simple implementation of a binary tournament selection

procedure is as follows, parameterized by the tournament size:

1. Randomly select a model from the population to be the initial winner of the

tournament.

2. Randomly select a challenger from the remaining population. If the challenger’s

fitness is better than the current tournament winner’s fitness, the challenger is

now the winner of the tournament.

3. Repeat step 2 until the number of challengers which have been considered is

equal to the tournament size parameter, after which return the winning model.

Traditional tournament selection compare fitness values obtained from a single

objective. We must adopt an adaptation of tournament selection which can handle

multiple objectives.

A simple tournament selection method which can function in multi-objective op-

timization can be designed by using the non-domination count previously calculated

by non-dominated sorting. In step 2 of the above single-objective tournament se-

lection process we compared fitnesses to determine the winner. We introduce the

following modification to step 2: first compare the models’ non-domination rank. If

the non-domination ranks are different, select the model with the more favorable

rank. Otherwise if the non-domination ranks are equivalent, the non-dominated sort

33

has deemed the two models as equivalently optimal, so we select the best model at

random.

There is an important nuance to consider. Selection naturally reduces diversity of

models being considered, relying on variation, the subsequent step in an evolutionary

algorithm, to increase the diversity. In multi-objective optimization, when the models

which compose the Pareto front are densely packed in one region of the fitness space,

it is likely the models are also closely situated in the search space. However, to

fully benefit from search-level parallelism the search process should consider a set

of areas of the search space which are as diverse as possible. For this reason it is

desirable to maintain a Pareto front whose models are as evenly spaced as possible,

thus maximizing the diversity of activity in the search space.

Crowded tournament selection provides a method to favor models in a population

which are the most distant or isolated and therefore represent the most diverse and

desirable search points to pursue. To use the crowded tournament selection operator

during the selection step of GP, each model is first assigned a crowding distance

which indicates the density of population of the region surrounding that member.

The crowded tournament selection then favors models with a better non-domination

count and a better crowding distance [5].

Algorithm 5 describes the calculation of crowding distances. The underlying prin-

ciple of the crowding distance calculation is that a model’s crowding distance is equal

to the product of the distances between its neighbors along each of the M objectives

under consideration. This describes the volume of the largest possible M-dimensional

hypercube in fitness-space which touches at least one neighbor per face, where M in-

dicates the number of objectives under consideration. A larger crowding distance

indicates a greater distance between the model in question and its neighbors, and is

therefore more desirable.

The subroutine SortByFitnessFunction(pop,function) takes as input a pop-

ulation of models and an objective function, and returns the indices of the population

sorted from best to worst along the objective indicated by the objective function. No

model evaluations are made in the crowding distance algorithm; the memoized fitness

34

Algorithm 5 CalculateCrowdingDistance(pop, f)
pop: the population of size N on which to operate, f : a list of M fitness functions
for i in [0, 1, ..., (N − 1)] do

model.crowdingDistance← 0
for function in f do

sortedIndices← SortByFitnessFunction(pop,function)
for i in [0, 1, ..., (N − 1)] do

index← sortedIndices[i]
model← pop[index]
if (index = 0) || (index = N − 1) then

distancefunction ←MAX DIST

else
prevModel ← pop[index− 1]
nextModel← pop[index+ 1]
distancefunction ← ‖GetFitness(nextModel,function)−

GetFitness(prevModel,function)‖
model.crowdingDistance← model.crowdingDistance+ distancefunction

values are accessed by the procedure GetFitness(model,function).

Once the crowding distances have been calculated for each model in the popula-

tion, the crowded tournament selection method is as follows:

1. Randomly select a model from the population to be the initial winner of the

tournament.

2. Randomly select a challenger from the remaining population. If the challenger’s

non-domination rank is better (smaller) than the current tournament winner’s

non-domination rank, the challenger is now the winner of the tournament. Else

if the non-domination ranks are equivalent, the model with the better (larger)

crowding distance is the new tournament winner.

3. Repeat step 2 until the number of challengers which have been considered is

equal to the tournament size parameter, after which return the winning model.

Model Selection Criterion and Population Sorting

After each model has been assigned a non-domination rank and a crowding distance,

the combined population of size 2N is sorted in order to choose the best N models

to become the next generation’s population. The best model is found at the top of

35

the population after sorting. Sorting the population also makes it easy to identify

the best b models to send for migration, which will occupy the top b positions in the

population after sorting.

Once the previous sort has been performed FlexGP must choose a model to record

as the best of that generation. In the single-objective case the best model is simply

the model with the best fitness; multi-objective optimization yields multiple optimal

solutions which means a new strategy is needed. Multiple migrants must be selected

if FlexGP has been asked to perform migration, so FlexGP must also provide a means

of selecting a variable number of best models from the population.

FlexGP includes the option of recording the entire Pareto front if running multi-

objective optimization, but a best model must still be identified.

FlexGP handles this by sorting the population according to a user-specified strat-

egy. The three strategies are defined below.

A. Original Sort

The simplest solution is the original sort method, which preserves the sort originally

made as described above, where models are sorted by non-domination count and,

within each front, by crowding distance.

Preserving an ordering by non-domination rank is desirable for this selection,

since multi-objective optimization deems the Pareto front and subsequent fronts to

contain the most optimal models. However, secondary sort by crowding distance

may not provide the best outcome. Crowding distance favors models who are the

most distant and therefore in conjunction represent the most diverse solutions. An

alternative selection metric would address the tradeoff between objectives naturally

made in multi-objective optimization.

B. Best Fitness

The best fitness selection method sorts models within each front by fitness rather

than crowding distance. This selection method ignores any objectives other than

the one which was listed first and therefore identified as the primary objective for

36

Figure 2-2: An example of using the euclidean distance to find the knee of a Pareto
front. The red dots represent models which are members of the Pareto front, and
the black dots represent other models under consideration. The two objectives under
minimization are shown on the two axes. The euclidean distance of several models
is shown by the diagonal dotted lines, where the blue dot shows the model with the
lowest euclidean distance (the “knee”).

best fitness selection. To select the best model the best fitness method picks the

model from the Pareto front which has the highest fitness. The best model from the

Pareto front must be the best in the population along the first objective because it

represents one extreme of the Pareto front. In the case of the two-objective regression

problem discussed in this thesis, this corresponds to selecting the model with the

lowest MSEtrain in the population.

C. Euclidean Distance

FlexGP provides a third option for a selection criterion called euclidean distance.

The euclidean distance selection metric sorts models primarily by non-domination

rank, as in the original sort method, and uses the model’s distance from the origin in

fitness-space as the secondary sort. Euclidean distance favors models which are near

the “knee” of the front, as depicted in figure 2-2 [3].

37

Algorithm 6 CalculateEuclideanDistance(pop, f)
pop: the population of size N on which to operate, f : a list of M fitness functions
for i in [0, 1, ..., (N − 1)] do

model.euclideanDistance← 0
for function in f do

(minfunction,maxfunction)← FindMinAndMax(pop,f)
rangefunction ← maxfunction −minfunction

for i in [0, 1, ..., (N − 1)] do
model← pop[index]
fitnessScorefunction ←GetFitness(model,function)

distancefunction ← (
fitnessScorefunction−minfunction

rangefunction
)2

model.euclideanDistance← model.euclideanDistance+ distancefunction

Algorithm 6 describes the calculation of the euclidean distance of each model

within a population. The first step is to identify the minimum and maximum values

of the population’s models for each objective. Then a model’s euclidean distance is

given by the sum of the squares of the models’ distances from the origin for each

objective, after normalization to place each distance between 0 and 1 according to

the objective’s minimum and maximum values within the population.

2.3 Experimental Evaluation

This section presents experiments conducted to determine if FlexGP 2.0’s search-level

parallelism has met the goals outlined in Section 2.1.3.

2.3.1 Experimental Setup

Four experiments were conducted with FlexGP operating with the following configu-

rations:

1. OE-SIMP : Operator equalization with a simple function set

2. MO-SIMP : Multi-objective optimization with a simple function set

3. OE-COMP : Operator equalization with a complex function set

4. MO-COMP : Multi-objective optimization with a complex function set

38

Simple + − ∗ /
Complex + − ∗ / exp log sqrt square sin cos

Table 2.1: The two function sets used in the four experiments described in this
section. The log function was defined to return 0 if the input would otherwise produce
an undefined output.

Table 2.1 shows the two function sets used in these experiments.

To provide a fair comparison between the four experiments, all were conducted

with Java-based model evaluation. C++ model evaluation was not used because

evogpj’s implementation of operator equalization was not modified to support it.

The focus of this thesis at an algorithmic level was on increasing the speed of multi-

objective optimization; further, operator equalization imposes constraints on model

evaluation which make batch processing unfavorable, as discussed at the end of Sec-

tion 2.1.1. To compensate for the slow speed of Java-based model evaluation In each

experiment FlexGP was allowed to train for 48 hours and all measurements were

collected during that interval.

For multi-objective optimization the best fitness metric discussed in Section 2.2.2

was used to determine the best model. The best fitness metric when applied to

multi-objective optimization ignores the second objective, subtree complexity, and

selects the model with the best fitness along the primary objective. This means both

multi-objective optimization and operator equalization identified their best model per

generation as that with the highest fitness and therefore the lowest MSEtrain.

In each repetition of each experiment the learner given access to a different 70%

training data split. No population-level or factorization-level parallelism was used.

Experiments OE-SIMP and MO-SIMP both used a simple function set, and ex-

periments OE-COMP and MO-COMP both used a complex function set. This was

done to investigate what effect the function set might have on the comparison of

multi-objective optimization and operator equalization.

All experiments were conducted on the Million Song Dataset year prediction chal-

lenge, which is described in Appendix A. Each experiment was repeated 10 times to

demonstrate statistical validity. The salient information collected from each genera-

39

tion of each trial includes the elapsed time, the number of model evaluations made

and the MSEtest and MAEtest of the best model. s

2.3.2 Results

Table 2.2 shows the mean and standard deviation of the number of model evaluations

made in the first generation of each experiment.

Table 2.3 shows the mean number of evaluations and the mean and standard de-

viation of the number of generations per model evaluation. The table also shows

the mean and standard deviation of the number of model evaluations made per gen-

eration. Therefore a lower mean(evals
gens

) indicates more evaluations were made per

generation. This is because operator equalization’s requires a variable number of

model evaluations each generation to equalize the child population by model size,

and is discussed further in Section 2.1.2.

Figure 2-3 shows the mean MSEtest and MAEtest v.s. time for experiments OE-

SIMP and MO-SIMP. Figures 2-4 show the mean MSEtest and MAEtest v.s. time for

experiments OE-COMP and MO-COMP. Table 2.4 shows the same results in tabular

form. This represents an Time comparison as defined in Section 1.3.

figure 2-5 shows the mean MSEtest andMAEtest v.s. the elapsed number of model

evaluations for experiments OE-SIMP and MO-SIMP. Figures 2-6 show the mean

MSEtest and MAEtest v.s. time for experiments OE-COMP and MO-COMP. Table

2.5 shows the same results in tabular form. This represents an Model Evaluations

comparison as defined in Section 1.3.

Experiment mean(evals) stddev(evals)
OE-SIMP 3223.3 246
MO-SIMP 1000 0.0
OE-COMP 73175.6 36665.9
MO-COMP 1000 0.0

Table 2.2: The average and the standard deviation of the number of model evalua-
tions made during the first generation for 10 trials of the four experiments described
in Section 2.3.1.

40

Experiment mean(gens) stddev(gens) mean(evals
gens

) stddev(evals
gens

)

OE-SIMP 36.6000 7.6768 3725.2 526.8
MO-SIMP 145.9000 30.1347 1000 0
OE-COMP 29.1429 8.9336 5937.3 2517.3
MO-COMP 138.4444 32.9777 1000 0

Table 2.3: Generation statistics are shown for the four experiments from Section
2.3.1. The 2nd and 3rd columns show the mean and standard deviation of the number
of generations elapsed during the model evaluations indicated in the second column.
The 4th and 5th column show the mean and standard deviation of the number of
generations per model evaluation.

Metric 8hrs 16hrs 24hrs 32hrs 40hrs 48hrs

OE-SIMP

mean(MSEtest) 117.456 116.420 115.249 114.753 114.506 113.876
stddev(MSEtest) 3.216 3.120 3.610 3.748 3.811 4.025
mean(MAEtest) 8.095 8.050 7.992 7.969 7.959 7.931
stddev(MAEtest) 0.092 0.103 0.156 0.166 0.172 0.173

MO-SIMP

mean(MSEtest) 117.046 115.113 114.487 113.835 113.515 113.375
stddev(MSEtest) 3.615 4.145 4.556 4.762 4.901 4.984
mean(MAEtest) 8.087 7.989 7.961 7.940 7.927 7.922
stddev(MAEtest) 0.129 0.217 0.221 0.230 0.238 0.239

OE-COMP

mean(MSEtest) 118.107 117.186 116.079 113.600 112.316 110.740
stddev(MSEtest) 2.232 3.427 4.936 5.128 5.530 5.497
mean(MAEtest) 8.168 8.100 8.036 7.896 7.814 7.733
stddev(MAEtest) 0.104 0.175 0.265 0.248 0.291 0.309

MO-COMP

mean(MSEtest) 117.237 114.592 113.609 112.782 112.045 111.561
stddev(MSEtest) 3.690 6.168 6.840 7.357 7.614 7.851
mean(MAEtest) 8.101 7.968 7.901 7.864 7.824 7.806
stddev(MAEtest) 0.130 0.266 0.304 0.337 0.352 0.359

Table 2.4: The average and the standard deviation of the MSEtest and MAEtest v.s.
the elapsed time (in hours) for 10 trials of the four experiments described in Section
2.3.1.

2.3.3 Analysis

The results show multi-objective optimization gives a slight benefit in performance

relative to operator equalization when the simple function set is used, as shown in

Figure 2-3. For experiments OE-COMP and MO-COMP which were conducted with

the complex function set multi-objective optimization outperforms operator equaliza-

tion for most of the time, but operator equalization eventually begins to yield higher

accuracy than multi-objective optimization, as shown in Figure 2-4.

The model evaluation plots from figure 2-5 and figure 2-6 show no dramatic differ-

41

Metric 3000 6000 9000 12000 15000 18000

OE-SIMP

mean(MSEtest) 117.362 116.164 115.004 114.501 113.876 113.876
stddev(MSEtest) 3.309 3.163 3.741 3.842 4.025 4.025
mean(MAEtest) 8.091 8.036 7.978 7.958 7.931 7.931
stddev(MAEtest) 0.095 0.107 0.162 0.173 0.173 0.173

MO-SIMP

mean(MSEtest) 116.404 114.986 114.278 113.673 113.387 113.375
stddev(MSEtest) 3.656 4.126 4.730 4.861 4.991 4.984
mean(MAEtest) 8.054 7.977 7.953 7.933 7.922 7.922
stddev(MAEtest) 0.162 0.215 0.232 0.239 0.239 0.239

OE-COMP

mean(MSEtest) 118.301 117.011 116.054 113.473 112.144 110.911
stddev(MSEtest) 2.031 4.104 4.988 6.102 6.235 5.718
mean(MAEtest) 8.189 8.083 8.036 7.902 7.807 7.741
stddev(MAEtest) 0.100 0.224 0.265 0.331 0.321 0.321

MO-COMP

mean(MSEtest) 116.600 114.148 113.096 112.403 111.806 111.561
stddev(MSEtest) 3.831 5.964 6.800 7.180 7.649 7.851
mean(MAEtest) 8.066 7.935 7.877 7.847 7.815 7.806
stddev(MAEtest) 0.173 0.253 0.310 0.333 0.349 0.359

Table 2.5: The average and the standard deviation of the MSEtest and MAEtest

v.s. the elapsed number of model evaluations for 10 trials of the four experiments
described in Section 2.3.1.

ence to the time-series plots, which suggests operator equalization and multi-objective

optimization were roughly matched in terms of the overall number of fitness evalua-

tions made in 48 hours. This is corroborated by Table 2.3.

The final MSEtest was lower for both operator equalization and multi-objective

optimization when operating with the complex function set. This indicates a more

complex function set provides a better fit on the MSD year recognition challenge.

These results indicate multi-objective optimization will generally yield better per-

formance than operator equalization in the same time. No further statement can be

made about the performance of the two algorithms’ accuracy with respect to time,

as the reported performance likely has a high dependence on the specific characteris-

tics of the data. Yet the fact that multi-objective optimization was able to compare

with operator equalization on an experiment of this size and complexity suggests the

other advantages of multi-objective optimization over operator equalization indicate

multi-objective optimization is generally a better option when time is valued.

Table 2.2 shows an important characteristic. For the simple function set operator

equalization consumed on average over three times as many fitness evaluations in the

42

first generation as did multi-objective optimization. For the complex function set

operator equalization consumed on average over 73 times as many fitness evaluations

in the first generation as did multi-objective optimization. Further, the standard

deviation was quite high. This can also be seen in the time and model evaluation

plots. The natural conclusion is that operator equalization will always take a long

time to set up a distribution over model size, which is undesirable. Multi-objective

optimization, on the other hand, will always make 1000 evaluations per generation.

Therefore multi-objective optimization is a better choice when results are desired

quickly.

These results suggest a strategy for benefiting from both algorithms: run the first

few generations with multi-objective optimization, then switch to operator equaliza-

tion once the population reflects a distribution over model complexity. That way

MOO sets up a complexity distribution so operator equalization won’t consume tens

of thousands of model evaluations in the first generation. Once multi-objective op-

timization has set up a desirable complexity distribution, operator equalization can

take over.

To summarize, the results in this section in combination with the description of

the design in the previous section demonstrate multi-objective optimization has met

all the goals originally stipulated in Section 2.1.3:

1. Enable the simultaneous pursuit of multiple objectives.

2. Yield a spectrum of optimal solutions rather than a single solution.

3. Improve the predictability of FlexGP by fixing the number of model evaluations

made per generation.

4. Show that multi-objective optimization provides performance comparable to

that of operator equalization.

43

0 5 10 15 20 25 30 35 40 45
110

111

112

113

114

115

116

117

118

119

120

Time (hours)

Average MSE
test

 v.s. elapsed time for ten repetitions of two experiments

M
S

E
te

st

Operator Equalization, simple func
Multi−Objective Optimization, simple func

(a) mean(MSEtest) v.s. elapsed time for search-parallel experiments OE-

SIMP and MO-SIMP

0 5 10 15 20 25 30 35 40 45
7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

Time (hours)

Average MAE
test

 v.s. elapsed time for ten repetitions of two experiments

M
A

E
te

st

Operator Equalization, simple func
Multi−Objective Optimization, simple func

(b) mean(MAEtest) v.s. elapsed time for search-parallel experiments OE-

COMP and MO-COMP

Figure 2-3: A comparison of the mean(MSEtest) and mean(MAEtest) v.s. elapsed
model evaluations for search-parallel experiments OE-SIMP andMO-SIMP described
in Section 2.3.1, which ran with a simple function set.

44

0 5 10 15 20 25 30 35 40 45
110

111

112

113

114

115

116

117

118

119

120

Time (hours)

Average MSE
test

 v.s. elapsed time for ten repetitions of two experiments

M
S

E
te

st

Operator Equalization, complex func
Multi−Objective Optimization, complex func

(a) mean(MSEtest) v.s. elapsed time for search-parallel experiments OE-

COMP and MO-COMP

0 5 10 15 20 25 30 35 40 45
7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

Time (hours)

Average MAE
test

 v.s. elapsed time for ten repetitions of two experiments

M
A

E
te

st

Operator Equalization, complex func
Multi−Objective Optimization, complex func

(b) mean(MAEtest) v.s. elapsed time for search-parallel experiments OE-

COMP and MO-COMP

Figure 2-4: A comparison of the mean(MSEtest) and mean(MAEtest) v.s. elapsed
time for search-parallel experiments OE-COMP and MO-COMP described in Section
2.3.1, which ran with a complex function set.

45

0 2 4 6 8 10 12 14 16 18

x 10
4

110

111

112

113

114

115

116

117

118

119

120

Model Evaluations

Average MSE
test

 v.s. elapsed model evaluations for ten repetitions of two experiments

M
S

E
te

st

Operator Equalization, simple func
Multi−Objective Optimization, simple func

(a) mean(MSEtest) v.s. elapsed model evaluations for search-parallel ex-
periments OE-SIMP and MO-SIMP

0 2 4 6 8 10 12 14 16 18

x 10
4

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

Model Evaluations

Average MAE
test

 v.s. elapsed model evaluations for ten repetitions of two experiments

M
A

E
te

st

Operator Equalization, simple func
Multi−Objective Optimization, simple func

(b) mean(MAEtest) v.s. elapsed model evaluations for search-parallel ex-
periments OE-SIMP and MO-SIMP

Figure 2-5: A comparison of the mean(MSEtest) and mean(MAEtest) v.s. elapsed
model evaluations for search-parallel experiments OE-SIMP andMO-SIMP described
in Section 2.3.1, which ran with a simple function set.

46

0 2 4 6 8 10 12 14 16 18

x 10
4

110

111

112

113

114

115

116

117

118

119

120

Model Evaluations

Average MSE
test

 v.s. elapsed model evaluations for ten repetitions of two experiments

M
S

E
te

st

Operator Equalization, complex func
Multi−Objective Optimization, complex func

(a) mean(MSEtest) v.s. elapsed model evaluations for search-parallel ex-
periments OE-COMP and MO-COMP

0 2 4 6 8 10 12 14 16 18

x 10
4

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

Model Evaluations

Average MAE
test

 v.s. elapsed model evaluations for ten repetitions of two experiments

M
A

E
te

st

Operator Equalization, complex func
Multi−Objective Optimization, complex func

(b) mean(MAEtest) v.s. elapsed model evaluations for search-parallel ex-
periments OE-COMP and MO-COMP

Figure 2-6: A comparison of the mean(MSEtest) and mean(MAEtest) v.s. elapsed
model evaluations for search-parallel experiments OE-COMP and MO-COMP de-
scribed in Section 2.3.1, which ran with a complex function set.

47

48

Chapter 3

Evaluation-Level Parallelism

Evaluation-level parallelism distributes the computation of models’ fitnesses to mul-

tiple CPUs. This distribution dramatically reduces the runtime of FlexGP’s core

GP learner, allowing learning to occur with data of a size and complexity which was

previously intractable.

Chapter 2 saw FlexGP 1.0’s Java-based model evaluation make no more than

180k model evaluations on average in 48 hours. The results from this section show

the same number of model evaluations made after only 3 hours of computation when

evaluation-level parallelism is activated. This represents a speedup of approximately

20x.

3.1 Motivation and Goals

Model evaluation is typically the fundamental bottleneck in GP, and in EAs in general

[8]. Figure 3-1 shows a standard evolutionary loop which was used in FlexGP 1.0.

Model evaluation represents the most computationally expensive component of the

loop.

There are four primary reasons why model evaluation is the most time-consuming

step of GP. They are enumerated as follows:

Data Length: A model’s predictions must be evaluated for all training cases in

49

Figure 3-1: This figure visualizes the standard evolutionary loop used by FlexGP
1.0. Each labeled box represents a step in the loop. FlexGP 1.0 performs model
evaluation in Java. The blue path shows the flow of each population of models
through the algorithm during each generation. In FlexGP the beginning of each
generation occurs before the variation step.

order to assign the model a fitness score. As a result the number of points in

the training data contributes linearly to the time spent on model evaluation.

Data Width’s Impact on Tree Size: If we can assume a sizable majority of the

features in the data set are uncorrelated and possess a similar level of informa-

tion content, it is highly likely the trees produced by GP will include references

to most features. The trees will become exponentially more complex as the

number of features in the training dataset increases. Therefore the resulting

trees will require an exponentially greater amount of time to evaluate.

Data Complexity and Operator Set: Any dataset exhibiting a complex relation-

ship between input and output variables will require models of still greater

complexity to represent accurate solutions. More nonlinear operators like the

logarithm, trigonometric functions and exponentials can be included to address

more complex datasets, but at the expense of more time spent on evaluation.

Population Size: Each new model generated must be evaluated before selection

can consider it for addition to the next generation’s population. Traditional

GP algorithms generate a number of children equal to the population size.

50

Therefore the number of model evaluations per generation must be on the order

of the population size.

The four dimensions of scale listed above represent important opportunities to

boost GP’s search capabilities. Setting aside the expense of time, the performance of

GP generally benefits from access to richer data of greater length, width and complex-

ity. GP’s performance also improves with larger population size, as we demonstrate in

Chapter 4. Careful attention to making model evaluation fast and efficient can enable

GP to tackle problems which have increased in scale along any of these four dimen-

sions. For these reasons it is important to increase the speed of model evaluation as

much as possible when constructing a system to perform GP.

FlexGP 2.0 addresses model evaluation in two parts:

C++ Model Evaluation: FlexGP 2.0 translates a batch of models to be evaluated

into a C++ program where each model’s calculation of fitness is represented as

a function declaration. The C++ program is compiled and run to obtain the

models’ fitness values. We demonstrate the export of model evaluation to C++

provides a significant increase in the rate of model evaluation relative to the

rate obtained in Java.

C++ Shared Memory Multithreading: The previous C++ program is modi-

fied to divide the evaluations amongst multiple threads. To benefit from mul-

tithreading, execution occurs on a machine with multiple CPUs. Multi-core

CPUs are now standard in most modern computers. Parallelization is a natural

means of speeding up model evaluation. GP is more easily parallelizable than

many search and optimization techniques due to high degree of independence of

the steps in the evolutionary loop. In particular, a GP algorithm’s population

is composed of a large set of models which each represent a point of current

pursuit in the search space. The models are fully independent from one another

and thus can be evaluated independently. Figure 3-2 depicts the evolutionary

loop with the inclusion of evaluation-level parallelism.

51

Figure 3-2: This figure visualizes FlexGP 2.0’s new evolutionary loop after the intro-
duction of evaluation-level parallelism. Each labeled box represents a step in the loop.
The four “Eval” boxes represent FlexGP 2.0’s parallelized C++ model evaluation.
The blue path shows the flow of each population of models through the algorithm
during each generation. In FlexGP the beginning of each generation occurs before
the variation step.

In summary, FlexGP’s evaluation-level parallelism addresses model evaluation via

transferral of evaluation to C++ combined with simple multithreading. The goal of

model evaluation parallelization is to increase the speed of the algorithm. This will

decrease the time spend to obtain results and in doing so expand the range of data

sizes, data complexities and population sizes which may be addressed by GP.

3.2 Integration of Evaluation-Level Parallelism

FlexGP’s parallelization of model evaluation consists of two components. The first

transfers evaluation from FlexGP’s native language of Java to C++. The second

component is the addition of multithreading to the C++ model evaluation. The

changes made to support evaluation-level parallelism are encapsulated in FlexGP’s

custom Java-based GP library, evogpj.

52

3.2.1 C++ Model Evaluation

FlexGP’s C++ model evaluation introduces a new evaluation workflow. From the

perspective of the evolutionary loop, C++ model evaluation processes models in

batches rather than in sequence. In FlexGP 2.0 the batch under evaluation is the set

of children bred from the previous generation’s population.

To support C++ model evaluation FlexGP must load training data into a shared

memory region. This makes the data accessible by the C++ evaluation program by

preserving the data in memory between generations to avoid repeatedly incurring the

time overhead associated with loading the data.

The procedure for performing the model evaluation calculation in C++ is as

follows:

1. Translate each model into a series of sequential operations (example shown in

figure 3-3).

2. Compose a single C++ program which:

A. Defines each model evaluation as a separate function consisting of each

model’s sequential operations determined in step 1.

B. Invokes each model’s function to evaluate the model on all training data

points, storing the obtained fitness in a global array.

C. Writes the fitness of each model from a global array to a file entitled

“results.txt” in the order the models were received.

3. Write the C++ code to file.

4. Compile the C++ code to a native binary.

5. Run the resulting C++ binary.

6. Read the resulting fitness scores from “results.txt” back into Java. 1

1This could have been done via shared memory instead of on disk. But the time spent reading
and writing results was measured to be insignificant compared to the time consumed by evaluation.

53

Figure 3-3: An example of the translation of models to a series of sequential steps.
On the left is GP’s tree representation of the model (X5 + cos(X2)) ∗X3). The se-
quential translation of that model is shown at right, where the ultimate value returned
by the model is S3.

Of the steps described above, the only two which require a non-negligible quantity

of time to complete are the compilation of the C++ source and running the C++

binary. FlexGP must compile the C++ evaluation code each generation. The compi-

lation time depends primarily on the number of models. Each FlexGP 2.0 learner is

typically operated with a fixed population size of 1,000 models, which means compila-

tion time can be viewed as a constant rather than variable cost in time. The average

duration of the compilation time across the 10 repetitions of experiment C++4 from

Section 3.3, which was run with a population of 1,000 and non-multithreaded C++

model evaluation, was 5.9 seconds.2

To reduce the amount of memory and time consumed by model evaluation, data is

stored in shared memory using the float type rather than the double type. Repre-

senting the data with float results in a slight decrease in the precision of the fitness

calculation. This is acceptable since the purpose of model evaluation is to provide

a method of comparison between models. A minute decrease in precision can only

affect the comparison of models who are already closely situated in fitness-space. A

2The duration of compilation presents an inherent dependence of the efficacy of C++ model
evaluation relative to Java model evaluation which is discussed in Chapter 6 and is not the focus of
this thesis.

54

mistake in comparison of such models will not have an explicitly positive or negative

effect on the search.

3.2.2 Adding Shared Memory Multithreading

The procedure described in the previous section requires little modification to support

multithreaded model evaluation. All steps are identical to the sequence outlined in

Section 3.2.1 except for step 2, the modifications to which are shown below:

2. Compose a single C++ program which

A. Defines c pthreads, and assign as equal a number of models as possible

to each pthread.

B. Passes each pthread a pointer to a global array in which to save the

resulting fitness scores.

C. Passes each pthread a pointer to the training data, located in shared

memory.

D. Within each pthread, defines each of the pthread’s models as a separate

function consisting of sequential operations determined in step 1.

E. Defines the main method of each pthread to invoke each of that pthread’s

models’ function, saving the resulting fitness scores to the global array.

F. Start each pthread.

G. Once all pthreads have been joined with the main thread, writes the

global array containing each models’ computed fitness to a file entitled “re-

sults.txt”.

It is safe to assume each pthread receives models which have on average the same

complexity, since the population sort method from Section 2.2.2 sorts the population

first by domination count and then by crowding distance. Balancing the load of each

pthread ensures all pthreads will complete their designated evaluations at about the

same time.

55

We don’t explicitly balance the computational load of each pthread. However the

population sort method from Section 2.2.2 will implicitly do so by sorting individuals

primarily by non-domination rank. This means each front resulting from the sort will

contain a range of model complexities, where the fronts are then spread sequentially

throughout the population.

Multithreading will only result in a noticeable performance benefit if the compu-

tation is performed on a machine with multiple cores. Otherwise the multithreaded

computation will evaluate the entire population in sequence rather than in parallel.

Apart from the execution duration of the compiled C++ binary, none of the above

steps consume significantly more time when multithreading is enabled. The compile

time was averages across the 10 repetitions of experiment 3 in Section 3.3, which

was run with a population of 1,000 and multithreaded C++ model evaluation. The

average compile time with multithreading was found to be only several tenths of a

second greater than the average compile time observed without multithreading in

Section 3.2.1.

3.3 Experimental Evaluation

In this section we experimentally establish the value of evaluation-level parallelism

by demonstrating the speedup offered by C++ model evaluation and by the addition

of multithreading.

3.3.1 Experimental Setup

We compare the performance of FlexGP operating under the following conditions:

1. Java1 : Java-based model evaluation running on a single-core machine.

2. C++1 : C++ model evaluation running on a single-core machine.

3 C++4 : Multithreaded C++ model evaluation running on a four-core machine

with four pthreads.

56

All experiments were conducted on the Million Song Dataset year prediction chal-

lenge, a large regression problem which is described in Appendix A. Each experiment

was repeated 10 times to demonstrate statistical validity. During each repetition

FlexGP was allowed to train for three hours. The information collected from each

generation of each trial includes the elapsed time, the number of fitness evaluations

made and theMSEtest andMAEtest of the best model. The euclidean distance metric

discussed in Section 2.2.2 was used to determine the best model.

3.3.2 Results

Results are presented in two sections:

Speedup: results which demonstrate the speedup achieved by C++ model evalua-

tion.

Performance Improvement: results which demonstrate the improvement in accu-

racy afforded by an increase in evaluation speed.

To best illustrate the contrast between the experiments’ results, the y axis of

our plots show the gain in MSEtest and gain in MAEtest rather than the absolute

MSEtest and MAEtest. This allows all curves to originate for the origin, which makes

the change in MSEtest and in MAEtest readily apparent. We define the gain in

MSEtest or MAEtest at time i as:

MSEtest[0]−MSEtest[i]

The same definition is made for the MAEtest. The starting MSEtest and MAEtest of

all three experiments was determined to be equivalent on average, which legitimizes

this comparison.

Speedup

Figure 3-4 shows the average number of model evaluations made over time. Each

point was calculated by finding the number of elapsed model evaluations made before

57

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

16

18
x 10

4

Time (minutes)

N
um

be
r

of
 e

la
ps

ed
 fi

tn
es

s
ev

al
ua

tio
ns

A comparison of the average number of elapsed fitness evaluations v.s. time

Java 1 core
C++ 1 core
C++ 4 core

Figure 3-4: Average number of model evaluations made v.s. time for each of the 3
experiments

a given time for each learner, and calculating the average of the 10 resulting values.

The standard deviation values included in table 3.1 were obtained by calculating the

standard deviation of the 10 resulting values.

Metric 30min 60min 90min 120min 150min 180min

Java1
mean(#fitevals) 1000 3000 5000 6600 7700 9000
stddev(#fitevals) 0 0 0 516.4 675.0 666.7

C++1
mean(#fitevals) 27200 52000 75300 95500 113000 130200
stddev(#fitevals) 4614 8353 12047 15686 19788 24485

C++4
mean(#fitevals) 48200 78400 105300 128600 150500 173600
stddev(#fitevals) 8548 17083 24829 31655 37533 43043

Table 3.1: The average and the standard deviation of the number of fitness evals
v.s. time for 10 trials of the three experiments in this chapter. All values are given
in units of millions of fitness evaluations.

Performance Improvement

Figure 3-5 shows the average MSEtest and MAEtest of the best model from each trial.

Each point was obtained by identifying which model scored the highest MSEtest or

58

MAEtest on the test data for each learner, and calculating the average of the 10

resulting values. The standard deviation values included in table 3.2 are the standard

deviation of the 10 resulting values.

Metric 30min 60min 90min 120min 150min 180min

Java1

mean(MSEtest) 0.0000 0.0370 0.2820 0.2890 0.3030 0.3490
stddev(MSEtest) 0.0000 0.1067 0.4384 0.4339 0.4328 0.4214
mean(MAEtest) 0.0000 0.0145 0.0494 0.0557 0.0568 0.0699
stddev(MAEtest) 0.0000 0.0454 0.0668 0.0646 0.0652 0.0658

C++1

mean(MSEtest) 0.1310 1.1710 2.2100 2.6730 3.0020 3.5540
stddev(MSEtest) 0.4073 2.0266 2.6097 3.3430 3.3986 3.5623
mean(MAEtest) 0.0095 0.0444 0.0890 0.1147 0.1272 0.1598
stddev(MAEtest) 0.0299 0.0921 0.1285 0.1709 0.1716 0.1776

C++4

mean(MSEtest) 1.0330 5.0410 6.4930 7.6570 8.0340 8.8470
stddev(MSEtest) 1.6018 2.3680 2.6770 2.6156 2.6821 2.7008
mean(MAEtest) 0.0473 0.2167 0.2881 0.3535 0.3781 0.4246
stddev(MAEtest) 0.0818 0.1366 0.1666 0.1697 0.1813 0.1877

Table 3.2: The average and the standard deviation of MSEtest and MAEtest v.s.
time for 10 trials of the three evaluation-parallel experiments.

3.3.3 Analysis

Figure 3-4 shows both experiments C++1 and C++4 perform model evaluations at

a faster rate than Java1. This confirms that C++ model evaluation runs significantly

faster than Java-based evaluation, and that multithreaded C++ model evaluation

runs about twice as fast as C++ model evaluation with no multithreading. A com-

parison of the mean(#fitevals) for C++4 and Java1 from table 3.1 shows C++4

provides 19.29 times more model evaluations on average than Java1 in the same

amount of time.

Figure 3-5 shows C++1 and C++4 outperform Java1 in time, which confirms

that the boost in speed from C++ model evaluation ultimately results in more ac-

curate results, and that multithreaeded C++ model evaluation performs noticeably

better than C++ model evaluation with no multithreading.

These facts in conjunction mean that multithreaded C++ model evaluation has

has satisfied the sole goal of evaluation-level parallelism outlined in Section 3.1, and

59

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8

9

10

Time (minutes)

A
ve

ra
ge

 G
ai

n
in

 M
S

E
te

st

Average Gain in MSE
test

 v.s. elapsed time for ten repetitions of three experiments

Java 1 core
C++ 1 core
C++ 4 core

(a) Average gain in MSEtest v.s. time of evaluation-parallel experiments

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (minutes)

A
ve

ra
ge

 G
ai

n
in

 M
A

E
te

st

Average Gain in MAE
test

 v.s. elapsed time for ten repetitions of three experiments

Java 1 core
C++ 1 core
C++ 4 core

(b) Average gain in MAEtest v.s. time of evaluation-parallel experiments

Figure 3-5: A comparison of the gain in MSEtest and of the gain in MAEtest of
the three evaluation-parallel experiments. The gain in performance is due to the
increased speed of model evaluations.

60

that multithreaded C++ model evaluation represents a significant augmentation of

FlexGP’s capabilities.

61

62

Chapter 4

Population-Level Parallelism

Population-level parallelism adds a second tier of computational resource exploitation

to FlexGP by replacing each factor-parallelized GP learner with a sub-network of

learners given the same factorized data and parameters. Below the factor-parallel

layer, each learner is given a different factorization of the data and other parameters

to train on; FlexGP’s population-level parallelism replaces that sole learner with a

sub-network of learners each running on an independent machine. This arrangement is

shown in figure 4-1. These population-parallelized learners periodically communicate

their best models to other learners in the same sub-network. The transmission of best

models is referred to as migration.

By allocating more computational power to each factorization, population paral-

lelization results in a swifter and more powerful search and grants FlexGP a second

tier of scalability with respect to data size.

4.1 Motivation and Goals

Increased population sizes are beneficial to GP. Each model in the search algorithm’s

population represents a candidate solution to the problem at hand. An increased

population size allows the algorithm to simultaneously explore more points in the

search space.

For performing machine learning with GP, this benefit is particularly important

63

Figure 4-1: This figure depicts the combination of factor-level parallelism from
FlexGP 1.0 with the population-level parallelism described in this chapter. Each blue
box represents a unique factorization group with its own training and validation data
split. Each white circle shows an independent population-parallelized node which
sustains its own GP process. The lines between the population-parallelized nodes
indicate a randomized topology for the communication of best models within each
factorization group.

when the number of variables in a dataset increases and the search space expands in

size and complexity.

However, the time consumed by GP scales linearly with population size, as the

fitness of each model must be evaluated in each generation. This means a ten-fold

increase in population size results in an algorithm which is ten times slower. An

alternative strategy is needed to address increasing population size while maintaining

a fast runtime.

A natural first solution to parallelize the computation is to split a large population

into smaller chunks which are each supported by different machines. This essentially

amounts to an emulation of what would happen on one machine, but introduces

several new difficulties. The distributed GP algorithm must be able to access all

models across the entire population in a centralized manner in order to perform

tournament selection and possibly other steps in the evolutionary loop. To support

this emulation it is necessary to provide a means of passing information about the

64

models over the network. Further, there must be one machine which, at some point in

the emulation, must make a centralized decision to complete a step like tournament

selection. This means a machine or machines could represent a central point in the

distributed network of machines, which is undesirable from the perspective of fault

tolerance. More importantly, it is unlikely this scheme would increase the rate of

computation by a large amount, since the need for centralization implies all machines

must wait for a centralized step to complete before proceeding. Finally, this rate is

further limited by network latency and the possibility of network bottlenecking due

to heavy traffic required to support the emulation.

Fortunately a better solution exists. It is not necessary to preserve the continuity

of the population across the different machines. Splitting a large population into

smaller chunks which are each sustained by independent GP learners running on a

different machines is an effective means of preserving speed while increasing overall

population size. Doing so preserves the benefit of supporting more points in the

search space while simultaneously guaranteeing the aggregate population will have

the same runtime as any of the constituent learners.

This configuration may provide further benefits; it is an example of a commonly

used technique in evolutionary computation known as the island model. Under the

island model each island exists as an independent learner which supports a small

population. As the algorithm proceeds the islands’ populations will grow relatively

more diverse as they naturally come to focus on different regions of the search space

due to the inherent stochasticity of evolution.

Each island periodically copies a portion of its population, typically that island’s

best models, to another island. This transfer is known as migration, and enables

a mixing of genetic information throughout the network, thus allowing the search

progress of each island to be communicated to the others. The inclusion of migration

will even further reduce the time to an accurate solution. In addition to allowing

the most fit models’ genes to permeate the network, migration also regulates the

diversity between islands’ populations, preventing extreme divergence in population

which could lead to overfitting.

65

Not only does migration decrease the time to a good solution, but the diversity

between populations enables the discovery of solutions which outperform those which

can be found without migration in a reasonable amount of time. This means migration

can produce a better than linear speedup of model performance.

Much work has been conducted regarding the characteristics of migration topolo-

gies and parameters for optimal flow of genetic material through the network. With

careful attention to these aspects, migration can have significantly beneficial effects

on the search process[13][1][4][16].

However, FlexGP stands out from most work on the island model by granting

each island a different cloud-backed machine on which to run. In fact many imple-

mentations of the island model have sustained all islands on the same machine. The

focus of other implementations has been on investigating the effects of controlling

diversity, rather than on increasing the wall-clock speed or on handling large and

complex datasets.

We demonstrate in this chapter the island model is particularly advantageous from

this perspective when each island is supported by an independent GP learner running

on its own machine with periodic migration. This means the rate of the overall

algorithm is governed only by the average speed of each of the small-population

learners, while preserving the potentially super-linear performance gain associated

with migration.

To summarize, the goals of FlexGP’s population-level parallelism are to achieve

the following:

1. Allow solutions to reach the same degree of accuracy as can be attained without

population-level parallelism, but in significantly less time.

2. Discover solutions which are more accurate than any which could be obtained

without population-level parallelism.

3. Provide FlexGP with another, highly effective dimension of scalability.

To achieve those goals, our contributions in this chapter are two-fold:

66

1. Design a system which can perform population-level parallelism with migration.

2. Demonstrate the efficacy of population-level parallelism with migration in both

time and accuracy.

These techniques are not trivial to implement. Population-level parallelism with

migration requires support at several levels. At the resource level, support is needed

for obtaining the required computational resources for parallelization. At the network

level support is required for discovering and recording the existence of other nodes in

the network and for sending and receiving migrants and other inter-node messages.

Finally, support is required at the algorithmic level for selecting emigrants and in-

gesting immigrants. The next section will discuss the design FlexGP uses to meet

these challenges.

4.2 Integration of Population-Level Parallelism

Under population-level parallelism each factor-tier1 node is replaced with a sub-

network (sub-network) of population-tier2 nodes. Each sub-network consists of mul-

tiple constituent nodes which are configured with the same parameters and data as

the factor-tier node would have been. Each node periodically communicates its best

models to another randomly chosen node in the sub-network.

Population-level parallelism preserves FlexGP’s learner-agnosticism. While the

concept of migration may not be portable to other learning algorithms, FlexGP can

sustain parallel computation of any learning algorithm in each sub-network through

population-level parallelism.

1Factor-tier nodes are nodes which have received a distinct factorization of the data and problem
parameters.

2Population-tier nodes are nodes which maintain independent GP learners and may periodically
exchange best models as part of a sub-network. Population-tier nodes are given the same factoriza-
tion as others in a sub-network.

67

4.2.1 Initial Resource Acquisition

The first step in starting FlexGP is to acquire resources from the cloud infrastruc-

ture. FlexGP uses a recursive “distributed startup” procedure for easy scalability in

network size. Here we augment the recursive startup procedure to enable the creation

of population-level sub-networks as follows:

1. The user specifies a desired number of factored sub-networks F , nodes per sub-

network S and max number of children k during startup.

2. The gateway node is started, which acts as a connection between the client and

the FlexGP system running on the cloud. The gateway node also serves as a

factor-tier node.

3. The gateway starts k children, passing forward to them the number of nodes

which still need to be started. The children each define a new sub-network.

4. Subsequent nodes start more factor-tier children as needed to fulfill the desired

sub-network quantity F . All children define a new sub-network. The resulting

F sub-networks named subnetf are numbered 1 through F .

5. Step 4 is repeated in a recursive manner until nF nodes have been started. Each

node is referred to as nodefi, where f indicates the sub-network and i refers to

i-th node in the sub-network.

6. After nodefi is started in steps 2 through 5, nodefi starts (S − 1) children in

the population-tier. nodefi is also a population-tier node.

In the end the full network will be of size F · S.

4.2.2 Establishing a Sub-Network

To support population-level parallelism at the network level, each node holds a sub-

network identifier si which indicates the node belongs to sub-network i. The sub-

network identifiers are generated during the initial distributed startup procedure.

68

Each node also maintains a list of other nodes which have identified themselves as

belonging to sc.

When a FlexGP node desires to send a network-level message like a ping, that

node obtains information about its destination by querying its neighbor list, which

contains the IP and the TCP port of all other nodes discovered via the gossip protocol.

When the evolutionary process desires to send a packet of migrants, the FlexGP node

randomly selects a destination from its list of sub-network-neighbors and then queries

the neighbor list to obtain the IP and port of that destination.

Simple modifications are required to FlexGP 1.0’s neighborlist datastructure which

each FlexGP node uses to keep track of all other known nodes in the network. The

neighborlist from FlexGP 1.0 contained a map which associates each node’s unique ID

with an IP and port at which to contact that node, as well as a timestamp indicating

when last successful contact was made.

FlexGP 2.0 introduces two additions to this datastructure: an additional field in

the map structure which indicates each node’s sub-network ID, and a list of IDs of

nodes known to belong to the same sub-network. Now when a FlexGP learner wishes

to perform migration it randomly selects an ID from the list of other nodes in the

sub-network, and uses that ID to obtain the IP and port from the neighborlist map.

4.2.3 Modifications to the GP Learner

To support migration the algorithm must be able to send and receive models. Sending

models to another node is known as emigration, and receiving models from another

node is known as immigration.

Emigration

There are five parameters which govern emigration:

1. Enable or disable migration.

2. m, the number of migrants to be sent in each migration message

69

3. gstart, the number of the first generation when migration should occur

4. gmodulo, the number of generations to wait before migration happens again

5. The criterion used to select the best m models from the population

In the architecture of FlexGP the Evolve thread is responsible for running the GP

learner. Further details are available in previous work on FlexGP [6].

At the completion of each generation the Evolve thread checks the emigration

parameters to decide whether to send emigrants. When the Evolve thread does elect

to send migrants, it chooses the best m models from the population according to the

specified selection criterion, and sends those models to a randomly selected destination

node which belongs to the same sub-network. The datastructure used to do this is

described in Section 4.2.2.

The criterion used for selecting the best model may also be used to choose the

best m models for emigration. The criterion supported in FlexGP are discussed in

Section 2.2.2.

Immigration

Support for immigration is provided by the FlexGP mailbox, which maintains a queue

of received messages which contain immigrant models. The Evolve thread checks the

immigrant queue at the beginning of each generation, adds any new immigrants to

the population and removes the corresponding message from the mailbox queue.

4.3 Experimental Evaluation

In this section we experimentally establish the value of population-level parallelism

by addressing the following questions:

1. Is larger population size beneficial to the performance of GPSR?

2. Will a larger distributed population with migration yield the same accuracy as

a smaller centralized population, but in significantly less time?

70

3. Will a distributed population with migration yield better accuracy as a central-

ized population of the same overall size, and in significantly less time?

Note that define the word “distributed” to imply an increase in the overall amount of

computational resources consumed, with the ultimate goal of providing more accurate

results faster.

4.3.1 Experimental Setup

To address the above questions, three experiments were conducted.

1K-SOLE : Non-parallelized GP Learner. A single GP learner with a popula-

tion of 1,000 models and 3 hours of training

10K-SOLE : Large non-parallelized GP Learner. A single GP learner with a

population of 10,000 models and with 24 hours of training

1K-PAR10 : Population-parallelized GP Learner. A sub-network of 10 GP

learners with a population of 1,000 models per node and with 3 hours of training

The GP learners in experiments 1K-SOLE and 10K-SOLE were each given an

unique 70% segment of the MSD dataset for training as described in Section A. For

each iteration of experiment 1K-PAR10 the 10 GP learners which composed the

sub-network all trained on the same unique 70% segment of the MSD dataset. The

training segment was changed for each iteration. Therefore all GP learners in all

experiments had access to the same amount of data.

Experiment 1K-PAR10 was additionally configured with a migrant size of 50 best

models sent to one random neighbor per generation. To allow an even comparison

across the different population sizes the large non-parallelized experiment was allowed

to train for 24 hours which is nearly 10 times as long as the non-parallelized and

population-parallelized experiments. Each experiment was replicated 10 times to

demonstrate statistical validity.

71

The euclidean distance metric described in Section 2.2.2 was used to determine

the best model for each generation. The same metric was used to select the best 50

models as migrants in the population-parallelization experiment.

4.3.2 Results

Each iteration of each experiment was processed by performing fusion on the 50 best

models obtained over time. Each learner produces one model per generation which

is judged to be the best. The best 50 models since t = 0 were identified for 20 points

in time between 0 and the expected durations of each experiment. For each point,

an ARM meta-model was trained on 80% of the MSD data, and was evaluated on

the remaining 20% to calculate the MSEtest. The 80% training data used for fusion

consisted of the original 35% used as training data on each node plus the remaining

45% not reserved for testing data.

The results are shown in figure 4-2. Each of the 10 iterations for the three exper-

iments is shown as a separate line in the plot. The results are presented in tabular

form in table 5.2.

Table 4.1 shows the number of generations normalized by the duration of each

experiment. This can be used to gauge the average complexity of the models under

evaluation. Experiment 10K-SOLE shows a lower mean number of generations per

unit time than the other experiments, implying a larger model complexity.

Expt. mean(gens) stddev(gens) mean(time) std(time) mean(gens
time

) stddev(gens
time

)

1K-SOLE 339.9 117.6 5.7 0.15 61.9 19.2
10K-SOLE 105.9 16.5 23.0 0.47 4.6 0.69
1K-PAR10 140.3 27.2 2.8 0.07 50.0 9.7

Table 4.1: The average and the standard deviation of the number of generations,
total time in hours, and generations per hour for 10 trials of experiments 1K-SOLE,
10K-SOLE and 1K-PAR10.

72

Metric 1.5hrs 3hrs 4.5hrs 6hrs 12hrs 24hrs

1K-SOLE

mean(MSEtest) 119.416 117.370 116.768 115.733 - -
stddev(MSEtest) 4.843 5.672 5.850 5.807 - -
mean(MAEtest) 8.738 8.640 8.611 8.553 - -
stddev(MAEtest) 0.222 0.278 0.296 0.286 - -

10K-SOLE

mean(MSEtest) 123.270 121.117 120.092 119.379 113.930 111.535
stddev(MSEtest) 3.742 2.728 3.073 3.631 3.954 2.924
mean(MAEtest) 8.939 8.842 8.798 8.757 8.441 8.319
stddev(MAEtest) 0.148 0.144 0.159 0.194 0.227 0.154

1K-PAR10

mean(MSEtest) 113.507 110.989 - - - -
stddev(MSEtest) 5.337 3.913 - - - -
mean(MAEtest) 8.442 8.278 - - - -
stddev(MAEtest) 0.278 0.222 - - - -

Table 4.2: The average and the standard deviation of MSEtest and MAEtest v.s.
time for 10 trials of experiments 1K-SOLE, 10K-SOLE and 1K-PAR10.

4.3.3 Analysis

From 4.1, the mean number of generations per unit time is lower for experiment 10K-

SOLE than for experiments 1K-SOLE and 1K-PAR10. This provides verification a

GP learner with a larger non-parallelized population (10k) will run approximately

10 times slower than the learner from experiment 1K-SOLE with a proportionally

smaller population (1k), at the cost of 10 times more computational resources con-

sumed by 1K-SOLE.

Interestingly, the mean number of generations per unit time is slightly lower for ex-

periment 1K-PAR10 than for experiment 1K-SOLE. This indicates the models under

evaluation by the GP learners in experiment 1K-PAR10 were on average of greater

complexity than those on the learners from experiment 1K-SOLE. This provides cor-

roborating evidence for the increased performance of experiment 1K-PAR10 relative

to experiment 1K-SOLE.

We will now use the results shown in figure 4-2 to answer the questions posed in

Section 4.3 and to show that population-level parallelism satisfies the goals outlined

in Section 4.1.

73

1. Is large population size beneficial to GPSR?

To answer this question we will compare experiment 1K-SOLE and experiment 10K-

SOLE, which have a population size of 1k and 10k respectively. The final performance

of experiment 10K-SOLE greatly exceeds that obtained by experiment 1K-SOLE.

Therefore the answer to this question is that large population size is in fact beneficial

to GPSR.

2. Will a larger distributed population with migration yield the same

accuracy as a smaller centralized population, but in significantly less time?

To answer this question we will compare experiment 1K-SOLE and experiment 1K-

PAR10. The performance of experiment 1K-PAR10 greatly exceeds that of exper-

iment 1K-SOLE, and does so in half the time available to experiment 1K-SOLE.

Therefore the answer to question 2 is yes.

3. Will a distributed population with migration yield better accuracy as

a centralized population of the same overall size, and in significantly less

time?

To answer this question we will compare experiment 10K-SOLE and experiment 1K-

PAR10. The final performance of experiment 1K-PAR10 is close to but exceeds the

final performance of experiment 10K-SOLE. Therefore the answer to this question is

yes.

To summarize, the results presented in this section have provided answers to the

questions asked in 4.3, and therefore have provided evidence FlexGP 2.0 has satisfied

the three goals outlined in the introduction of this chapter:

1. Allow solutions to reach the same degree of accuracy as can be attained without

population-level parallelism, but in significantly less time.

2. Discover solutions which are more accurate than any which could be obtained

without population-level parallelism.

74

3. Provide FlexGP with another, highly effective dimension of scalability.

75

0 5 10 15 20
110

115

120

125

Time (hours)

M
S

E
te

st
 a

fte
r

fu
si

on

Average MSE
test

 after fusion v.s. elapsed time for ten repetitions of three experiments

1K population
10K population
10 1K islands

(a) MSEtest of population-parallel experiments

0 5 10 15 20
8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

Time (hours)

M
A

E
te

st
 a

fte
r

fu
si

on

Average MAE
test

 v.s. elapsed time for ten repetitions of three experiments

1K population
10K population
10 1K islands

(b) MAEtest of population-parallel experiments

Figure 4-2: A comparison of the time-series results of the three population-parallel
experiments described in this chapter. Each point on a curve represents the MSEtest

or MAEtest of the fusion meta-model generated with the best 50 models available
up to that point in time. The fusion process is described in Appendix C. The
starting time is different for experiment 10K-SOLE because the evaluation of the
initial generation took more than one hour on average.

76

Chapter 5

FlexGP 2.0: Multi-Level

Parallelism

This section reiterates the goals of FlexGP 2.0, presents the design required to achieve

those goals and provides experimental evidence which demonstrates FlexGP 2.0 meets

those goals. FlexGP 2.0 integrates all levels of parallelism discussed in this thesis:

Evaluation-Level Parallelism (Chapter 3) increases the speed of FlexGP via mul-

tithreaded C++ model evaluation.

Search-Level Parallelism (Chapter 2) introduces a multi-objective optimization

algorithm which improves the search characteristics and flexibility of FlexGP.

Population-Level Parallelism (Chapter 4) increases the size of FlexGP’s popula-

tion of candidate models by distributing the population among multiple inde-

pendent learners, and introduces migration as a means for distributed learners

to share search progress.

Factor-Level Parallelism (Section 1.1) increases accuracy by giving each learner

a subset of the data or function set and by providing a method for fusing

models from the different environments to create a highly accurate meta-model.

Originally included in FlexGP 1.0.

77

We seek here to demonstrate the full power of FlexGP 2.0 by combining the three

levels of parallelism discussed in this thesis with FlexGP’s remaining layer, factor-

level parallelism. This combination represents a leverage of all the advantages and

optimizations offered by FlexGP 2.0.

The goals of FlexGP 2.0 are to accomplish the following:

1. Improve the ability of FlexGP to learn swiftly and effectively when operating

on large data sets.

2. Produce solutions with the same accuracy as were obtained from FlexGP 1.0,

but in significantly less time.

3. Produce solutions with better accuracy than those obtained from FlexGP 1.0.

4. Yield a system which produced performance comparable to other machine learn-

ing methods.

5.1 Integration of Multi-Level Parallelism

This section discusses the design which integrates FlexGP 2.0’s four levels of paral-

lelism. Detailed descriptions of the designs for each layer are outlined in each layer’s

chapter in this thesis.

Each layer may be activated or deactivated when the user starts FlexGP. The

parameters which govern each layer are discussed in the subsequent sections.

To launch FlexGP a user will initiate the distributed startup procedure described

in Section 4.2.1. Several groups of parameters are required to initiate distributed

startup.

Distributed Startup Parameters: To initiate distributed startup the user must

specify a set of FlexGP parameters which will be used to configure the entire

network of FlexGP nodes. Some of these parameters inform the distributed

startup procedure on how to interface with the cloud infrastructure.

78

FlexGP Node Parameters: Some of the parameters specified before distributed

startup control the behavior of each FlexGP node and are passed to the FlexGP

Java executable when it is initiated by the distributed startup procedure.

evogpj Parameters: The user must provide an evogpj parameters file containing

the parameters which will configure each GP learner.

Note that this section only discusses the details of parameters which were modified

from FlexGP 1.0 and are important to the design of FlexGP 2.0. FlexGP includes

many parameters which govern the behavior of evogpj, FlexGP’s underlying GP li-

brary, as well as several parameters which control the networking and other parts

of FlexGP and are not directly related to the learning process. More detailed de-

scriptions of FlexGP’s parameters can be found in Appendix B, Appendix D and in

previous publications documenting FlexGP 1.0 [6].

5.1.1 Integration of Evaluation-Level Parallelism

Evaluation-level parallelism is governed by the following parameters:

Objective function: C++ model evaluation will be enabled if the user specifies the

ExternalFitness objective function as one of the functions used in the multi-

objective optimization algorithm.

Number of threads: Multithreaded C++ model evaluation will be enabled if this

parameter is set to a value greater than 1.

Evaluation-level parallelism is a feature of FlexGP’s underlying evogpj library.

Therefore the above parameters must be set in the evogpj properties file which the

user passes to FlexGP at runtime.

5.1.2 Integration of Search-Level Parallelism

The key parameters for controlling multi-objective optimization are:

79

Objective functions: any number of objective functions. Multi-objective optimiza-

tion is activated if more than one is listed.

Tournament Selection Operator: crowded tournament selection.

Best Model Selection Method: euclidean or hands-off. Section 2.2.2.

Like C++ model evaluation, multi-objective optimization is part of the evogpj

library and is configured via the evogpj properties file passed to FlexGP at runtime.

5.1.3 Integration of Population-Level Parallelism

The parameters which affect population-level parallelism are:

Sub-network size: the number of learners started in each sub-network.

Migration activation: enables or disables migration within sub-networks.

Migration size: the number of models to be included in each group of emigrants.

Migration start generation: the generation in which to begin sending emigrants.

Migration rate: the number of generations to wait before sending emigrants again.

The sub-network size parameter is specified as an optional command-line argu-

ment of the program used to initiate the distributed startup procedure described

in Section 4.2.1. The remaining four parameters governing migration are passed to

the FlexGP Java executable as optional command-line arguments by the distributed

startup procedure.

5.1.4 Integration of Factor-Level Parallelism

The factorization parameters are:

Data row factorization percentage: specifies what percentage of the training data

to subsample for factorization.

80

Data column factorization: specifies which columns of the data GP will be al-

lowed to train on.

GP operator set factorization: specifies a series of lists of function sets to be

selected randomly by each factored learner or sub-network.

Each of these parameters is specified as an optional command-line argument of

the program used to initiate the distributed startup procedure. More details on

factor-level parallelism are available in prior work on FlexGP [6].

5.2 Experimental Evaluation

5.2.1 FlexGP 2.0 v.s. FlexGP 1.0

Experimental Setup

To demonstrate FlexGP’s fulfillment of the goals presented at the beginning of this

chapter we conducted the following experiments:

1.0 : 8 nodes with data-factorized FlexGP 1.0 and Java-based fitness evaluation.

2.0-NO-POP : 8 nodes with data-factorized, multi-objective FlexGP 2.0 and mul-

tithreaded C++ model evaluation but without population-level parallelism.

2.0-POP : 8 sub-networks with data-factorized, multi-objective FlexGP 2.0 and

multithreaded C++ model evaluation, with 10 nodes per sub-network.

Experiment 1.0 demonstrates the performance of FlexGP with factorization but

before the addition of the evaluation, search and population parallelization layers. Ex-

periment 2.0-NO-POP demonstrates FlexGP’s performance with all but population

parallelization. Experiment 2.0-POP demonstrates the operation of FlexGP with all

four parallelization techniques. A visual summary of this information is shown in

table 5.1.

81

Note that experiment 2.0-POP requires 10 times as many machines as the other

two experiments. This increase in computational resource load is provided in order

to obtain results of increased accuracy at a swifter speed.

Evaluation Search Population Factorization
1.0 X

2.0-NO-POP X X X

2.0-POP X X X X

Table 5.1: The configuration for each of the three FlexGP 2.0 experiments in this
chapter. Each column corresponds to one of the four levels of parallelism in FlexGP
2.0. Each row corresponds to one of the three experiments. A check mark indicates
an experiment includes the level of parallelism which belongs to the column.

The data in these experiments was factored so that each node in experiments 1.0

and 2.0-NO-POP and was given a different 35% factored training split. Correspond-

ingly, each sub-network of nodes in experiment 2.0-POP was given a different 35%

split of the training data, where each node in the sub-network received the same 35%

split as the others.

All experiments were conducted on the Million Song Dataset year prediction chal-

lenge, which is described in Appendix A. Each of the three experiments was repeated

10 times for statistical validity.

The comparison of experiments 1.0 and 2.0-POP shows the difference in perfor-

mance between FlexGP 1.0 and FlexGP 2.0. The comparison of experiments 1.0 and

2.0-NO-POP shows the difference in performance between FlexGP 1.0 and FlexGP

2.0 stemming solely from the addition of the evaluation and search parallelization

layers, but not from population parallelization. Finally, the comparison of exper-

iments 2.0-NO-POP and 2.0-POP shows the difference in performance of FlexGP

2.0 from only the addition of population parallelization. Experiment 2.0-NO-POP

was included to highlight the performance gain derived solely from population-level

parallelization with migration.

82

Results

Figures 5-1a and 5-1b respectively show the MSEtest v.s. time and the MAEtest

v.s. time for each of the ten iterations of the three experiments. Each experiment

consists of 8 factorization groups, where each group contains a node or nodes which

were trained with the same factorization of the training data.

The performance of a fused meta-model trained on the current 50 best models

was calculated for 20 points in time evenly spaced over the 3 hour interval of the

experiment. The details of fusion and the calculation of the MSEtest and MAEtest

for fusion are discussed in Appendix C.

Table 5.2 shows the MSEtest,
√
MSEtest and MAEtest after fusion for various

points in time. The
√
MSEtest was included to provide further meaning to the results,

as the units of
√
MSEtest for this problem are in years whereas the units of the

MSEtest are in years2.

Table 5.2 contains values calculated for
√
MSEtest. However, a plot for

√
MSEtest

is not shown because both the shape and the numerical values can be inferred from

the plot for MSEtest.

Metric 30min 60min 90min 120min 150min 180min

1.0

mean(MSEtest) 111.974 111.657 111.517 111.336 111.143 110.952
stddev(MSEtest) 0.331 0.287 0.346 0.376 0.471 0.528
mean(

√
MSEtest) 10.582 10.567 10.560 10.552 10.542 10.533

stddev(
√
MSEtest) 0.016 0.014 0.016 0.018 0.022 0.025

mean(MAEtest) 7.937 7.926 7.920 7.917 7.906 7.897
stddev(MAEtest) 0.014 0.013 0.015 0.015 0.025 0.025

2.0-NO-POP

mean(MSEtest) 106.439 104.091 102.714 100.975 100.171 99.396
stddev(MSEtest) 1.733 1.741 1.524 1.179 0.673 1.039
mean(

√
MSEtest) 10.317 10.202 10.135 10.048 10.008 9.970

stddev(
√
MSEtest) 0.084 0.085 0.075 0.059 0.034 0.052

mean(MAEtest) 7.483 7.357 7.300 7.196 7.159 7.117
stddev(MAEtest) 0.144 0.125 0.117 0.094 0.059 0.063

2.0-POP

mean(MSEtest) 100.867 97.822 96.969 96.052 95.760 95.355
stddev(MSEtest) 0.948 1.184 0.971 1.235 1.290 1.148
mean(

√
MSEtest) 10.043 9.890 9.847 9.800 9.785 9.765

stddev(
√
MSEtest) 0.047 0.060 0.049 0.063 0.066 0.059

mean(MAEtest) 7.132 7.018 6.978 6.916 6.909 6.879
stddev(MAEtest) 0.085 0.068 0.058 0.087 0.092 0.088

Table 5.2: The average and the standard deviation of MSEtest,
√
MSEtest and

MAEtest v.s. time for 10 trials of the three experiments conducted in this chapter.

83

0 0.5 1 1.5 2 2.5 3

95

100

105

110

115

Time (hours)

M
S

E
te

st
 a

fte
r

fu
si

on

MSE
test

 v.s. elapsed time for ten repetitions of three experiments

FlexGP 1.0
FlexGP 2.0 without migration
FlexGP 2.0 with migration

(a) MSEtest of total experiments

0 0.5 1 1.5 2 2.5 3
6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

Time (hours)

M
A

E
te

st
 a

fte
r

fu
si

on

MAE
test

 v.s. elapsed time for ten repetitions of three experiments

FlexGP 1.0
FlexGP 2.0 without migration
FlexGP 2.0 with migration

(b) MAEtest of total experiments

Figure 5-1: A comparison of the time-series results of all ten iterations of the three
experiments conducted in this chapter.

84

Analysis

This section provides a discussion of the results obtained from the experiments com-

paring the performance of FlexGP 1.0 and FlexGP 2.0.

The results shown in figure 5-1 clearly show FlexGP 2.0 with all factorizations

enabled outperforms FlexGP 1.0. This satisfies goal 1 from the beginning of this

chapter.

It takes four times longer for experiment 1.0 to reach an MSEtest of under 101

that it does for experiment 2.0-POP to do so. This satisfies goal 2 from the beginning

of this chapter.

Both experiment 2.0-NO-POP and experiment 2.0-POP outperform experiment

1.0 on average. This satisfies goal 3 from the beginning of this chapter.

5.2.2 Comparison of FlexGP 2.0 with vowpal wabbit

Experimental Setup

The vowpal wabbit project is a machine learning system which uses gradient descent

to perform linear regression. Previous work has used vowpal wabbit to address the

Million Song Dataset year prediction challenge [2].

We trained and evaluated vowpal wabbit with the same training and test data

as were given to FlexGP in the experiments from Section 5.2.1. We used the same

parameters1 to run vowpal wabbit as were cited in previous work[2].

FlexGP 2.0 trained 80 learners for 3 hours where each learner executed on a

separate machine. As vowpal wabbit performs simple stochastic gradient descent for

linear regression it only took a few minutes to train and evaluate vowpal wabbit on the

MSD executing on one multicore workstation. This comparison is discussed further

in Section 5.2.2.

1The parameters used are --passes 100 --loss function squared -l 100 --initial t

100000 --decay learning rate 0.707106781187

85

Results

Table 5.3 contains the MSEtest,
√
MSEtest and MAEtest obtained by running vowpal

wabbit on each of the 8 training factorizations. Table 5.4 contains the MSEtest,
√
MSEtest and MAEtest averaged across the 8 factorizations.

Factorization 0 1 2 3 4 5 6 7
MSEtest 88.168 88.302 88.614 87.923 88.537 87.929 88.107 88.379√
MSEtest 9.390 9.397 9.414 9.378 9.409 9.377 9.387 9.401
MAEtest 6.794 6.800 6.812 6.785 6.807 6.786 6.796 6.799

Table 5.3: The MSEtest,
√
MSEtest and MAEtest of vowpal wabbit on the MSD

year prediction problem, when trained on each of 8 different data factorizations.
Each training factorization consisted of 35% of the valid data. 20% of the remaining
data was used for testing.

FlexGP 2.0 vowpal wabbit
mean(MSEtest) 95.355 88.245
mean(

√
MSEtest) 9.765 9.394

mean(MAEtest) 6.879 6.797

Table 5.4: The MSEtest,
√
MSEtest and MAEtest of vowpal wabbit and FlexGP 2.0

on the MSD year prediction problem. The vowpal wabbit values were obtained by
averaging across all 8 training data factorizations shown in table 5.3. Each training
factorization consisted of 35% of the valid data. 20% of the remaining data was used
for testing.

Analysis

Experiment 3 from Section 5.2.1 (FlexGP 2.0 with migration) yields a
√
MSEtest and

MAEtest of 9.765 and 6.879 respectively, which is comparable to the values of 9.394

and 6.797 given by vowpal wabbit as shown in table 5.4.

The performance of vowpal wabbit as measured here is not as good as the per-

formance obtained in prior work[2] with the same vowpal wabbit parameters. The

reason for this is the amount of data used to train vowpal wabbit in this experiment

is lower than the amount used in prior work. For a fair comparison with the experi-

ments from Section 5.2.1 we gave vowpal wabbit the same amount of data which was

given to FlexGP 1.0 and FlexGP 2.0. Prior work on applying vowpal wabbit to the

86

MSD[2] used a published train-test split of the MSD which allocates 90% to training.2

The fact that linear regression via vowpal wabbit gave slightly more accurate results

than FlexGP may indicate the input variables have a fairly linear relationship to the

output in the MSD year prediction problem.

Further, it is possible the partitioning of the data by author produced a problem

which is highly linear, allowing vowpal wabbit to perform with higher accuracy than

FlexGP. A different method of data partitioning would possibly see the nonlinear

models produced by FlexGP outperform a linear approach.

The primary advantage FlexGP provides over vowpal wabbit is a more complex

model. GP will outperform linear regression on problems which are highly nonlinear.

Feature extraction can be performed prior to linear regression to handle nonlinearity,

but to do so efficiently requires a priori knowledge; GP discovers the most meaningful

subtrees automatically.

2http://labrosa.ee.columbia.edu/millionsong/pages/tasks-demos is the location of the published
train-test split.

87

88

Chapter 6

Future Work

The following are potential augmentations to FlexGP:

Factor-level and Population-level Generalization: The factor-level and

population-level parallelization layers of FlexGP are generalizable beyond GP.

An investigation of how to recombine these techniques with other machine learn-

ing methods would be valuable. The migration included in the population-

parallel layer would generalize as the transfer and exchange of intermediate

solutions amongst independent learners. Factorization would preserve the di-

versity of models across all learners.

Model Evaluation with Subsampled Data: The fitness of each model is intended

to be a relative measure, not an absolute one. As such it may be worth sacrific-

ing some accuracy in the fitness calculation in exchange for speed. One could

achieve such a tradeoff by evaluating each model not on the entire training data

but on a subsample of that data, while aiming to preserve the ultimate ranking

of individuals within a population.

Automatic Model Evaluation Thresholding: C++ model evaluationis not al-

ways faster than Java-based model evaluation, which will outperform C++

model evaluationon datasets of sufficiently small size. If this tradeoff were bet-

ter understood FlexGP could automatically infer which evaluation method is

best.

89

Model Evaluation on the GPU: GPU-based model evaluation is an area of active

research and could provide FlexGP with a significant evaluation speedup [18].

Subtree Caching: Much work has been conducted regarding the caching of common

subtrees has been used to speed up model evaluation [22][9][17]. Adding subtree

caching to FlexGP would result in faster model evaluation and may aid in

feature selection.

90

Chapter 7

Conclusion

This thesis has demonstrated FlexGP 2.0 provides a significant improvement over

FlexGP 1.0 through the conjunction of multiple levels of parallelism. It addressed all

of the goals first outlined in the introduction as well as a set of goals included with

each level of parallelism.

• Chapter 2 presented a comparison of multi-objective optimization and operator

equalization as two GP algorithms which aim to prevent overfitting by the

bloating of models. We were able to obtain better accuracy v.s. time with

multi-objective optimization, which also allowed the specification of multiple

objective functions.

• Chapter 3 showed a significant increase in model evaluations v.s. time of C++

model evaluation over Java-based model evaluation. We demonstrated an al-

most 20x speedup over Java-based model evaluation when using multithreaded

C++ model evaluation.

• Chapter 4 showed that population-level parallelism with migration provides

both faster arrival at solutions and yields better solutions than otherwise. We

demonstrate population-level parallelisation with migration provided the same

MSEtest on a large regression problem in about an eighth of the time as was

consumed without population-parallelism. Further, we demonstrate the addi-

91

tion of randomized migration provided a 5-point increase in MSEtest on a large

regression problem in half the time as was consumed without migration.

• Chapter 5 provided a comprehensive demonstration of all four of FlexGP 2.0’s

levels of parallelism and highlighed the dramatic improvements made by FlexGP

2.0, including a 15-point increase in MSEtest on a large regression problem. The

chapter presented evidence to establish FlexGP 2.0 as a competitive system for

performing machine learning.

All four chapters have demonstrated the ability of FlexGP 2.0 to produce results

of competitive accuracy on a dataset of significant size and complexity by current

standards, and to do so in a reasonably short amount of time. This evidence show-

cases FlexGP’s commitment to scaling elegantly and effectively with data size and

complexity.

It is our hope FlexGP will come to play a valuable role in the application of ma-

chine learning to problems of diverse domains. We hope the contributions established

in this thesis will prove useful to future research in GP, machine learning and other

fields. We also hope the contributions of this thesis will spur researchers of GP to

make further contributions on swift performance relative to elapsed training time,

and on algorithm scalability with respect to data size and complexity. Finally, we

envision the application of machine learning and data mining via FlexGP towards

problems of societal relevance will make the world a better place.

92

Appendix A

Dataset Organization and

Partitioning

This appendix describes the details of the regression problem used in the experiments

for chapters 3 through 5. It also describes the manner in which data was partitioned

for training and testing. It builds on Derby’s description of data partitioning[6] to

include modifications made for FlexGP 2.0.

A.1 Background and Problem Definition

All experiments in this thesis make use of the Million Song Dataset (MSD) [2] from

the music information retrieval (MIR) community. The MSD contains information

about one million songs, ranging from meta-data to harmonic content. In particular,

experiments in this thesis are aimed at the year recognition challenge 1, where the

year a song was released must be predicted from a set of 90 features extracted from

the song’s audio [6].

We model the year recognition challenge as a regression problem. Because the

output of the models produced from GP is continuous rather than discrete, models’

predictions are rounded to the nearest integer before calculation of a fitness score or

a MSE[6].

1http://labrosa.ee.columbia.edu/millionsong/pages/tasks-demos#yearrecognition

93

http://labrosa.ee.columbia.edu/millionsong/pages/tasks-demos#yearrecognition

A.2 Dataset Partitioning

There are 566,564 entries in the million song database which contain the 90 features

required to be used for the year prediction challenge. The usable data is partitioned

into three sections: 20% is designated as test data, 10% as training data for fusion

and 70% as general training data.

Figure A-1 shows the scheme used to partition the MSD. The factor-parallel layer,

which includes data factorization, is included from FlexGP 1.0. Experiments which

use data factorization define a number of factorization groups, where each group

can consist of one or more FlexGP nodes. When multiple nodes are included in a

factorization group, they all recieve the same 35% factorized training data.

All data partitions were generated in advance of computation. This was done

for simplicity, to carefully avoid the author problem described in the next section

and to avoid including dataset-specific code in FlexGP. 10 sets of 70%-10%-20% data

splits were generated for the experiments discussed in this thesis. Each 70%-10%-

20% training split was numbered 0 through 9. From these, 10 35% factorized splits

were generated for use in experiments which require data-factorization. Each 35%

factorized training split was numbered 0 through 9. Validation data was not used for

validation in any of the experiments.

In experiments which used 70% of the MSD as training data, each FlexGP node

was given a distinct 70% training split. Similarly, in data-factorized experiments

which used 35% of the MSD as training data, each FlexGP node was given a distinct

35% factorized training split.

Appendix C provides a discussion of how the fusion training data was used in

conjunction with the rest of the data. To obtain the MSEtest and MAEtest used in

this thesis, all models were evaluated on the 20% test split which complements the

training data the model was given.

94

Figure A-1: A colorful depiction of the data partitioning hierarchy used in FlexGP.
The original MSD is shown at left. The center column shows the training, fusion
training and test datasets. The red and yellow boxes represent the factored training
and validation data. If the user specifies a data factorization percentage, FlexGP
will train on the factored training data in red. Otherwise, FlexGP will train on the
magenta training data. The light blue box on the right indicates factorization occurs
for each factorization group in FlexGP. The percentages shown are particular to the
MSD problem, but the scheme is generalizable to other applications of FlexGP

A.3 Avoiding the Producer Effect in the MSD

The MSD has a complication: when splitting the data, all songs by one artist must be

entirely included in one of the splits. Otherwise trained models may learn the hidden

artist variable rather than the actual year prediction problem. This is known as the

“producer effect” [2]. The data partitioning used here circumvent this by grouping

artists’ songs and randomly selecting groups until the correct percentage of the split

has been approximately satisfied [6].

95

96

Appendix B

Collection and Organization of

Results

This appendix details the organization of data collection for this thesis and provides a

discussion of the methods used to calculate the statistics and figures in this document.

B.1 Experimental Organization

The highest level of organization in this thesis are the experiments, each of which in-

volve a distinct mixture of computational elements and configurations. For example,

chapter 4 contained a comparison of three experiments: running FlexGP on 10 nodes

in isolation, running FlexGP on 10 nodes with an increased population size, and run-

ning FlexGP on 100 nodes partitioned into 10 sub-networks, each with 10 constituent

islands. The list below provides a comprehensive summary of experiments:

OE-SIMP (Ch. 2): Operator equalization running with a simple function set and

70% training data for 48 hours.

MO-SIMP (Ch. 2): Multi-objective optimization running with a simple function

set and 70% training data for 48 hours.

OE-COMP (Ch. 2): Operator equalization running with a complex function set

and 70% training data for 48 hours.

97

MO-COMP (Ch. 2): Multi-objective optimization running with a complex func-

tion set and 70% training data for 48 hours.

Java1 (Ch. 3): Java model evaluation on 70% training data for 3 hours.

C++1 (Ch. 3): 1-thread C++ model evaluation on 70% training data for 3 hours.

C++4 (Ch. 3): C++ 4-thread model evaluation on 70% training data for 3 hours.

1K-SOLE (Ch. 4): 1 node running with 70% training data for 6hrs.

10K-SOLE (Ch. 4): 1 node running with a 10k population and 70% training data

for 24hrs.

1K-PAR10 (Ch. 4): a sub-network of 10 nodes with migration, running with 70%

training data for 3hrs.

1.0 (Ch. 5): 8 independent nodes running operator equalization with Java model

evaluation, each given a different 35% factorization of the training data, for 24

hours.

2.0-NO-POP (Ch. 5): 8 independent nodes running multi-objective optimization

with C++ 4-thread model evaluation, each given a different 35% factorization

of the training data, for 6 hours.

2.0-POP (Ch. 5): 8 sub-networks with 10 nodes per sub-network, where each sub-

network of 10 nodes is given a different 35% factorization of the training data,

running multi-objective optimization for 3 hours.

For all experiments, the default configuration is assumed for any values which

were not stated above. The defaults are:

Evaluation: C++ 4-thread

Algorithm: multi-objective optimization

Function set: simple

98

Population: 1k models

Duration: 3 hours

Sub-network: disabled, no migration

Data: 70% training data.

The 3rd experiment for Chapter 3 and the 1st experiment for Chapter 4 are both

subsets of the 2nd experiment for Chapter 2. This reduces the amount of data which

needed to be collected by a small amount.

Each experiment is repeated 10 times for statistical validity. Each repetition is

referred to here as an “iteration.”

B.2 Organization of Results

Each node saves results locally in two files. The first file, named “models.txt,” simply

contains the best model for each generation, with each model occupying one line of

the file. The second file, “evogpj-log.json,” contains one JSON structure per line for

each generation. The information contained in the JSON structures is detailed in

table B.1.

Key Description
timestamp The elapsed time since FlexGP started.
generation Generation number, starting at 0.
stats The min/max/mean/stddev of fitness in the population.
fitnessEvaluations The number of model evaluations made.
bestModel The model chosen as best. Includes which method was used.
paretoFront The entire Pareto front if running multi-objective optimization.
paretoFrontSize The number of models in the Pareto front.
numImmigrants The number of models incorporated into the population.
numEmigrants The number of models emigrated to other nodes.
equalizer If running operator equalization, current equalizer parameters.

Table B.1: The contents of each JSON log.

When an experiment is complete, evogpj-log.json and models.txt files are retrieved

from each node and stored together in one folder. The naming convention for both

99

files is “¡filename¿-¡nodeID¿.¡extension¿”. For example, the folder containing results

from a single 10-island experiment would contain 10 JSON and 10 text files, labeled

“evogpj-log-0.json” through “evogpj-log-9.json” and “models-0.txt” through “models-

9.txt”, where the numbers appended to the name are used to distinguish between

nodes.

The distinct parameters of each experiment are described by the folder name. The

parameters of each experiment are described here.

Number of nodes or islands (numNodes): the character “n” or “i” followed by

three digits which indicate the number of nodes or islands in the experiment.

Algorithm used (alg): three characters indicating the algorithm used, with “moo”

indicating multi-objective optimization and “deq” indicating operator equaliza-

tion.

Model evaluation method (eval): the character “j” for Java or “c” for C++, fol-

lowed by a digit indicating the number of threads used (always 1 for Java).

Training split (train:) the character “d” followed by two digits indicating which of

the 10 splits was used. The first character is an “A” if this experiment is part

of 10 experiments which covered all training splits.

Factorization (factor): the character “f” followed by three digits. The first indi-

cates the function set used. The last two indicate which training factorization

was used. If no factorization was used the last two digits will appear as “XX”,

but the first will still indicate the function set used.

Migration size (m): the character “m” followed by four digits indicating the mi-

gration size. If no migration was used this will appear as “mXXXX”.

Population size (n): the character “p” followed by five digits indicating the popu-

lation size.

Duration (t): the character “t” followed by two digits indicating the duration of the

experiment in hours.

100

Repetition (rep): the character “r” followed by four digits which serve as a unique

identifier used to distinguish amongst repetitions of an experiment.

Combining the parameters in the order they are listed, the full format of the folder

names is as follows:

numNodes alg eval train factor m n t rep

Consider the following example:

n001 deq j1 dA3 f0XX mXXXX p01000 t06 r0003

This indicates the contained results are from a 1-node run with operator equalization

and Java model evaluation, operating on a distinct 70% training split (#3), using

function set 0 with no data factorization and no migration, a population of 1000 and

a duration of 6 hours (fourth iteration).

B.3 Analysis of Results

Each JSON log has alongside a file named “performance-train-X.csv”, where the X

indicates the node ID for uniqueness. This file contains six columns: elapsed time,

elapsed model evaluations, MSE train, MAE train, MSE test and MAE test.

Directories beginning with “c” instead of “n” or “i” contain results from perform-

ing fusion. Each such directory contains a filemse test fusion vs thresholdMetric N.csv,

where thresholdMetric can either be “time” or “fiteval” and N is the number of mod-

els considered for fusion during each frame. The file contains three columns: thresh-

olding metric, MSE test and MAE test. See Appendix C for more information on

model fusion and thresholding metrics.

101

102

Appendix C

Calculation of Fused Performance

This section defines the fusion process used by FlexGP. This fusion process is used

to generate each point in the figures presented in Chapters 4 and 5.

C.1 Motivation

A fully parallelized FlexGP with all levels of parallelism enabled can churn out thou-

sands of models in a matter of minutes. FlexGP reduces this massive influx of informa-

tion to a fused regression ensemble or “meta-model” which combines the predictions

of the models deemed the most useful and boosts accuracy beyond that which is

possible from sole models.

C.2 Background

A regression ensemble is a grouping of regression models such as those returned from

FlexGP. Regression Ensemble Fusion (referred to here as simply “fusion”) is the act

of learning a method of combining the predictions of multiple regression models in

the ensemble. The result of fusion is a meta-model which uses its constituent models

to make predictions of greater accuracy than would be possible by a single model.

FlexGP uses a regression ensemble fusion technique known as Adaptive Regression

Mixing (ARM) [23]. Previous work comparing a variety of regression ensemble fusion

103

has found ARM to be a particularly effective fusion method[19].

C.3 Fusion Process

The fusion process used in the experiments for Chapters 4 and 5 has three primary

steps:

1. Best N Selection: the best N models are identified from a larger group. The

experiments in this thesis used an N of 50.

2. Regression Ensemble Fusion: the best N models are fused via ARM to form

the meta-model which is used to make predictions.

3. Ensemble Evaluation: the meta-model is evaluated on the test data to obtain

a post-fusion MSEtest and MAEtest.

In this thesis the training data used to perform fusion was all non-test data.

This means the data each GP learner was trained on was included in the data used

for fusion training. We argue the MSD is large enough to make this permissible

without fear of overfitting. To be explicit: for learners which were trained with 70%

of the MSD, the ultimate fusion training set consisted of the 70% training segment

plus the 10% set aside for fusion training. For learners which were trained with

a 35% factorization of the MSD, the ultimate fusion training set consisted of the

35% factorized training segment, the additional 35% set aside as validation data and

unused in this thesis, and the final 10% set aside for fusion training.

C.4 Thresholding Metrics

Two metrics were used for determining the thresholds by which to filter models before

best N selection:

Time: Any models which appeared before time t are considered.

104

Model Evaluations: Any models which have a number of elapsed fitness evalua-

tions less than N are considered.

Plots whose x-axis is labeled “time” used time thresholding. Similarly, plots whose

x-axis is labeled “model evaluations” used model evaluation thresholding.

105

106

Appendix D

GP Parameters

This appendix describes the parameters and implementation used to configure GP in

FlexGP 2.0. Slight modifications are applied to Derby’s specification of the parame-

ters used in FlexGP 1.0 [6].

All experiments discussed in this thesis were configured with the same parameters

as described by Koza [11], with the following differences. The population size is

set to 1000 models. Initialization was performed using Koza’s ramped-half-and-half

algorithm. The mutation rate is 0.5 and the crossover rate is 0.5. Nodes were selected

uniformly at random for crossover. The max depth is set to 5 for initialization,

afterwards tree depth is limited to 32. For both operator equalization and multi-

objective optimization, tournament selection was configured with a tournament size

of 10. For operator equalization experiments the equalizer[15] was configured with a

bin width of 5. During model evaluation, models’ predictions are transformed with

Vladislavleva’s approximate linear scaling [21], where the output variable is scaled to

span the range [0, 1] so GP can focus on learning the shape of the relation described

by the data [6].

107

108

Appendix E

Cloud Infrastructure

FlexGP is designed to be a cloud-backed system. All experiments discussed in this

thesis were conducted on a private cloud maintained by MIT CSAIL. The cloud uses

the Openstack cloud management framework 1, a free and open source software for

maintenance of public and private clouds. The Openstack interface is highly similar

to the API used by Amazon’s Elastic Compute Cloud (EC2)2 service [6].

All experiments ran on 64-bit virtual machines with 4 virtualized CPUs, 4GB

of RAM and 20GB of disk storage. The same virtual machine configuration was

used for all experiments to eliminate the parameters of the virtual machine used for

each experiment as a consideration when analyzing results. Each virtual machine

was configured with Ubuntu 12.04. The JVM included on each virtual machine was

OpenJDK 6.3

1http://www.openstack.org
2https://aws.amazon.com/ec2
3http://openjdk.java.net/

109

http://www.openstack.org
https://aws.amazon.com/ec2
http://openjdk.java.net/

110

Bibliography

[1] Ignacio Arnaldo, Ivn Contreras, David Milln-Ruiz, J.Ignacio Hidalgo, and Na-
talio Krasnogor. Matching island topologies to problem structure in parallel
evolutionary algorithms. Soft Computing, 17(7):1209–1225, 2013.

[2] T. Bertin-Mahieux, D.P.W. Ellis, B. Whitman, and P. Lamere. The million song
dataset. In ISMIR 2011: Proceedings of the 12th International Society for Music
Information Retrieval Conference, October 24-28, 2011, Miami, Florida, pages
591–596. University of Miami, 2011.

[3] Jürgen Branke, Kalyanmoy Deb, Henning Dierolf, and Matthias Osswald. Find-
ing knees in multi-objective optimization. In Parallel Problem Solving from
Nature-PPSN VIII, pages 722–731. Springer, 2004.

[4] Erick Cantu-Paz. Efficient and accurate parallel genetic algorithms, volume 1.
Springer, 2000.

[5] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley
Interscience Series in Systems and Optimization. Wiley, 2001.

[6] Owen C Derby. FlexGP: a scalable system for factored learning in the cloud.
Master’s thesis, Masachusetts Institute of Technology, 2013.

[7] David E. Goldberg and Kalyanmoy Deb. A comparative analysis of selection
schemes used in genetic algorithms. In Foundations of Genetic Algorithms, pages
69–93. Morgan Kaufmann, 1991.

[8] Yaochu Jin. A comprehensive survey of fitness approximation in evolutionary
computation. Soft computing, 9(1):3–12, 2005.

[9] Maarten Keijzer. Alternatives in subtree caching for genetic programming. In
Genetic Programming, pages 328–337. Springer, 2004.

[10] Maarten Keijzer and James Foster. Crossover bias in genetic programming. In
Genetic Programming, pages 33–44. Springer, 2007.

[11] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

111

[12] M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental
data. Science, 324(5923):81–85, 2009.

[13] Dylan Sherry, Kalyan Veeramachaneni, James McDermott, and Una-May OR-
eilly. Flex-GP: genetic programming on the cloud. In Cecilia Di Chio, Alexandros
Agapitos, Stefano Cagnoni, Carlos Cotta, Francisco Fernndez de Vega, Gianni
A. Di Caro, Rolf Drechsler, Anik Ekrt, Anna I. Esparcia-Alczar, Muddassar
Farooq, William B. Langdon, Juan J. Merelo-Guervs, Mike Preuss, Hendrik
Richter, Sara Silva, Anabela Simes, Giovanni Squillero, Ernesto Tarantino, An-
drea G. B. Tettamanzi, Julian Togelius, Neil Urquhart, A. ima Uyar, and Geor-
gios N. Yannakakis, editors, Applications of Evolutionary Computation, number
7248 in Lecture Notes in Computer Science, pages 477–486. Springer Berlin Hei-
delberg, January 2012.

[14] S. Silva and S. Dignum. Extending operator equalisation: Fitness based self
adaptive length distribution for bloat free GP. Genetic Programming, pages
159–170, 2009.

[15] Sara Silva. Handling bloat in GP. In Proceedings of the 13th annual conference
companion on Genetic and evolutionary computation, GECCO ’11, pages 1481–
1508, New York, NY, USA, 2011. ACM.

[16] Zbigniew Skolicki and Kenneth De Jong. The influence of migration sizes and
intervals on island models. In Proceedings of the 2005 conference on Genetic and
evolutionary computation, pages 1295–1302. ACM, 2005.

[17] Guido Smits, Arthur Kordon, Katherine Vladislavleva, Elsa Jordaan, and Mark
Kotanchek. Variable selection in industrial datasets using pareto genetic pro-
gramming. In Genetic Programming Theory and Practice III, pages 79–92.
Springer US, 2006.

[18] JazzAlyxzander Turner-Baggs and Malcolm I. Heywood. On gpu based fitness
evaluation with decoupled training partition cardinality. In AnnaI. Esparcia-
Alczar, editor, Applications of Evolutionary Computation, volume 7835 of Lecture
Notes in Computer Science, pages 489–498. Springer Berlin Heidelberg, 2013.

[19] Kalyan Veeramachaneni, Owen Derby, Dylan Sherry, and Una-May OReilly.
Learning regression ensembles with genetic programming at scale. in press, 2013.

[20] C. Vladislavleva and G. Smits. Symbolic regression via genetic programming.
Final Thesis for Dow Benelux BV, 2005.

[21] E.Y. Vladislavleva. Model-based problem solving through symbolic regression via
pareto genetic programming. PhD thesis, CentER, Tilburg University, 2008.

[22] Phillip Wong and Mengjie Zhang. Scheme: Caching subtrees in genetic program-
ming. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on
Computational Intelligence). IEEE Congress on, pages 2678–2685. IEEE, 2008.

112

[23] Y. Yang. Adaptive regression by mixing. Journal of the American Statistical
Association, 96(454):574–588, 2001.

113

	Introduction
	FlexGP 1.0
	FlexGP 2.0
	Evaluating FlexGP 2.0
	Preview of Results
	Index

	Search-Level Parallelism
	Motivation and Goals
	Multi-Objective Optimization v.s. Operator Equalization
	Advantages of Multi-Objective Optimization
	Goals of Search-Level Parallelism

	Integration of Search-Level Parallelism
	Objective Functions and Evaluation
	Learning Algorithm Modifications

	Experimental Evaluation
	Experimental Setup
	Results
	Analysis

	Evaluation-Level Parallelism
	Motivation and Goals
	Integration of Evaluation-Level Parallelism
	C++ Model Evaluation
	Adding Shared Memory Multithreading

	Experimental Evaluation
	Experimental Setup
	Results
	Analysis

	Population-Level Parallelism
	Motivation and Goals
	Integration of Population-Level Parallelism
	Initial Resource Acquisition
	Establishing a Sub-Network
	Modifications to the GP Learner

	Experimental Evaluation
	Experimental Setup
	Results
	Analysis

	FlexGP 2.0: Multi-Level Parallelism
	Integration of Multi-Level Parallelism
	Integration of Evaluation-Level Parallelism
	Integration of Search-Level Parallelism
	Integration of Population-Level Parallelism
	Integration of Factor-Level Parallelism

	Experimental Evaluation
	FlexGP 2.0 v.s. FlexGP 1.0
	Comparison of FlexGP 2.0 with vowpal wabbit

	Future Work
	Conclusion
	Dataset Organization and Partitioning
	Background and Problem Definition
	Dataset Partitioning
	Avoiding the Producer Effect in the MSD

	Collection and Organization of Results
	Experimental Organization
	Organization of Results
	Analysis of Results

	Calculation of Fused Performance
	Motivation
	Background
	Fusion Process
	Thresholding Metrics

	GP Parameters
	Cloud Infrastructure

