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Final exam

@ | will hold office hours this Thursday, 3:30pm. Bring your
exam-related questions!

o Final exam in class next week. Closed book; no
calculators/phones/computers

@ Final covers everything up to and including this week's lab (12/16)
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Today's lecture

© |Integer linear programming
@ MAP inference as an integer linear program
© Linear programming relaxations for MAP inference

© Dual decomposition
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Integer linear programming

max y subject to: —x+y <1; 3x+2y <12; 2x+4+3y <12; x,y € Z,
y

A

LPopt j?,,: ©:1)

2+ 3y <= 12

—_
\)
[S%)
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(Source: Wikipedia)
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Integer linear programming

Applications:
@ Production planning
@ Scheduling (e.g., assigning buses or subways to routes)
@ Telecommunication networks

@ Bayesian network structure learning
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MAP i ce

@ Recall the MAP inference task,
1
argmaxp(x),  p(x) = 5 [] delxe)
ceC
(we assume any evidence has been subsumed into the potentials, as
discussed in the last lecture)
@ Since the normalization term is simply a constant, this is equivalent to

arg max H be(xc)

ceC
(called the max-product inference task)

@ Furthermore, since log is monotonic, letting .(xc) = Ig ¢c(xc), we have that
this is equivalent to

arg max Z 0c(xc)

ceC

(called max-sum)
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Motivating application: image denoising

@ Input (left): noisy image

e Output (right): denoised image
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Motivating application: protein side-chain placem

@ Find “minimum energy” conformation of amino acid side-chains along
a fixed carbon backbone:

(Yanover, Meltzer, Weiss ‘06) “Potential” function

Side-chain X, X, e for each edge
(corresponding to _ < 9|3(X|, X3)
| amino acid) A elz(xl' XZ)
R
Protein backbone . e 034(x3 )

- X4

@ Orientations of the side-chains are represented by discretized angles
called rotamers

@ Rotamer choices for nearby amino acids are energetically coupled
(attractive and repulsive forces)
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Motivating application: dependency parsing

@ Given a sentence, predict the dependency tree that relates the words:

John saw a movie vesterday that he liked

@ Arc from head word of each phrase to words that modify it

@ May be non-projective: each word and its descendents may not be a
contiguous subsequence

e m words = m(m — 1) binary arc selection variables x;; € {0,1}

o Let x|; = {x;};»i (all outgoing edges). Predict with:

max0-r +Z€U Xijj +Zc9 x|
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MAP as an integer linear program (ILP)

@ MAP as a discrete optimization problem is

arg max Z 0:(x;) + Z i (xi, xj).
icv ij€eE
@ To turn this into an integer linear program, we introduce indicator variables

© 1i(x;), one for each i € V and state x;
@ uij(xi, x;), one for each edge jj € E and pair of states x;, x;

@ The objective function is then
msz D 000 mi0a) + Y > 05(xi, ) i (%, x;)

eV X jEE xi,X;

@ What is the dimension of u, if binary variables?
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What are the constraints?

@ Force every “cluster” of variables to choose a local assignment:

i (xi) {0,1} VieV,x
Z,u,-(x,-) = 1 VieV

m

uili ) € {01} Vi€ E xix;
>_milag) = 1 VijeE

Xy Xj

m

@ Enforce that these local assignments are globally consistent:

Kok () = > i x)  Vij € E,xi
xiTI

i) = Y milxig) Vij € Ex
X
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MAP as an integer linear program (ILP)

MAP(9) = mﬁxz Z 0:(xi )i (x;) + Z Z 0,i (i, x; ) i (i, xj)

IS ijeE Xi,X;
subject to:

i (x;) {0,1} VieV.x
> pilx) = 1 VieVv

Xi

m

pilx) = > milxi,x) Vi€ E,x

pig) = ZMU(Xiy)(j) Vij € E, x

@ Many extremely good off-the-shelf solvers, such as CPLEX and Gurobi
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Visualization of integer u vectors

<— Assignment for X,

. |
® Marginal polytope 0
(I) (Wainwright & Jordan, '03) ? <— Assignment for X,
. I / | | «— Assignment for X,
"=]o 0
0 (I) <— Edge assignment for
0 —
| H=10 X%y
0 (0]
0 1 0 | «— Edge assignment for
o TTT I
0 A 0 72
I valid marginal probabilities 0
0 0 | «— Edge assignment for
0 X, =1 (IJ XXy
|
KJ i o] x,=0
XZ =] X3 =0
XZ =] X3= 0
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Linear programming relaxation for MAP

Integer linear program was:

MAP(0) = mfxz Z 0:(xi)wi(xi) + Z Z 05 (xi, x;) i (i, X;)

IS ijeE Xi,X;

subject to

x
~
m

" (0,1} Vie V,x
Z/,L,'(X,') = 1 VieV

pi(xi) = ZMU(X;,XJ-) Vij € E, x;
X
wilg) = > milxix) Vi€ E,x

Relax integrality constraints, allowing the variables to be between 0 and 1:

pi(xi) € [0,1] VieV,x
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LP relaxation optimizes over larger feasible space

S New, fractional
vertices
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Linear programming relaxation for MAP

Linear programming relaxation is:

LP(9) = max STST 0 mia) + D1 ST 0506, %) mi(xis %)

iev x; JEE Xj»X;

wilx) € [0,1] VieV,x
S = 1 viev
xi

wix;) > wilxisx) Vi € E,x;
o
j

wilg) = > wi(xisx) Vil € E,x
Xi

@ Linear programs can be solved efficiently! Simplex method, interior point,
ellipsoid algorithm

@ Since the LP relaxation maximizes over a larger set of solutions, its value
can only be higher
MAP(0) < LP(6)

@ LP relaxation is tight for tree-structured MRFs. Related to PS5, Q1.
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Local consistency constraints are exact for trees

@ Theorem: The local consistency constraints exactly define the marginal
polytope for a tree-structured MRF:

AN

@ Proof: Consider any ji € M;. We specify a distribution pr(x) for which
pi(x;) and pij(x;, x;) are the pairwise and singleton marginals of the
distribution prt

@ Let Xj be the root of the tree, and direct edges away from root. Then,

Hi, i(Xi,X i) ,X/,X
PT(X):MI(Xl) H pa(i) pa(i) — H J J HHJ XJ)

iEV\Xy Hpa(i) Xpa(i)) ijer ¥ i (xi )i (%)

@ Because of the local consistency constraints, each term in the product can
be interpreted as a conditional probability.
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Example for non-tree models

@ For non-trees, the local consistency constraints are an outer bound on the
marginal polytope

@ Example of i € M;\M for a MRF on binary variables:

o
wn
“n

&A X,

@ To see that this is not in M, note that it violates the following triangle
inequality (valid for marginals of MRFs on binary variables):

Z p12(x1, %) + Z pi2,3(%2, x3) + Z p13(xa, x3) < 2.

X17#X2 X2 7#X3 X17#X3

Mij(ﬁﬁz',xj) =

(2]
o
1]
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Today's lecture

© |Integer linear programming
@ MAP inference as an integer linear program
© Linear programming relaxations for MAP inference

© Dual decomposition
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Dual decomposition

@ Consider the MAP problem for pairwise Markov random fields:

MAP(6) = max D 0i(xi)+ > 0;(xi, ).

iev ij€E

@ If we push the maximizations inside the sums, the value can only increase:

MAP(09) < Zmax@ Xi) + Zmax@u(x,,xj)

@ Note that the right-hand side can be easily evaluated
@ One can always reparameterize a distribution by operations like

B () = 69 (x) + F(x)
0 () = 0(s) — £(x)

for any function f(x;), without changing the distribution/energy
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Dual decomposition

0y(a1,72)

O
()()
Dy

Ox(3,24)

ef(xlvxZ) —0p1(x1)— afg(,ll;;) )

dp1(1) ™, s
, + +
oy(wl-,-”fii) 1 5y1(1'1)@' @5»2(%)
- l_sgx(I;;:) ’ B
L () @ D Bg(es) T Bralea)
: + +
) 3 @ Ona(z4)

— On2(w2)

On (w2, 24)

— Opalma)/
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Dual decomposition

@ Define:
Oi(x) = 0:i(x)+ Y djsi(x)
ijE€E
O(xix5) = 05(xi.%) = 8j-i(xi) = 0imsj()
@ It is easy to verify that

ZQ (xi) +Z€U (xi, %) Z@ X,)—i—ZG,J (xi,x;) Vx

ijeE ijeE

Thus, we have that:
MAP(0) = MAP(f) < Z max@ (x;) + Z max 8;(x;, x})

Xj,Xj
ieVv ijeE

Every value of § gives a different upper bound on the value of the MAP!

The tightest upper bound can be obtained by minimizing the r.h.s. with
respect to 4!
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Dual decomposition

@ We obtain the following dual objective: L(d) =

> max (9,-(x,-) +y 5j—>i(Xi)) + Z max (GU(Xh X)) = Ojilxi) — 6i—>j(Xj))7

iev ijcE

DUAL-LP(6) = min L(5)

@ This provides an upper bound on the MAP assignment!
MAP(f) < DUAL-LP(0) < L(6)

@ How can find § which give tight bounds?
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Solving the dual efficiently

@ Many ways to solve the dual linear program, i.e. minimize with respect to §:

>~ max (6:00) + Y bl )+Zmax (6506 %) = 8j+i(x) = Gi5(x) ),

eV iicE

@ One option is to use the subgradient method

@ Can also solve using block coordinate-descent, which gives algorithms
that look very much like belief propagation:

AL
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Max-product linear programming (MPLP) algorithm

Input: A set of factors 6;(x;), 0;(xi, x;)
Output: An assignment xi, ..., x, that approximates the MAP
Algorithm:

@ Initialize §;,j(x;) =0, 6&ji(x) =0, Vij€ E, x;,x

@ lterate until small enough change in L(6):

For each edge ij € E (sequentially), perform the updates:

1 __; 1 _i

disi(xi) = —551.J(x;)+§mx?x[0;j(x;,><j)—|—5j (XJ)] Vx;
1., 1 _

biig) = =507 09) + 5 max [0506.9) + 0,7 (x)] ¥y

where ;7 (x;) = 0i(%;) + Y iker kzj Ok—i(xi)

@ Return x; € arg maxg, 62 (%;)
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Generalization to arbitrary factor graphs

Inputs:
= A set of factors 0;(z;), 05 (xy).

Output:

Algorithm:
B Initialize §7;i(z;) =0, Vf € F,i€ f, ;.

For each f € F, perform the updates

|71

® Return z; € arg maxz, 69 (2;) (see Eq. 1.6).

® An assignment x1,...,x, that approximates the MAP.

= [terate until small enough change in L(4) (see Eq. 1.2):

ief

Spa(ws) = =6, (w) + - max [0p(zs) + 36 () | (1.16)
TF\i

simultaneously for all i € f and x;. We define §; 7 (;) = 0;(x:) + PP FACHN
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Experimental results

Comparison of two block coordinate descent algorithms on a 10 x 10 node

Ising grid:
50
g
= =— MPLP
3 49 = Star
2
O
48
47+
46 ‘ ‘ ‘
0 10 20 30

lteration
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Experimental results

Performance on stereo vision inference task:

x 10
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Dual decomposition = LP relaxation

@ Recall we obtained the following dual linear program: L(J) =
> max (6:00) + 3 -i(x) ) + Z max (03¢ ) — 6ji() = 61j(9) ).
icv i IJEE is
DUAL-LP(H) = m5|n L(9)
@ We showed two ways of upper bounding the value of the MAP assignment:
MAP(9) < LP(9) (1)
MAP(A) < DUAL-LP(9) < L(9) 2)

@ Although we derived these linear programs in seemingly very different ways,

in turns out that:
LP(0) = DUAL-LP(0)

@ The dual LP allows us to upper bound the value of the MAP assignment
without solving a LP to optimality
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Linear programming duality

1, (Dual) LP relaxation
(Primal) LP relaxation
MAP assignment
XN 0 Integer linear program

MAP() < LP(6) = DUAL-LP(0) < L(5)
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How to solve integer linear programs?

@ Local search (iterated conditional modes)

o Start from an arbitrary assignment (e.g., random). lterate:
o Choose a variable. Change a new state for this variable to maximize
the value of the resulting assignment

@ Branch-and-bound

e Exhaustive search over space of assignments, pruning branches that
can be provably shown not to contain a MAP assignment

e Can use the LP relaxation or its dual to obtain upper bounds

e Lower bound obtained from value of any assignment found

@ Branch-and-cut (most powerful method; used by CPLEX & Gurobi)

e Same as branch-and-bound; spend more time getting tighter bounds
e Adds cutting-planes to cut off fractional solutions of the LP relaxation,
making the upper bound tighter
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Cutting-plane algorithm

max 6 - p max 6 - i1 max0 - 1
IS e
O s
O o
(a) (b) (c) (d)

Figure 2-6: Illustration of the cutting-plane algorithm. (a) Solve the LP relaxation. (b)
Find a violated constraint, add it to the relaxation, and repeat. (c) Result of solving the
tighter LP relaxation. (d) Finally, we find the MAP assignment.
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Course evaluation

That's it, folks! Thanks for a great semester. Please stay and fill out the
course evaluation.
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