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Generalization bounds using VC dimension
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* Linear classifiers:
— VC(H) = d+1, for d features plus constant term b

e SVM with Gaussian Kernel
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[Figure from Chris Burges]

[Figure from mblondel.org]



Gap tolerant classifiers

* Suppose data lies in R in a ball of diameter D

* Consider a hypothesis class H of linear classifiers that can only
classify point sets with margin at least M

 What is the largest set of points that H can shatter?

Y=0 Cannot shatter these points:
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. . . D? 1 SVM attempts to

VC dimension = min | d, 2 M =2y =200 7= minimize ||w][?, which
minimizes VC-dimension!!!

[Figure from Chris Burges]



Gap tolerant classifiers

* Suppose data lies in R in a ball of diameter D

* Consider a hypothesis class H of linear classifiers that can only
classify point sets with margin at least M

 What is the largest set of points that H can shatter?
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m What is R=D/2 for the Gaussian kernel?
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Nearest Neighbor Algorithm

* Learning Algorithm:

— Store training examples

* Prediction Algorithm:

— To classify a new example x by finding the training
example (x',y') that is nearest to x

— Guess the classy = V'



K-Nearest Neighbor Methods

e To classify a new input vector x, examine the k-closest training data points to x
and assign the object to the most frequently occurring class
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common values for k: 3, 5



Decision Boundaries

* The nearest neighbor algorithm does not explicitly compute decision
boundaries. However, the decision boundaries form a subset of the Voronoi
diagram for the training data.

I-NN Decision Surf ace

o The more examples that are stored, the more complex the decision boundaries
can become



Misclassification Errors

Example results for k-NN
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[Figures from Hastie and Tibshirani, Chapter 13]

7-Nearest Neighbors

Training Error: 0.145
Test Error: 0.225

Bayes Error:  0.210
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Nearest Neighbor

When to Consider
— Instance map to points in R"
— Less than 20 attributes per instance
— Lots of training data
Advantages
— Training is very fast
— Learn complex target functions
— Do not lose information
Disadvantages
— Slow at query time
— Easily fooled by irrelevant attributes



Issues

Distance measure
— Most common: Euclidean

Choosing k
— Increasing k reduces variance, increases bias

For high-dimensional space, problem that the nearest
neighbor may not be very close at all!

Memory-based technique. Must make a pass through
the data for each classification. This can be prohibitive
for large data sets.



Distance
» Notation: object with p measurements

X' = (Xillxizl---lxip)

* Most common distance metric is Euclidean distance:
1

de (X', X?) = i(x‘k -x))?

 ED makes sense when different measurements are commensurate; each
IS variable measured in the same units.

* If the measurements are different, say length and weight, it is not clear.



Standardization

When variables are not commensurate, we can standardize
them by dividing by the sample standard deviation. This
makes them all equally important.

The estimate for the standard deviation of x, :
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where x, is the sample mean:
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Weighted Euclidean distance

Finally, if we have some idea of the relative importance of
each variable, we can weight them:

1

dwe(i; J) = (ZWK(XL - Xi )2)2



The Curse of Dimensionality

Nearest neighbor breaks down in high-dimensional spaces because the
“neighborhood” becomes very large.

Suppose we have 5000 points uniformly distributed in the unit
hypercube and we want to apply the 5-nearest neighbor algorithm.

Suppose our query point is at the origin.
— 1D -
* On aone dimensional line, we must go a distance of 5/5000 = 0.001 on
average to capture the 5 nearest neighbors

— 2D -
* In two dimensions, we must go sqrt(0.001) to get a square that contains
0.001 of the volume

— D_
* In D dimensions, we must go (0.001)Y/P



K-NN and irrelevant features

+ ++ 00 @++o+ O am+oam®  +

>

15



K-N Nand irrelevant features
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Nearest neighbor problem

® Problem: given sample S = ((z1,y1), .-, (Tm,Ym)),
find the nearest neighbor of test point z.

® general problem extensively studied in computer
science.

® exact vs. approximate algorithms.
® dimensionality N crucial.

® better algorithms for small intrinsic dimension
(e.g., limited doubling dimension).

[Slides from Mehyrar Mohri]



Efficient Indexing: N=2

& Algorithm:
® compute VYoronoi diagram in O(mlogm).
® point location data structure to determine NN.

® complexity: O(m)space, O(log m) time.

[Slides from Mehyrar Mohri]



Efficient Indexing: N>2

® Voronoi diagram: size in O(m!"/21).

® Llinear algorithm (no pre-processing):
® compute distance ||z — z;|| for all i € [1,m)].
® complexity of distance computation: Q(Nm).

® no additional space needed.

B Tree-based data structures: pre-processing.

® often used in applications:k-d trees (k-dimensional
trees).

[Slides from Mehyrar Mohri]



Efficient Indexing for N>2: KD trees
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| Algorithm: for each non-leaf node,

Construction algorithm

® choose dimension (e.g., longest of hyperrectangle).
® choose pivot (median).

® split node according to (pivot, dimension).

—> balanced tree, binary space partitioning.

[Slides from Mehyrar Mohri]



Efficient Indexing for N>2: KD trees

& Algorithm:
gorit Search algorithm
® find region containing z (starting from root

node, move to child node based on node test). ° 4

® save region point Zo as current best.

® move up tree and recursively search regions /o
intersecting hypersphere S(z, ||z — z¢||): w
® update current best if current point is closer. o

® restart search with each intersecting sub-tree.

® move up tree when no more intersecting sub-
tree.

[Slides from Mehyrar Mohri]



k-NN is similar to SVM with Gaussian kernel!

Consider the following generalization of the k-NN algorithm (specialized to
binary classification):
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Looks at all training points (i.e., k=N), but weights the i’th training point’s
label by how far x; is from x

Now compare this to classification with SVM and a Gaussian kernel:
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The discriminant functions are nearly identical! The SVM has parameters «;
that can be learned to maximize predictive accuracy



KNN Advantages

* Easy to program

* No optimization or training required

e Classification accuracy can be very good; can
outperform more complex models



