Decision Trees Lecture 11 David Sontag New York University Slides adapted from Luke Zettlemoyer, Carlos Guestrin, and Andrew Moore ## A learning problem: predict fuel efficiency - 40 data points - Goal: predict MPG - Need to find: $f: X \rightarrow Y$ - Discrete data (for now) | 4 me
8 hig
6 me
4 lov
4 lov
8 hig | edium
edium
gh
edium
N | low medium medium high medium medium medium high : | low medium medium high medium low low high : | high medium low low medium medium low low | 75to78
70to74
75to78
70to74
70to74
70to74
70to74
75to78 | asia america europe america america asia asia america | |--|---|--|---|---|--|--| | 4 me
8 hig
6 me
4 lov
4 lov
8 hig | edium
gh
edium
N | medium
high
medium
medium
medium | medium high medium low low high : | low
low
medium
medium
low | 75to78
70to74
70to74
70to74
70to74
75to78 | europe
america
america
asia
asia
america | | 8 hig
6 me
4 lov
4 lov
8 hig
: | gh
edium
N | high
medium
medium
medium | high
medium
low
low
high | low
medium
medium
low | 70to74
70to74
70to74
70to74
75to78 | america
america
asia
asia
america | | 6 me
4 lov
4 lov
8 hig
: | edium
N
N | medium
medium
medium | medium
low
low
high | medium
medium
low | 70to74
70to74
70to74
75to78 | america
asia
asia
america | | 4 lov
4 lov
8 hig
: | N
N | medium
medium | low
low
high | medium
low | 70to74
70to74
75to78 | asia
asia
america | | 4 lov
8 hig
: | N | medium | low
high | low | 70to74
75to78 | asia
america
: | | 8 hig
:
: | | | high
: | | 75to78
: | america | | : | gh | high
:
: | : | low | | : | | - | | : | | : | | : | | - | | | | | | | | :
8 bic | | | | | : | : | | 8 hic | | . | 1: | : | : | : | | Olling | gh | high | high | low | 70to74 | america | | 8 hig | gh | medium | high | high | 79to83 | america | | 8 hig | gh | high | high | low | 75to78 | america | | 4 lov | N | low | low | low | 79to83 | america | | 6 me | edium | medium | medium | high | 75to78 | america | | 4 me | edium | low | low | low | 79to83 | america | | 4 lov | N | low | medium | high | 79to83 | america | | 8 hig | gh | high | high | low | 70to74 | america | | | | medium | low | medium | 75to78 | europe | | 5 me | edium | medium | medium | medium | 75to78 | europe | | | 8 hig
4 lov
6 me
4 me
4 lov
8 hig
4 lov | 8 high 4 low 6 medium 4 medium 4 low 8 high 4 low | 8 high high 4 low low 6 medium medium 4 medium low 4 low low 8 high high 4 low medium | 8 high high high 4 low low low 6 medium medium medium 4 medium low low 4 low low medium 8 high high high 4 low medium low | 8 high high high low 4 low low low low 6 medium medium medium high 4 medium low low low 4 low low medium high 8 high high high low 4 low medium low medium | 8 high high high low 75to78 4 low low low 10w 79to83 6 medium medium high 75to78 4 medium low low 10w 79to83 4 low low medium high 79to83 8 high high high low 70to74 4 low medium low medium 75to78 | From the UCI repository (thanks to Ross Quinlan) ## Hypotheses: decision trees $f: X \rightarrow Y$ - Each internal node tests an attribute x_i - Each branch assigns an attribute value x_i=v - Each leaf assigns a class y - To classify input x: traverse the tree from root to leaf, output the labeled y Human interpretable! # Hypothesis space - How many possible hypotheses? - What functions can be represented? | mpg | cylinders | displacement | horsepower | weight | acceleration | modelyear | maker | |------|-----------|--------------|------------|--------|--------------|-----------|---------| | good | 4 | low | low | low | high | 75to78 | asia | | bad | 6 | medium | medium | medium | medium | 70to74 | america | | bad | 4 | medium | medium | medium | low | 75to78 | europe | | bad | 8 | high | high | high | low | 70to74 | america | | bad | 6 | medium | medium | medium | medium | 70to74 | america | | bad | 4 | low | medium | low | medium | 70to74 | asia | | bad | 4 | low | medium | low | low | 70to74 | asia | | bad | 8 | high | high | high | low | 75to78 | america | | : | 1: | : | : | 1: | 1: | : | : | | : | : | : | : | : | : | : | : | | : | : | : | : | : | : | : | : | | bad | 8 | high | high | high | low | 70to74 | america | | good | 8 | high | medium | high | high | 79to83 | america | | bad | 8 | high | high | high | low | 75to78 | america | | good | 4 | low | low | low | low | 79to83 | america | | bad | 6 | medium | medium | medium | high | 75to78 | america | | good | 4 | medium | low | low | low | 79to83 | america | | good | 4 | low | low | medium | high | 79to83 | america | | bad | 8 | high | high | high | low | 70to74 | america | | good | 4 | low | medium | low | medium | 75to78 | europe | | bad | 5 | medium | medium | medium | medium | 75to78 | europe | ## What functions can be represented? - Decision trees can represent any function of the input attributes! - For Boolean functions, path to leaf gives truth table row - But, could require exponentially many nodes... (Figure from Stuart Russell) cyl=3 ∨ (cyl=4 ∧ (maker=asia ∨ maker=europe)) ∨ ... # Hypothesis space - How many possible hypotheses? - What functions can be represented? - How many will be consistent with a given dataset? - How will we choose the best one? - Lets first look at how to split nodes, then consider how to find the best tree | | | P I | | | 1 1 1 | | | |------|-----------|--------------|------------|--------|--------------|-----------|---------| | mpg | cylinders | displacement | horsepower | weight | acceleration | modelyear | maker | | | | | | | | | | | good | 4 | low | low | low | high | 75to78 | asia | | bad | 6 | medium | medium | medium | medium | 70to74 | america | | bad | 4 | medium | medium | medium | low | 75to78 | europe | | bad | 8 | high | high | high | low | 70to74 | america | | bad | 6 | medium | medium | medium | medium | 70to74 | america | | bad | 4 | low | medium | low | medium | 70to74 | asia | | bad | 4 | low | medium | low | low | 70to74 | asia | | bad | 8 | high | high | high | low | 75to78 | america | | : | : | : | : | : | 1: | : | : | | : | : | : | : | : | : | : | : | | : | : | : | : | ; | : | | : | | bad | 8 | high | high | high | low | 70to74 | america | | good | 8 | high | medium | high | high | 79to83 | america | | bad | 8 | high | high | high | low | 75to78 | america | | good | 4 | low | low | low | low | 79to83 | america | | bad | 6 | medium | medium | medium | high | 75to78 | america | | good | 4 | medium | low | low | low | 79to83 | america | | good | 4 | low | low | medium | high | 79to83 | america | | bad | 8 | high | high | high | low | 70to74 | america | | good | 4 | low | medium | low | medium | 75to78 | europe | | bad | 5 | medium | medium | medium | medium | 75to78 | europe | # What is the Simplest Tree? predict mpg=bad | mpg | cylinders | displacement | horsepower | weight | acceleration | modelyear | maker | |------|-----------|--------------|------------|--------|--------------|-----------|---------| | good | 4 | low | low | low | high | 75to78 | asia | | bad | 6 | medium | medium | medium | medium | 70to74 | america | | bad | 4 | medium | medium | medium | low | 75to78 | europe | | bad | 8 | high | high | high | low | 70to74 | america | | bad | 6 | medium | medium | medium | medium | 70to74 | america | | bad | 4 | low | medium | low | medium | 70to74 | asia | | bad | 4 | low | medium | low | low | 70to74 | asia | | bad | 8 | high | high | high | low | 75to78 | america | | : | : | : | : | : | 1: | : | : | | : | 1: | : | : | 1: | 1: | : | : | | : | 1: | : | : | 1: | 1: | : | : | | bad | 8 | high | high | high | low | 70to74 | america | | good | 8 | high | medium | high | high | 79to83 | america | | bad | 8 | high | high | high | low | 75to78 | america | | good | 4 | low | low | low | low | 79to83 | america | | bad | 6 | medium | medium | medium | high | 75to78 | america | | good | 4 | medium | low | low | low | 79to83 | america | | good | 4 | low | low | medium | high | 79to83 | america | | bad | 8 | high | high | high | low | 70to74 | america | | good | 4 | low | medium | low | medium | 75to78 | europe | | bad | 5 | medium | medium | medium | medium | 75to78 | europe | ## Is this a good tree? Means: correct on 22 examples incorrect on 18 examples # **A Decision Stump** ## Recursive Step ## **Recursive Step** ## Second level of tree Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia (Similar recursion in the other cases) # Are all decision trees equal? - Many trees can represent the same concept - But, not all trees will have the same size! $$-$$ e.g., ϕ = (A \wedge B) \vee (\neg A \wedge C) $-$ ((A and B) or (not A and C)) Which tree do we prefer? ## Learning decision trees is hard!!! - Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76] - Resort to a greedy heuristic: - Start from empty decision tree - Split on next best attribute (feature) - Recurse # Splitting: choosing a good attribute Would we prefer to split on X_1 or X_2 ? Idea: use counts at leaves to define probability distributions, so we can measure uncertainty! | X ₁ | X_2 | Υ | |----------------|-------|---| | Т | Т | Т | | Т | F | Т | | Т | Т | Т | | Т | F | Т | | F | Т | Т | | F | F | F | | F | Т | F | | F | F | F | # Measuring uncertainty - Good split if we are more certain about classification after split - Deterministic good (all true or all false) - Uniform distribution bad - What about distributions in between? | P(Y=A) = 1/2 P(Y=B) | P(Y=C) = 1/8 | P(Y=D) = 1/8 | |---------------------|--------------|--------------| |---------------------|--------------|--------------| $$P(Y=A) = 1/4$$ $P(Y=B) = 1/4$ $P(Y=C) = 1/4$ $P(Y=D) = 1/4$ # **Entropy** Entropy H(Y) of a random variable Y $$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$ #### More uncertainty, more entropy! Information Theory interpretation: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code) ### High, Low Entropy - "High Entropy" - Y is from a uniform like distribution - Flat histogram - Values sampled from it are less predictable - "Low Entropy" - Y is from a varied (peaks and valleys) distribution - Histogram has many lows and highs - Values sampled from it are more predictable # **Entropy Example** $$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$ $$P(Y=t) = 5/6$$ $$P(Y=f) = 1/6$$ $$H(Y) = -5/6 \log_2 5/6 - 1/6 \log_2 1/6$$ = 0.65 | X ₁ | X_2 | Υ | |----------------|-------|---| | Т | Т | Т | | Т | F | Т | | Т | Т | Т | | Т | F | Т | | F | Т | Т | | F | F | F | # **Conditional Entropy** Conditional Entropy H(Y|X) of a random variable Y conditioned on a random variable X $$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$ #### Example: $$P(X_1=t) = 4/6$$ $$P(X_1=f) = 2/6$$ Y=f : 0 Y=f: 1 $$H(Y|X_1) = -4/6 (1 \log_2 1 + 0 \log_2 0)$$ - 2/6 (1/2 $\log_2 1/2 + 1/2 \log_2 1/2$) = 2/6 | X ₁ | X_2 | Υ | |----------------|-------|---| | Т | Т | Т | | Т | F | Т | | Т | Т | Т | | Т | F | Т | | F | Т | Т | | F | F | F | # Information gain Decrease in entropy (uncertainty) after splitting $$IG(X) = H(Y) - H(Y \mid X)$$ In our running example: $$IG(X_1) = H(Y) - H(Y|X_1)$$ = 0.65 - 0.33 $IG(X_1) > 0 \rightarrow$ we prefer the split! | X ₁ | X_2 | Υ | |----------------|-------|---| | Т | Т | Т | | Т | F | Т | | Т | Т | Т | | Т | F | Т | | F | Т | Т | | F | F | F | # Learning decision trees - Start from empty decision tree - Split on next best attribute (feature) - Use, for example, information gain to select attribute: $$\arg\max_{i} IG(X_{i}) = \arg\max_{i} H(Y) - H(Y \mid X_{i})$$ Recurse Suppose we want to predict MPG Look at all the information gains... ## A Decision Stump First split looks good! But, when do we stop? ## Base Cases: An idea - Base Case One: If all records in current data subset have the same output then don't recurse - Base Case Two: If all records have exactly the same set of input attributes then don't recurse # The problem with Base Case 3 $$y = a XOR b$$ | а | b | у | |---|---|---| | 0 | 0 | 0 | | 0 | 1 | 1 | | 1 | 0 | 1 | | 1 | 1 | 0 | The information gains: Information gains using the training set (4 records) y values: 0 1 Input Value Distribution Info Gain a 0 0 0 1 0 1 1 0 The resulting decision tree: ## If we omit Base Case 3: y = a XOR b | а | b | у | |---|---|---| | 0 | 0 | 0 | | 0 | 1 | 1 | | 1 | 0 | 1 | | 1 | 1 | 0 | Is it OK to omit Base Case 3? The resulting decision tree: # Summary: Building Decision Trees #### BuildTree(DataSet,Output) - If all output values are the same in DataSet, return a leaf node that says "predict this unique output" - If all input values are the same, return a leaf node that says "predict the majority output" - Else find attribute X with highest Info Gain - Suppose X has n_X distinct values (i.e. X has arity n_X). - Create a non-leaf node with n_x children. - The i'th child should be built by calling BuildTree(*DS_i*,*Output*) Where DS_i contains the records in DataSet where X = ith value of X. ## Decision trees will overfit!!! - Standard decision trees have no learning bias - Training set error is always zero! - (If there is no label noise) - Lots of variance - Must introduce some bias towards simpler trees - Many strategies for picking simpler trees - Fixed depth - Fixed number of leaves - Or something smarter... ## Decision trees will overfit!!! ## **How to Build Small Trees** #### Two reasonable approaches: - Optimize on the held-out (development) set - If growing the tree larger hurts performance, then stop growing - Requires a larger amount of data... - Use statistical significance testing - Test if the improvement for any split it likely due to noise - If so, don't do the split! - Can also use this to prune the tree bottom-up # Real-Valued inputs #### What should we do if some of the inputs are real-valued? Infinite number of possible split values!!! Finite dataset, only finite number of relevant splits! | mpg | cylinders | displacemen | horsepower | weight | acceleration | modelyear | maker | |------|-----------|-------------|------------|--------|--------------|-----------|---------| | | | | | | | | | | good | 4 | 97 | 75 | 2265 | 18.2 | 77 | asia | | bad | 6 | 199 | 90 | 2648 | 15 | 70 | america | | bad | 4 | 121 | 110 | 2600 | 12.8 | 77 | europe | | bad | 8 | 350 | 175 | 4100 | 13 | 73 | america | | bad | 6 | 198 | 95 | 3102 | 16.5 | 74 | america | | bad | 4 | 108 | 94 | 2379 | 16.5 | 73 | asia | | bad | 4 | 113 | 95 | 2228 | 14 | 71 | asia | | bad | 8 | 302 | 139 | 3570 | 12.8 | 78 | america | | : | : | : | : | : | : | : | : | | : | : | : | : | : | : | : | : | | : | : | : | : | : | : | : | : | | good | 4 | 120 | 79 | 2625 | 18.6 | 82 | america | | bad | 8 | 455 | 225 | 4425 | 10 | 70 | america | | good | 4 | 107 | 86 | 2464 | 15.5 | 76 | europe | | bad | 5 | 131 | 103 | 2830 | 15.9 | 78 | europe | | | | | | | | | | # "One branch for each numeric value" idea: Hopeless: hypothesis with such a high branching factor will shatter *any* dataset and overfit # Threshold splits - Binary tree: split on attribute X at value t - One branch: X < t</p> - Other branch: X ≥ t - Requires small change - Allow repeated splits on same variable - How does this compare to "branch on each value" approach? ### The set of possible thresholds - Binary tree, split on attribute X - One branch: X < t - Other branch: X ≥ t - Search through possible values of t - Seems hard!!! - But only a finite number of t's are important: - Sort data according to X into $\{x_1,...,x_m\}$ - Consider split points of the form $x_i + (x_{i+1} x_i)/2$ - Morever, only splits between examples of different classes matter! # Picking the best threshold - Suppose X is real valued with threshold t - Want IG(Y | X:t), the information gain for Y when testing if X is greater than or less than t - Define: - H(Y|X:t) = p(X < t) H(Y|X < t) + p(X >= t) H(Y|X >= t) - IG(Y|X:t) = H(Y) H(Y|X:t) - $IG^*(Y|X) = max_t IG(Y|X:t)$ - Use: IG*(Y|X) for continuous variables # Example with MPG Example tree for our continuous dataset ### What you need to know about decision trees - Decision trees are one of the most popular ML tools - Easy to understand, implement, and use - Computationally cheap (to solve heuristically) - Information gain to select attributes (ID3, C4.5,...) - Presented for classification, can be used for regression and density estimation too - Decision trees will overfit!!! - Must use tricks to find "simple trees", e.g., - Fixed depth/Early stopping - Pruning - Hypothesis testing