CsAlL The AdaBoost algorithm
0) Set W =1/nfori=1,....n

1) At the m!" iteration we find (any) classifier h(x;6,,) for
which the weighted classification error €,,

L (S~ v m-D) ¥

i=1
Is better than chance.

2) The new component is assigned votes based on its error:
O = 0.5 log( (1 — €)/€m )

3) The weights are updated according to (Z,, is chosen so that
the new weights W™ sum to one):

R P ) A
WZ-( ) — 7 Wi( b exp{ —YiGmh(x;;0.,) }
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CSAIL Adaboost properties: exponential loss
e After each boosting iteration, assuming we can find a
component classifier whose weighted error is better than
chance, the combined classifier

hon(X) = &1h(x;01) + . .. + dmh(x; 00

Is guaranteed to have a lower exponential loss over the
training examples
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CsAlL Adaboost properties: training error

e The boosting iterations also decrease the classification error
of the combined classifier

AN AN

hon(X) = &1h(x;01) + . .. + dmh(x; 00

over the training examples.
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e

csai. Adaboost properties: training error cont’d
e The training classification error has to go down exponentially
fast if the weighted errors of the component classifiers, €,
are strictly better than chance ¢, < 0.5

err(iLm) S H 2\/€k(1 — ek)
k=1
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e

CSAIL Adaboost properties: weighted error
e Weighted error of each new component classifier

n

1 -~ (L_ .
€r = 0.5 — 5 Z Wf,;(k Y yih(x;; 0)
i—1

tends to increase as a function of boosting iterations.
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How Will Test Error Behave? (A First Guess)

20 40 60 80 100
# of rounds (7)
expect:

e training error to continue to drop (or reach zero)

e test error to increase when Hp,,) becomes “too complex”
“Occam’s razor”
overfitting

hard to know when to stop training



Technically...

e with high probability:

L . ~ dTl
generalization error < training error + O e
m

bound depends on
m = #£ training examples
d = “complexity” of weak classifiers
I = # rounds

e generalization error = E [test error]

e predicts overfitting



e

CSAIL “Typical” performance

e Training and test errors of the combined classifier

A

hon(X) = d1h(x;01) + . .. + dmh(x;0m)

training/test errors

0 10 20 30 40 50
number of iterations

e Why should the test error go down after we already have
zero training error?
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CsAlL AdaBoost and margin

e We can write the combined classifier in a more useful form
by dividing the predictions by the “total number of votes”:

b () — GBS 01) + ... + Gmh(x; 6,,)
mAT, a1+ ...+ a,

e This allows us to define a clear notion of “voting margin” that
the combined classifier achieves for each training example:

A

margin(x;) = y; - hun(X;)

The margin lies in [—1,1] and is negative for all misclassified
examples.
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e

CsAlL AdaBoost and margin

e Successive boosting iterations still improve the majority vote
or margin for the training examples

A

Gah(xi01) + ...+ Qmh(xi; 0,
61+ ...+ G

margin(x;) = y;

e Cumulative distributions of margin values:
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e

CsAlL AdaBoost and margin

e Successive boosting iterations still improve the majority vote
or margin for the training examples

A

Gah(xi01) + ...+ Qmh(xi; 0,
61+ ...+ G

margin(x;) = y;

e Cumulative distributions of margin values:

1 T T T 1

0.9r - 0.9r

0.81 0.81

0.7f o7k

0.6 0.6

0.5- 0.5

0.41 0.41

0.3F 0.3F

0.2f 0.2f

0.1F 0.1+
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Tommi Jaakkola, MIT CSAIL 27



e

CsAIL Can we improve the combination?

e As a result of running the boosting algorithm for m iterations,
we essentially generate a new feature representation for the
data

e Perhaps we can do better by separately estimating a new set
of “votes” for each component. In other words, we could
estimate a linear classifier of the form

f(x;0) = a101(X) + ... Apmdm(X)

where each parameter «; can be now any real number (even
negative). The parameters would be estimated jointly rather
than one after the other as in boosting.
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e

CsAlL Can we improve the combination?
e We could use SVMs in a postprocessing step to reoptimize

f(xa) = a1g1(x) + ... amPm(X)

with respect to aq,...,a,,. This is not necessarily a good

idea.
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Practical Advantages of AdaBoost

o fast

e simple and easy to program

e no parameters to tune (except T)

o flexible — can combine with any learning algorithm
e no prior knowledge needed about weak learner

e provably effective, provided can consistently find rough rules
of thumb
shift in mind set — goal now is merely to find classifiers
barely better than random guessing

e versatile
can use with data that is textual, numeric, discrete, etc.
has been extended to learning problems well beyond
binary classification



Caveats

e performance of AdaBoost depends on data and weak learner

e consistent with theory, AdaBoost can fail if
weak classifiers too complex

— overfitting
weak classifiers too weak (7 — 0 too quickly)

— underfitting
— low margins — overfitting

e empirically, AdaBoost seems especially susceptible to uniform
noise



Multiclass Problems
[with Freund]

e say y € Y where |Y| =k
e direct approach (AdaBoost.M1):

hy : X =Y

De(i) [ e if y; = he(x;)
{ >

Dt+1(’) — Zt et if Vi 7& ht(Xi

M) = srgmax 3" o
t:hi(x)=y

e can prove same bound on error if Vt :e; < 1/2
In practice, not usually a problem for “strong” weak

learners (e.g., C4.5)
significant problem for “weak” weak learners (e.g.,

decision stumps)
e instead, reduce to binary



The One-Against-All Approach

e break k-class problem into k binary problems and
solve each separately

e say possible labels are Y = {m, W m}

[] []
X1 X1 X1+ | X1 X1
x> N X2 X X2 + | Xo
X3 = || X3 X3 X3 X3 +
X4 X4 X4 + | X4 X4
X5 [] X5 + | X X5 X5

e to classify new example, choose label predicted to be “most”
positive

e = “AdaBoost.MH" [with Singer]

e problem: not robust to errors in predictions





