

The AdaBoost algorithm

0) Set
$$\tilde{W}_i^{(0)} = 1/n$$
 for $i = 1, \dots, n$

1) At the m^{th} iteration we find (any) classifier $h(\mathbf{x}; \hat{\theta}_m)$ for which the weighted classification error ϵ_m

$$\epsilon_m = 0.5 - \frac{1}{2} \left(\sum_{i=1}^n \tilde{W}_i^{(m-1)} y_i h(\mathbf{x}_i; \hat{\theta}_m) \right)$$

is better than chance.

2) The new component is assigned votes based on its error:

$$\hat{\alpha}_m = 0.5 \log((1 - \epsilon_m)/\epsilon_m)$$

3) The weights are updated according to $(Z_m \text{ is chosen so that the new weights } \tilde{W}_i^{(m)} \text{ sum to one}):$

$$\tilde{W}_{i}^{(m)} = \frac{1}{Z_{m}} \cdot \tilde{W}_{i}^{(m-1)} \cdot \exp\{-y_{i}\hat{\alpha}_{m}h(\mathbf{x}_{i};\hat{\theta}_{m})\}$$

Adaboost properties: exponential loss

 After each boosting iteration, assuming we can find a component classifier whose weighted error is better than chance, the combined classifier

$$\hat{h}_m(\mathbf{x}) = \hat{\alpha}_1 h(\mathbf{x}; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(\mathbf{x}; \hat{\theta}_m)$$

is guaranteed to have a lower exponential loss over the training examples

Adaboost properties: training error

• The boosting iterations also decrease the classification error of the combined classifier

$$\hat{h}_m(\mathbf{x}) = \hat{\alpha}_1 h(\mathbf{x}; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(\mathbf{x}; \hat{\theta}_m)$$

over the training examples.

Adaboost properties: training error cont'd

• The training classification error has to go down exponentially fast if the weighted errors of the component classifiers, ϵ_k , are strictly better than chance $\epsilon_k < 0.5$

20

30

number of iterations

40

50

0.02

0^L 0

10

Adaboost properties: weighted error

• Weighted error of each new component classifier

$$\epsilon_k = 0.5 - \frac{1}{2} \left(\sum_{i=1}^n \tilde{W}_i^{(k-1)} y_i h(\mathbf{x}_i; \hat{\theta}_k) \right)$$

tends to increase as a function of boosting iterations.

CSAIL

How Will Test Error Behave? (A First Guess)

expect:

- training error to continue to drop (or reach zero)
- test error to increase when H_{final} becomes "too complex"
 - "Occam's razor"
 - overfitting
 - hard to know when to stop training

Technically...

• with high probability:

generalization error
$$\leq$$
 training error $+ \tilde{O}\left(\sqrt{\frac{dT}{m}}\right)$

bound depends on

- *m* = # training examples
- *d* = "complexity" of weak classifiers

- generalization error = E [test error]
- predicts overfitting

"Typical" performance

• Training and test errors of the *combined classifier*

$$\hat{h}_m(\mathbf{x}) = \hat{\alpha}_1 h(\mathbf{x}; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(\mathbf{x}; \hat{\theta}_m)$$

• Why should the test error go down after we already have zero training error?

AdaBoost and margin

• We can write the combined classifier in a more useful form by dividing the predictions by the "total number of votes":

$$\hat{h}_m(\mathbf{x}) = \frac{\hat{\alpha}_1 h(\mathbf{x}; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(\mathbf{x}; \hat{\theta}_m)}{\hat{\alpha}_1 + \ldots + \hat{\alpha}_m}$$

• This allows us to define a clear notion of "voting margin" that the combined classifier achieves for each training example:

$$\mathsf{margin}(\mathbf{x}_i) = y_i \cdot \hat{h}_m(\mathbf{x}_i)$$

The margin lies in [-1, 1] and is negative for all misclassified examples.

AdaBoost and margin

• Successive boosting iterations still improve the majority vote or margin for the training examples

margin(
$$\mathbf{x}_i$$
) = $y_i \left[\frac{\hat{\alpha}_1 h(\mathbf{x}_i; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(\mathbf{x}_i; \hat{\theta}_m)}{\hat{\alpha}_1 + \ldots + \hat{\alpha}_m} \right]$

• Cumulative distributions of margin values:

AdaBoost and margin

• Successive boosting iterations still improve the majority vote or margin for the training examples

margin(
$$\mathbf{x}_i$$
) = $y_i \left[\frac{\hat{\alpha}_1 h(\mathbf{x}_i; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(\mathbf{x}_i; \hat{\theta}_m)}{\hat{\alpha}_1 + \ldots + \hat{\alpha}_m} \right]$

• Cumulative distributions of margin values:

Can we improve the combination?

 As a result of running the boosting algorithm for m iterations, we essentially generate a new feature representation for the data

$$\phi_i(\mathbf{x}) = h(\mathbf{x}; \hat{\theta}_i), i = 1, \dots, m$$

 Perhaps we can do better by separately estimating a new set of "votes" for each component. In other words, we could estimate a linear classifier of the form

$$f(\mathbf{x}; \alpha) = \alpha_1 \phi_1(\mathbf{x}) + \dots \alpha_m \phi_m(\mathbf{x})$$

where each parameter α_i can be now any real number (even negative). The parameters would be estimated jointly rather than one after the other as in boosting.

Can we improve the combination?

• We could use SVMs in a postprocessing step to reoptimize

$$f(\mathbf{x}; \alpha) = \alpha_1 \phi_1(\mathbf{x}) + \dots \alpha_m \phi_m(\mathbf{x})$$

with respect to $\alpha_1, \ldots, \alpha_m$. This is not necessarily a good idea.

Practical Advantages of AdaBoost

• fast

- simple and easy to program
- no parameters to tune (except T)
- flexible can combine with any learning algorithm
- no prior knowledge needed about weak learner
- provably effective, provided can consistently find rough rules of thumb
 - \rightarrow shift in mind set goal now is merely to find classifiers barely better than random guessing
- versatile
 - can use with data that is textual, numeric, discrete, etc.
 - has been extended to learning problems well beyond binary classification

- performance of AdaBoost depends on data and weak learner
- consistent with theory, AdaBoost can fail if
 - weak classifiers too complex
 - \rightarrow overfitting
 - weak classifiers too weak ($\gamma_t \rightarrow 0$ too quickly)
 - \rightarrow underfitting
 - \rightarrow low margins \rightarrow overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise

Multiclass Problems

[with Freund]

- say $y \in Y$ where |Y| = k
- direct approach (AdaBoost.M1):

$$h_t: X \to Y$$

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$H_{\text{final}}(x) = \arg \max_{y \in Y} \sum_{t:h_t(x)=y} \alpha_t$$

- can prove same bound on error if $\forall t : \epsilon_t \leq 1/2$
 - in practice, not usually a problem for "strong" weak learners (e.g., C4.5)
 - significant problem for "weak" weak learners (e.g., decision stumps)
- instead, reduce to binary

The One-Against-All Approach

- break k-class problem into k binary problems and solve each separately
- say possible labels are $Y = \{\blacksquare, \blacksquare, \blacksquare, \blacksquare\}$

- to classify new example, choose label predicted to be "most" positive
- \Rightarrow "AdaBoost.MH"

[with Singer]

• problem: not robust to errors in predictions