Introduction to Bayesian methods Lecture 16

David Sontag
New York University

Slides adapted from Luke Zettlemoyer, Carlos Guestrin, Dan Klein, and Vibhav Gogate

Bayesian learning

- Bayesian learning uses probability to model data and quantify uncertainty of predictions
 - Eliminates arbitrary loss functions and regularizers
 - Facilitates incorporation of prior knowledge
 - Gives optimal predictions
 - Allows for decision-theoretic reasoning

Your first consulting job

- A billionaire from the suburbs of Manhattan asks you a question:
 - He says: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
 - You say: Please flip it a few times:

- You say: The probability is:
 - P(heads) = 3/5
- He says: Why???
- You say: Because...

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - D = How long will it take to drive to work?
 - L = Where am I?
- We denote random variables with capital letters
- Random variables have domains
 - − R in {true, false} (sometimes write as {+r, ¬r})
 - D in $[0, \infty)$
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

Discrete random variables have distributions

P(I)		
Т	Р	
warm	0.5	
cold	0.5	

D(T)

1 (/ /)		
W	Р	
sun	0.6	
rain	0.1	
fog	0.3	
meteor	0.0	

P(W)

- A discrete distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$P(W = rain) = 0.1 \qquad P(rain) = 0.1$$

• Must have: $\forall x \, P(x) \ge 0 \qquad \sum_{x} P(x) = 1$

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, \dots X_n$ specifies a real number for each assignment:

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

– Size of distribution if n variables with domain sizes d?

$$P(x_1, x_2, \dots x_n) \ge 0$$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

For all but the smallest distributions, impractical to write out

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{w} P(t, w)$$

$$P(w) = \sum_{t} P(t, w)$$

P	(T)	7)

Τ	Р
hot	0.5
cold	0.5

P(W)

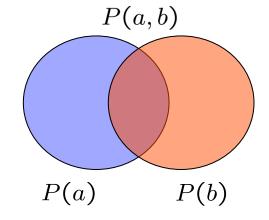
W	Р
sun	0.6
rain	0.4

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the definition of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$



Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = r | T = c) = ???$$

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W|T = hot) $W \qquad P$ $sun \qquad 0.8$ $rain \qquad 0.2$ P(W|T = cold) $W \qquad P$ $sun \qquad 0.4$ $rain \qquad 0.6$

Joint Distribution

P(T,W)

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad \longleftarrow \qquad P(x,y) = P(x|y)P(y)$$

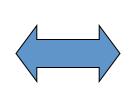
Example:

P(W)		
W	Р	
sun	8.0	
rain	0.2	

D/TII

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

P(D|W)



D	W	Р
wet	sun	0.08
dry	sun	0.72
wet	rain	0.14

P(D,W)

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

That's my rule!

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Lets us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many practical systems (e.g. ASR, MT)
- In the running for most important ML equation!

Returning to thumbtack example...

• P(Heads) = θ , P(Tails) = $1-\theta$

- Flips are *i.i.d.*: $D = \{x_i | i = 1...n\}, P(D \mid \theta) = \prod_i P(x_i \mid \theta)$
 - Independent events
 - Identically distributed according to Bernoulli distribution
- Sequence D of $\alpha_{\rm H}$ Heads and $\alpha_{\rm T}$ Tails

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Called the "likelihood" of the data under the model

Maximum Likelihood Estimation

- Data: Observed set D of $\alpha_{\rm H}$ Heads and $\alpha_{\rm T}$ Tails
- Hypothesis: Bernoulli distribution
- Learning: finding θ is an optimization problem
 - What's the objective function?

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

• MLE: Choose θ to maximize probability of D

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

Your first parameter learning algorithm

$$\widehat{\theta} = \arg\max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

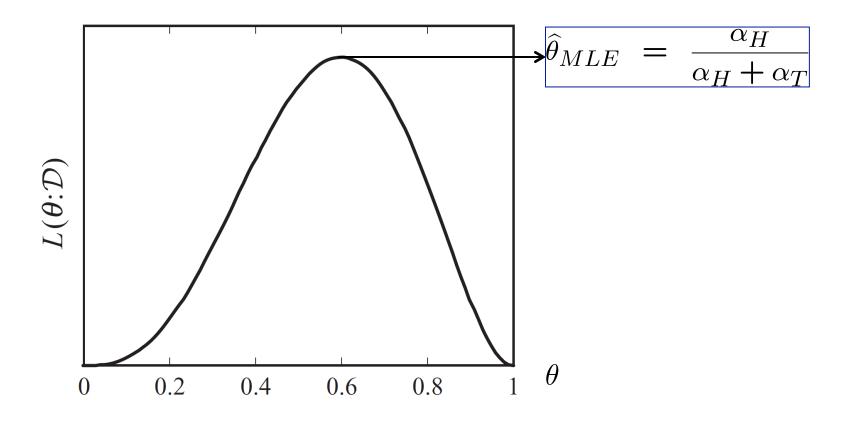
$$= \arg\max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Set derivative to zero, and solve!

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = \frac{d}{d\theta} \left[\ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \right]
= \frac{d}{d\theta} \left[\alpha_H \ln \theta + \alpha_T \ln(1 - \theta) \right]
= \alpha_H \frac{d}{d\theta} \ln \theta + \alpha_T \frac{d}{d\theta} \ln(1 - \theta)
= \frac{\alpha_H}{\theta} - \frac{\alpha_T}{1 - \theta} = 0 \qquad \widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

Data

$$L(\theta; \mathcal{D}) = \ln P(\mathcal{D}|\theta)$$



But, how many flips do I need?

$$\widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

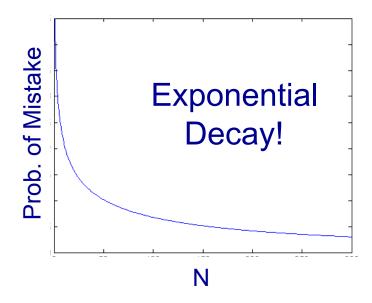
- Billionaire says: I flipped 3 heads and 2 tails.
- You say: $\theta = 3/5$, I can prove it!
- He says: What if I flipped 30 heads and 20 tails?
- You say: Same answer, I can prove it!
- He says: What's better?
- You say: Umm... The more the merrier???
- He says: Is this why I am paying you the big bucks???
- You say: I will give you a theoretical bound.

A bound (from Hoeffding's inequality)

• Let
$$N = \alpha_H + \alpha_T$$
, and $\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$

• Let θ^* be the true parameter. For any $\epsilon > 0$,

$$P(||\widehat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2N\epsilon^2}$$



PAC Learning

- PAC: Probably Approximate Correct
- Billionaire says: I want to know the thumbtack θ , within ϵ = 0.1, with probability at least 1- δ = 0.95.
- How many flips? Or, how big do I set N?

$$P(||\widehat{\theta} - \theta^*|| \ge \epsilon) \le 2e^{-2N\epsilon^2} = .05$$

$$N \ge \frac{\ln(2/0.05)}{2 \times 0.1^2} \approx \frac{3.8}{0.02} = 190$$

What if I have prior beliefs?

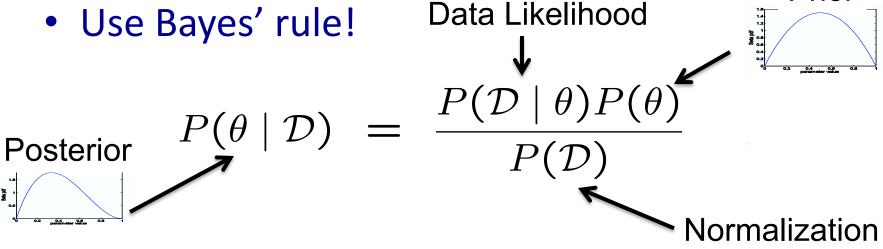
- Billionaire says: Wait, I know that the thumbtack is "close" to 50-50. What can you do for me now?
- You say: I can learn it the Bayesian way...
- Rather than estimating a single θ , we obtain a distribution over possible values of θ



Bayesian Learning

Prior

Use Bayes' rule!



- Or equivalently: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$
- For *uniform* priors, this reduces to maximum likelihood estimation!

$$P(\theta) \propto 1$$
 $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)$

Bayesian Learning for Thumbtacks

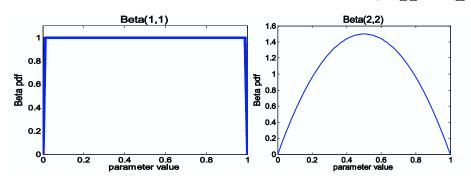
$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

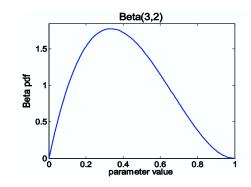
Likelihood:
$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

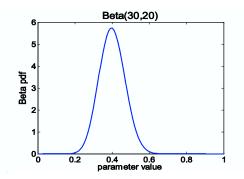
- What should the prior be?
 - Represent expert knowledge
 - Simple posterior form
- Conjugate priors:
 - Closed-form representation of posterior
 - For Binomial, conjugate prior is Beta distribution

Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$







- Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 \theta)^{\alpha_T}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$

$$P(\theta \mid \mathcal{D}) \propto \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}$$

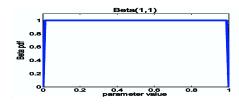
$$= \theta^{\alpha_H + \beta_H - 1} (1 - \theta)^{\alpha_T + \beta_t + 1}$$

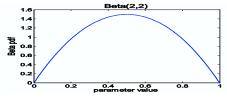
$$= Beta(\alpha_H + \beta_H, \alpha_T + \beta_T)$$

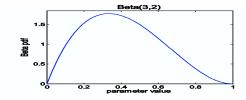
Posterior distribution

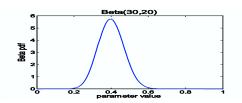
- Prior: $Beta(\beta_H, \beta_T)$
- Data: $\alpha_{\rm H}$ heads and $\alpha_{\rm T}$ tails
- Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$









Bayesian Posterior Inference

Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

- Bayesian inference:
 - No longer single parameter
 - For any specific f, the function of interest
 - Compute the expected value of f

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

Integral is often hard to compute

MAP: Maximum a posteriori approximation

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$
$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

- As more data is observed, Beta is more certain
- MAP: use most likely parameter to approximate the expectation

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D})$$

$$E[f(\theta)] \approx f(\widehat{\theta})$$

MAP for Beta distribution

$$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

MAP: use most likely parameter:

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D}) = \frac{\alpha_H + \beta_H - 1}{\alpha_H + \beta_H + \alpha_T + \beta_T - 2}$$

- Beta prior equivalent to extra thumbtack flips
- As $N \to \infty$, prior is "forgotten"
- But, for small sample size, prior is important!