Logistic Regression Lecture 19

David Sontag
New York University

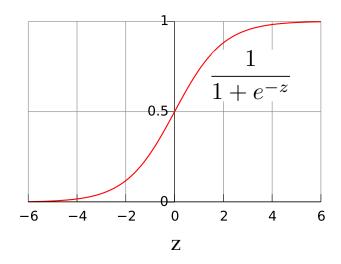
Slides adapted from Vibhav Gogate, Luke Zettlemoyer, Carlos Guestrin, and Dan Weld

Logistic Regression

Learn P(Y|X) directly!

- Assume a particular functional form
- Sigmoid applied to a linear function of the data:

Logistic function (Sigmoid):



$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

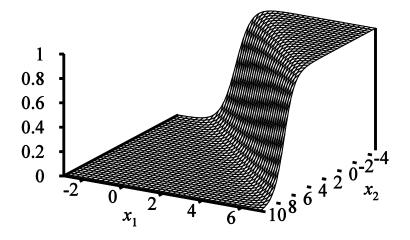
$$P(Y = 0|X) = \frac{\exp(w_0 + \sum_{i=1}^n w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$$

Features can be discrete or continuous!

Logistic Function in n Dimensions

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

Sigmoid applied to a linear function of the data:



Features can be discrete or continuous!

Logistic Regression: decision boundary

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)} \quad P(Y = 0|X) = \frac{\exp(w_0 + \sum_{i=1}^n w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$$

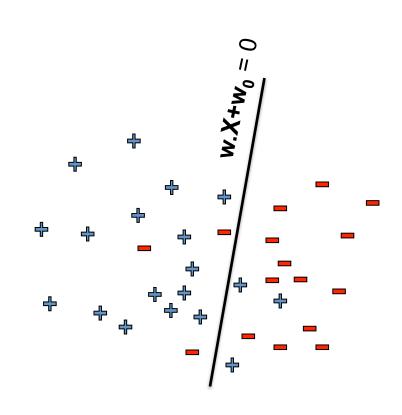
- Prediction: Output the Y with highest P(Y|X)
 - For binary Y, output Y=0 if

$$1 < \frac{P(Y = 0|X)}{P(Y = 1|X)}$$

$$1 < \exp(w_0 + \sum_{i=1}^{n} w_i X_i)$$

$$0 < w_0 + \sum_{i=1}^{n} w_i X_i$$

A Linear Classifier!



Understanding Sigmoids

$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}}$$

$$w_0 = -2, w_1 = -1$$

$$w_0 = -2, w_1 = -1$$

$$w_0 = 0, w_1 = -1$$

$$w_0 = 0, w_1 = -0.5$$

Likelihood vs. Conditional Likelihood

Generative (Naïve Bayes) maximizes Data likelihood

$$\ln P(\mathcal{D} \mid \mathbf{w}) = \sum_{j=1}^{N} \ln P(\mathbf{x}^{j}, y^{j} \mid \mathbf{w})$$
$$= \sum_{j=1}^{N} \ln P(y^{j} \mid \mathbf{x}^{j}, \mathbf{w}) + \sum_{j=1}^{N} \ln P(\mathbf{x}^{j} \mid \mathbf{w})$$

Discriminative (Logistic Regr.) maximizes Conditional Data Likelihood

$$\ln P(\mathcal{D}_Y \mid \mathcal{D}_X, \mathbf{w}) = \sum_{j=1}^N \ln P(y^j \mid \mathbf{x}^j, \mathbf{w})$$

Discriminative models can't compute $P(\mathbf{x}^j | \mathbf{w})!$

Or, ... "They don't waste effort learning P(X)"

Focus only on P(Y|X) - all that matters for classification

Maximizing Conditional Log Likelihood

$$l(\mathbf{w}) \equiv \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$$

$$= \sum_{j} y^{j} (w_{0} + \sum_{i} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i} w_{i} x_{i}^{j}))$$

$$= \sum_{j} v^{j} (w_{0} + \sum_{i} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i} w_{i} x_{i}^{j}))$$

$$0 \text{ or } 1!$$

Bad news: no closed-form solution to maximize *I*(w)

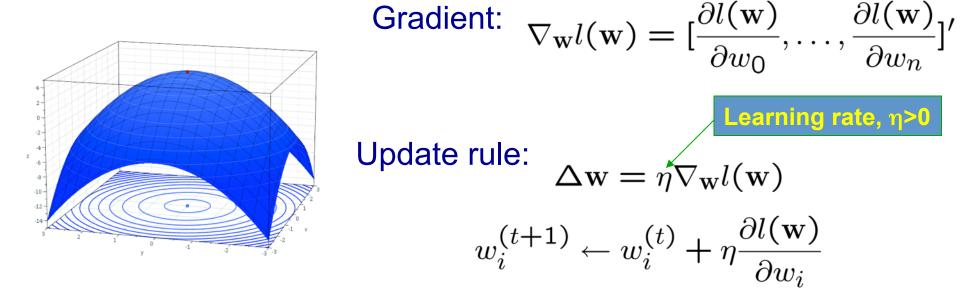
Good news: *I*(**w**) is concave function of **w**→

No local minima

Concave functions easy to optimize

Optimizing concave function – Gradient ascent

• Conditional likelihood for Logistic Regression is concave ightarrow



Gradient ascent is simplest of optimization approaches

Maximize Conditional Log Likelihood: Gradient ascent

$$P(Y = 1|X, W) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 1|X,W) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$l(\mathbf{w}) = \sum_j y^j (w_0 + \sum_i w_i x_i^j) - \ln(1 + exp(w_0 + \sum_i w_i x_i^j))$$

$$\frac{\partial l(w)}{\partial w_i} = \sum_j \left[\frac{\partial}{\partial w} y^j (w_0 + \sum_i w_i x_i^j) - \frac{\partial}{\partial w} \ln\left(1 + \exp(w_0 + \sum_i w_i x_i^j)\right) \right]$$

$$= \sum_j \left[y^j x_i^j - \frac{x_i^j \exp(w_0 + \sum_i w_i x_i^j)}{1 + \exp(w_0 + \sum_i w_i x_i^j)} \right]$$

$$= \sum_i x_i^j \left[y^j - \frac{\exp(w_0 + \sum_i w_i x_i^j)}{1 + \exp(w_0 + \sum_i w_i x_i^j)} \right]$$

$$\frac{\partial l(w)}{\partial w_i} = \sum_j x_i^j \left(y^j - P(Y^j = 1 | x^j, w) \right)$$

Gradient Ascent for LR

Gradient ascent algorithm: (learning rate $\eta > 0$)

do:

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})]$$

For i=1 to n: (iterate over features)

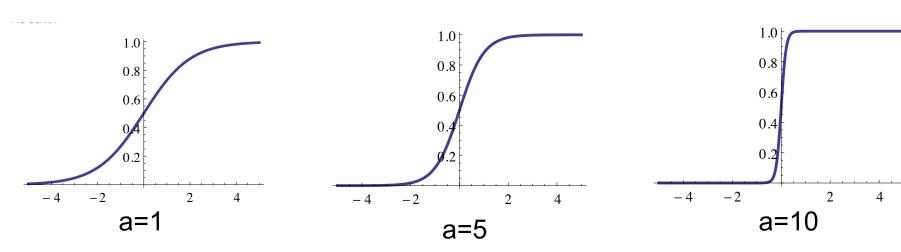
$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})]$$

until "change" < ε

Loop over training examples!

Large parameters...

$$\frac{1}{1 + e^{-ax}}$$



- Maximum likelihood solution: prefers higher weights
 - higher likelihood of (properly classified) examples close to decision boundary
 - larger influence of corresponding features on decision
 - can cause overfitting!!!
- Regularization: penalize high weights

That's all MLE. How about MAP?

$$p(\mathbf{w} \mid Y, \mathbf{X}) \propto P(Y \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})$$

- One common approach is to define priors on w
 - Normal distribution, zero mean, identity covariance
 - "Pushes" parameters towards zero $p(\mathbf{w}) = \prod_i \frac{1}{\kappa \sqrt{2\pi}} \ e^{\frac{-w_i^2}{2\kappa^2}}$
- Regularization
 - Helps avoid very large weights and overfitting
- MAP estimate:

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^{N} P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

MAP as Regularization

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^N P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right] \quad p(\mathbf{w}) = \prod_i \frac{1}{\kappa \sqrt{2\pi}} \quad e^{\frac{-w_i^2}{2\kappa^2}}$$

Add log p(w) to objective:

$$\ln p(w) \propto -\frac{\lambda}{2} \sum_{i} w_{i}^{2} \qquad \frac{\partial \ln p(w)}{\partial w_{i}} = -\lambda w_{i}$$

- Quadratic penalty: drives weights towards zero
- Adds a negative linear term to the gradients

Penalizes high weights, just like we did with SVMs!

MLE vs. MAP

Maximum conditional likelihood estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[\prod_{j=1}^N P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})]$$

Maximum conditional a posteriori estimate

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^{N} P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})] \right\}$$

Naïve Bayes vs. Logistic Regression

Learning: $h:X \mapsto Y$

X – features

Y – target classes

Generative

- Assume functional form for
 - P(X|Y) assume cond indep
 - -P(Y)
 - Est params from train data
- Gaussian NB for cont features
- Bayes rule to calc. P(Y|X=x)
 - $P(Y \mid X) \propto P(X \mid Y) P(Y)$
- Indirect computation
 - Can also generate a sample of the data

Discriminative

- Assume functional form for
 - P(Y|X) no assumptions
 - Est params from training data
- Handles discrete & cont features

- Directly calculate P(Y|X=x)
 - Can't generate data sample

Naïve Bayes vs. Logistic Regression [Ng & Jordan, 2002]

- Generative vs. Discriminative classifiers
- Asymptotic comparison
 (# training examples → infinity)
 - when model correct
 - NB and LDA (with class independent variances) and Logistic Regression produce identical classifiers
 - when model incorrect
 - LR is less biased does not assume conditional independence
 - therefore LR expected to outperform NB

Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

- Generative vs. Discriminative classifiers
- Non-asymptotic analysis
 - convergence rate of parameter estimates,(n = # of attributes in X)
 - Size of training data to get close to infinite data solution
 - Naïve Bayes needs O(log n) samples
 - Logistic Regression needs O(n) samples
 - Naïve Bayes converges more quickly to its (perhaps less helpful) asymptotic estimates

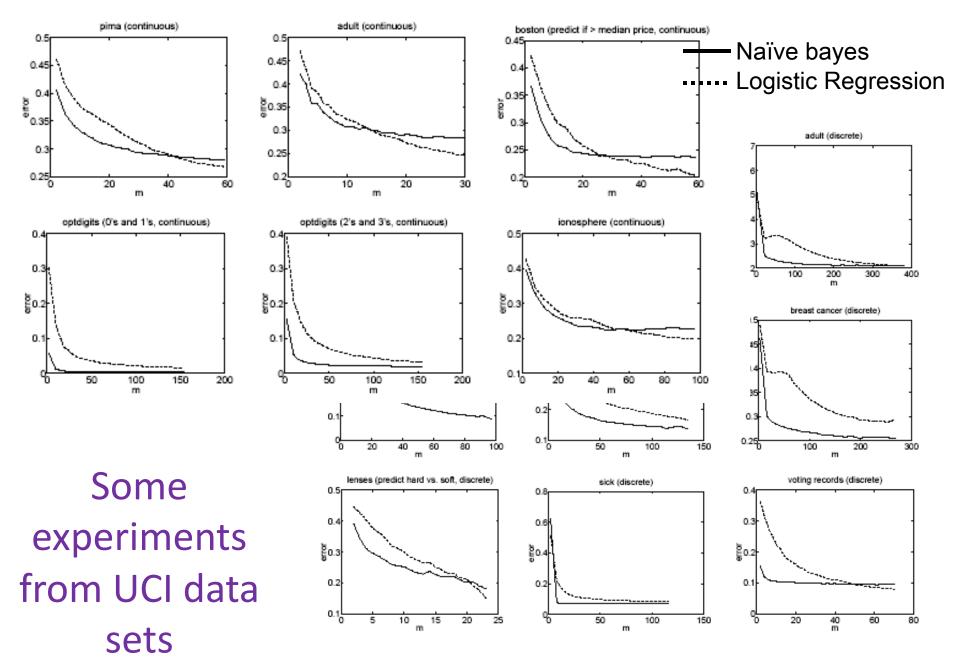


Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning repository. Plots are of generalization error vs. m (averaged over 1000 random train/test splits). Dashed line is logistic regression; solid line is naive Bayes.

Logistic regression for discrete classification

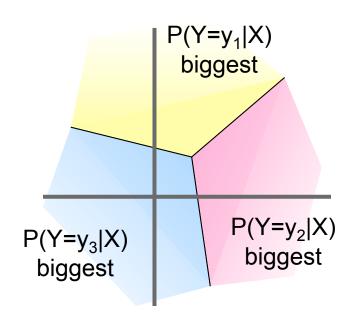
Logistic regression in more general case, where set of possible Y is $\{y_1,...,y_R\}$

• Define a weight vector w_i for each y_i , i=1,...,R-1

$$P(Y = 1|X) \propto \exp(w_{10} + \sum_{i} w_{1i}X_i)$$

 $P(Y = 2|X) \propto \exp(w_{20} + \sum_{i} w_{2i}X_i)$

 $P(Y = r|X) = 1 - \sum_{j=1}^{r-1} P(Y = j|X)$



Logistic regression for discrete classification

• Logistic regression in more general case, where Y is in the set $\{y_1,...,y_R\}$

for *k*<*R*

$$P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^n w_{ki} X_i)}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^n w_{ji} X_i)}$$

for k=R (normalization, so no weights for this class)

$$P(Y = y_R | X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji} X_i)}$$

Features can be discrete or continuous!