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Supervised Learning: find f 
•  Given: Training set {(xi, yi)  | i = 1 … N} 
•  Find: A good approximation to  f  : X  Y 

Examples: what are X and Y ? 
•  Spam Detection 

–  Map email to {Spam, Not Spam}  

•  Digit recognition 
–  Map pixels to {0,1,2,3,4,5,6,7,8,9}  

•  Stock Prediction 
–  Map new, historic prices, etc. to     (the real numbers) !



Example regression problem 
•  Consider a simple, 

regression dataset: 
–   f  : X  Y 
–  X =  

–  Y = 

•  Question 1: How should 
we pick the hypothesis 
space, the set of possible 
functions f ? 

Dataset: 10 points generated 
from a sin function, with noise  
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• Infinitely many 
hypotheses 

• None / Infinitely 
many are consistent 
with our dataset 

• Which one is best? 
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Hypo. Space: Degree-N Polynomials 



Hypo. Space: Degree-N Polynomials 
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Measure of model complexity 

L(yi, f(xi)) = (yi − f(xi))
2

For regression, a common choice is 
squared loss: 

The empirical loss of the function f applied 
to the training data is then: 
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We measure error using a loss function L(y, ŷ)



Hypo. Space: Degree-N Polynomials 
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squared loss: 

The empirical loss of the function f applied 
to the training data is then: 
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Example of 
overfitting 

We measure error using a loss function L(y, ŷ)



Training and test performance 
•  Assume that each training and test example-label pair (x, y) is drawn 

independently at random from the same (but unknown) population of 
examples and labels 

•  Represent this population as a probability distribution p(x, y), so that: 

•  Empirical (training) loss  =  

•  Expected (test) loss        =  

•  Ideally, learning chooses the hypothesis that minimize the risk – but this is 
impossible to compute! 

•  Empirical risk is an unbiased estimate of the risk (by linearity of expectation) 

•  The principle of empirical risk minimization: 

(xi, yi) ∼ p(x, y)
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Also called 
empirical risk, 

Also called risk, R(f)

R̂(f,DN )

f∗(DN ) = argmin
f∈F

R̂(f,DN )



Key Issues in Machine Learning 
•  How do we choose a hypothesis space? 

–  Often we use prior knowledge to guide this choice 

–  The ability to answer to the next two questions also affects choice 

•  How can we gauge the accuracy of a hypothesis on unseen 
testing data? 
–  The previous example showed that choosing the hypothesis 

which simply minimizes training set error (i.e., empirical risk 
minimization) is not optimal 

–  This question is the main topic of learning theory 

•  How do we find the best hypothesis? 
–  This is an algorithmic question, at the intersection of computer 

science and optimization research 



Occam’s Razor Principle 

•  William of Occam: Monk living in the 14th century 

•  Principle of parsimony: 

“One should not increase, beyond what is necessary, the number of 
entities required to explain anything” 

•  When many solutions are available for a given problem, we should 
select the simplest one 

•  But what do we mean by simple? 

•  We will use prior knowledge of the problem to solve to define what is 
a simple solution 

[Samy Bengio] 

Example of a prior: smoothness 



Binary classification 

•  Input: email 
•  Output: spam/ham 
•  Setup: 

–  Get a large collection of 
example emails, each 
labeled “spam” or “ham” 

–  Note: someone has to hand 
label all this data! 

–  Want to learn to predict 
labels of new, future emails 

•  Features: The attributes used to 
make the ham / spam decision 
–  Words: FREE! 
–  Text Patterns: $dd, CAPS 
–  Non-text: SenderInContacts 
–  … 

Dear Sir. 

First, I must solicit your confidence in this 
transaction, this is by virture of its nature 
as being utterly confidencial and top 
secret. … 

TO BE REMOVED FROM FUTURE 
MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT. 

99  MILLION EMAIL ADDRESSES 
  FOR ONLY $99 

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, but 
when I plugged it in, hit the power nothing 
happened. 



The perceptron algorithm 
•  1957: Perceptron algorithm invented by Rosenblatt  

Wikipedia: “A handsome bachelor, he drove a classic MGA sports… for several years taught an 
interdisciplinary undergraduate honors course entitled "Theory of Brain Mechanisms" that 
drew students equally from Cornell's Engineering and Liberal Arts colleges…this course was 
a melange of ideas .. experimental brain surgery on epileptic patients while conscious, 
experiments on .. the visual cortex of cats, ... analog and digital electronic circuits that 
modeled various details of neuronal behavior (i.e. the perceptron itself, as a machine).” 

–  Built on work of Hebbs (1949); also developed by Widrow-Hoff (1960) 

•  1960: Perceptron Mark 1 Computer – hardware implementation 

•  1969: Minksky & Papert book shows perceptrons limited to linearly 
separable data, and Rosenblatt dies in boating accident 

•  1970’s: Learning methods for two-layer neural networks 

[William Cohen] 



Linear Classifiers 

•  Inputs are feature values 
•  Each feature has a weight 
•  Sum is the activation 

•  If the activation is: 
–  Positive, output class 1 
–  Negative, output class 2 Σ	



f1 

f2 

f3 

w1 

w2 

w3 
>0? 

Important note: changing notation! 



Example: Spam 
•  Imagine 3 features (spam is “positive” class): 

1.  free (number of occurrences of “free”) 

2.  money (occurrences of “money”) 

3.  BIAS (intercept, always has value 1) 

BIAS  : -3 
free  :  4 
money :  2 
... 

BIAS  :  1 
free  :  1 
money :  1 
... 

“free money” 

w.f(x)	
  >	
  0	
  	
  SPAM!!!	
  



Binary Decision Rule 
•  In the space of feature vectors 

–  Examples are points 

–  Any weight vector is a hyperplane 

–  One side corresponds to Y=+1 

–  Other corresponds to Y=-1 

BIAS  : -3 
free  :  4 
money :  2 
... 0 1 

0 

1 

2 

free 
m

on
ey

 

+1 = SPAM 

-1 = HAM 



The perceptron algorithm 
•  Start with weight vector =  
•  For each training instance (xi,yi*): 

–  Classify with current weights 

–  If correct (i.e., y=yi*), no change! 
–  If wrong: update 
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Geometrical Interpretation 

[Rong Jin] 



Def: Linearly separable data 

[Rong Jin] 

Called the margin 



Mistake Bound: Separable Case 

•  Assume the data set D is linearly separable 
with margin γ, i.e.,  

•  Assume 

•  Theorem: The maximum number of 
mistakes made by the perceptron algorithm 
is bounded by  

[Rong Jin] 



Proof by induction 

[Rong Jin] 

. . 



Properties of the perceptron algortihm 

•  Separability: some parameters get 
the training set perfectly correct 

•  Convergence: if the training is 
linearly separable, perceptron will 
eventually converge 

Separable 

Non-Separable 



Problems with the perceptron algorithm 

•  Noise: if the data isn’t linearly 
separable, no guarantees of 
convergence or accuracy 

•  Frequently the training data is linearly 
separable! 
–  For example, when the number of 

examples is much smaller than the 
number of features 

–  Perceptron can significantly overfit the 
data 

•  Averaged perceptron is an algorithmic 
modification that helps with both issues 

–  Averages the weight vectors across all 
iterations 

Why? 



Linear Separators 

  Which of these linear separators is optimal?  



Next week: Support Vector Machines 

  SVMs (Vapnik, 1990’s) choose the linear separator with the 
largest margin 

  Good according to intuition, theory, practice 


