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Naive Bayes vs. Logistic Regression

Learning: h:X— Y X — features
Y — target classes

Generative Discriminative
 Assume functional form for  Assume functional form for
— P(X]Y) assume cond indep — P(Y|X) no assumptions
— P(Y)
— Est params from train data — Est params from training data

* Gaussian NB for cont features  Handles discrete & cont features
e Bayes rule to calc. P(Y|X=x)

— P(Y | X) o< P(X | Y) P(Y)
* Indirect computation e Directly calculate P(Y|X=x)

— Can also generate a sample of — Can’t generate data sample
the data



Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

* Generative vs. Discriminative classifiers
* Asymptotic comparison
(# training examples =2 infinity)

— when model correct

 NB and LDA (with class independent variances) and
Logistic Regression produce identical classifiers

— when model incorrect
LR is less biased — does not assume conditional independence
—therefore LR expected to outperform NB



Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

 Generative vs. Discriminative classifiers
* Non-asymptotic analysis
— convergence rate of parameter estimates,
(n = # of attributes in X)
* Size of training data to get close to infinite data solution

* Naive Bayes needs O(log n) samples
 Logistic Regression needs O(n) samples

— Naive Bayes converges more quickly to its (perhaps
less helpful) asymptotic estimates
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Figure 1: Results of 15 experiments on datasets from the UCT Machine Learning
repository. Plots are of generalization error vs. m (averaged over 1000 random
train/test splits). Dashed line is logistic regression; solid line is naive Bayes,



Logistic regression for discrete

classification

Logistic regression in more general case, where
set of possible Yis {y,,...,yr}

Define a weight vector w, for each y,, i=1,...,R-1

P(Y =11X) o exp(wip + Z w1 X;) P(Y=y,|X)
U biggest
P(Y =2|X) o exp(wog + ZinXz')
( A .
r—1 P(Y=y,lX) \ i
PY =r|X)=1-) P(Y =j|X) biggest =

g=1



Logistic regression for discrete
classification

* Logistic regression in more general case, where
Yisin the set {y,,...,yg}

for k<R
exp(wgo + i wi X;)
1+ 2551 exp(wjo + X g wyiX;)

P(Y = y|X) =

for k=R (normalization, so no weights for this class)

1
1+ Zfz_ll exp(w;o + X1 q w;; X;)

P(Y = yg|X) =

Features can be discrete or continuous!



Prediction of continuous variables

Billionaire says: Wait, that’s not what | meant!
You say: Chill out, dude.

He says: | want to predict a continuous
variable for continuous inputs: | want to
predict salaries from GPA.

You say: | can regress that...




Linear Regression

Prediction Prediction
Y = wo + Wiy Uy = wo + wixr] + waxs



Ordinary Least Squares (OLS)

1

2
total error = Z (y; — g@)Q = Z (yz — Zwkx,(;’)>
) k
7

sum over data points features

. Error or “residual”
Observation Y

Prediction :/g\




The regression problem

* Precisely, minimize the residual squared error:

2
w* = arg m“ifn Z (yZ — Zwkm,1f>
i k



Regression: matrix notation

2

W — argmv‘i;n Z Vi — Zwkxf — Z (x?w — yi)Q
0 k

)

w* = argmin(Hw —t)! (Hw — t)
W\ s
residual error
One data point t =
per row < || = ull) g
Xy & Y2 o
H = >§ W = K t=1: rg
= 5 o
) YN ) _§r
H_J (r;)r

K features weights measurements



Regression solution: simple matrix math

w* = argmin (Hw —t)! (Hw — t)
W Ne——_—
residual error

solution: w* = (H™H) ' H™t = A~ 'b

—_——
A-1 b
where A = H'H :\ b=H"t —
KxK matrix of Kx1 vector

feature correlations



But, why?

* Billionaire (again) says: Why sum squared error???
* You say: Gaussians, Dr. Gateson, Gaussians...

* Model: prediction is deterministic linear function plus
Gaussian noise:

Yobserved — Z WETE + € € ~ N(O, 0'2)
k

* Learn w using MLE:

2
]. — (Yobserved — 2k WkZTE)

PI‘ X. W.O0 ) — (& 202
(yobserved ’ 9 ) O'\/%



Maximizing log-likelihood

Maximize wrt w:

e 202

1 N N —[tj—>;wihi(x )]
In P(D | w,o) = 1In (
j=1

1 N N —\t; — ~w;h; (x5 2
arg max In ( ) + Z b = 2 wilti(2;)]
o

D02

—t; — wh z:)]?
—argmaxz 4 ihi(;) (note that the

notation here is
slightly different)

Least-squares Linear Regression is MLE for Gaussian noise!!!




