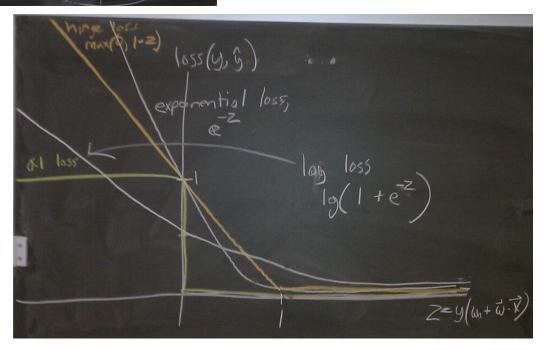
Regression Lecture 20

David Sontag
New York University

Slides adapted from Vibhav Gogate, Luke Zettlemoyer, Carlos Guestrin, and Dan Weld

$$\begin{array}{l}
\left(\left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} = \left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} \left(\left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} \left(\left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} \left(\left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} \right) \\
\text{MAP estimation of } \left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} = \left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} \left(\left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} - \left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} \\
\text{Max } \left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} = \left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} \left(\left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} + \left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} + \left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} + \left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} \\
\text{Min } \left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{2} + \left(\begin{array}{c} 1 \\ 1 \end{array}\right)^$$



Naïve Bayes vs. Logistic Regression

Learning: $h:X \mapsto Y$

X – features

Y – target classes

Generative

- Assume functional form for
 - P(X|Y) assume cond indep
 - -P(Y)
 - Est params from train data
- Gaussian NB for cont features
- Bayes rule to calc. P(Y|X=x)
 - $P(Y \mid X) \propto P(X \mid Y) P(Y)$
- Indirect computation
 - Can also generate a sample of the data

Discriminative

- Assume functional form for
 - P(Y|X) no assumptions
 - Est params from training data
- Handles discrete & cont features

- Directly calculate P(Y|X=x)
 - Can't generate data sample

Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

- Generative vs. Discriminative classifiers
- Asymptotic comparison
 (# training examples → infinity)
 - when model correct
 - NB and LDA (with class independent variances) and Logistic Regression produce identical classifiers
 - when model incorrect
 - LR is less biased does not assume conditional independence
 - therefore LR expected to outperform NB

Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

- Generative vs. Discriminative classifiers
- Non-asymptotic analysis
 - convergence rate of parameter estimates,(n = # of attributes in X)
 - Size of training data to get close to infinite data solution
 - Naïve Bayes needs O(log n) samples
 - Logistic Regression needs O(n) samples
 - Naïve Bayes converges more quickly to its (perhaps less helpful) asymptotic estimates

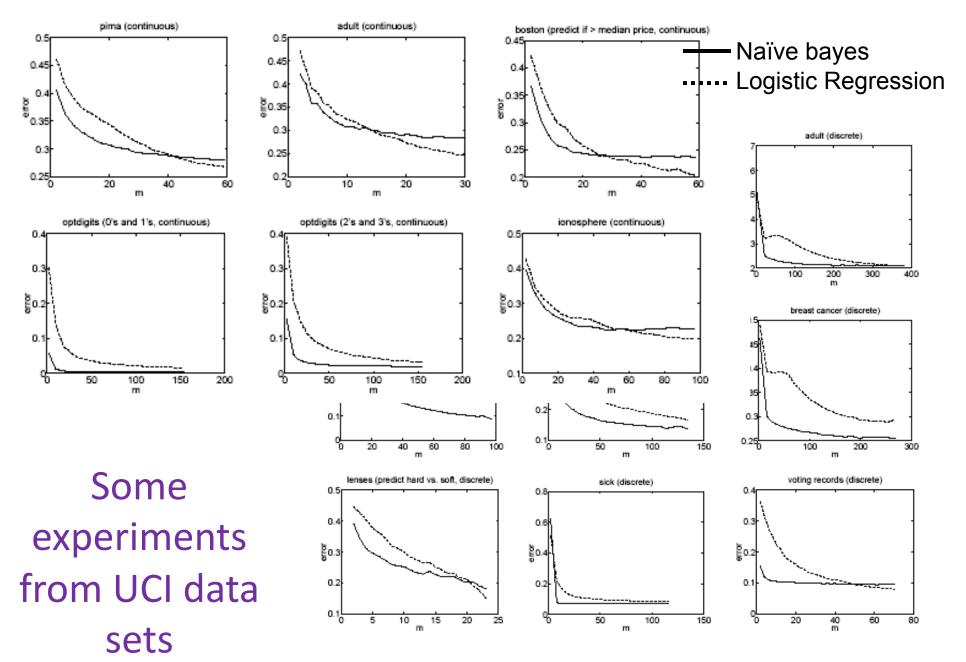


Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning repository. Plots are of generalization error vs. m (averaged over 1000 random train/test splits). Dashed line is logistic regression: solid line is naive Bayes.

Logistic regression for discrete classification

Logistic regression in more general case, where set of possible Y is $\{y_1,...,y_R\}$

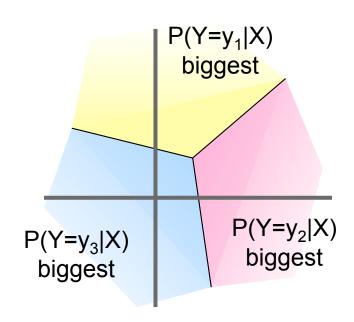
• Define a weight vector w_i for each y_i , i=1,...,R-1

$$P(Y = 1|X) \propto \exp(w_{10} + \sum_{i} w_{1i}X_i)$$

 $P(Y = 2|X) \propto \exp(w_{20} + \sum_{i} w_{2i}X_i)$

- - -

$$P(Y = r|X) = 1 - \sum_{j=1}^{r-1} P(Y = j|X)$$



Logistic regression for discrete classification

• Logistic regression in more general case, where Y is in the set $\{y_1,...,y_R\}$

for *k*<*R*

$$P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^n w_{ki} X_i)}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^n w_{ji} X_i)}$$

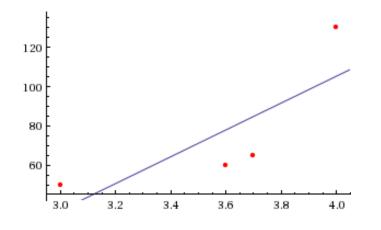
for k=R (normalization, so no weights for this class)

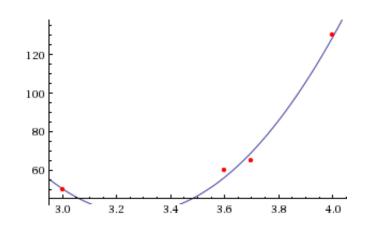
$$P(Y = y_R | X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji} X_i)}$$

Features can be discrete or continuous!

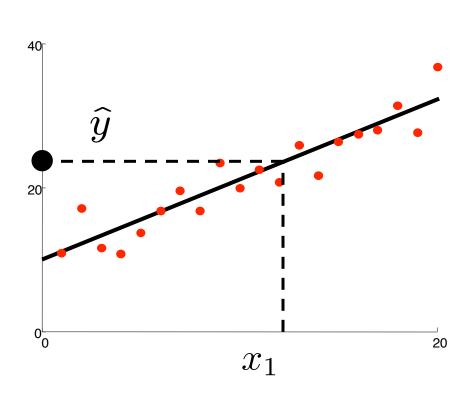
Prediction of continuous variables

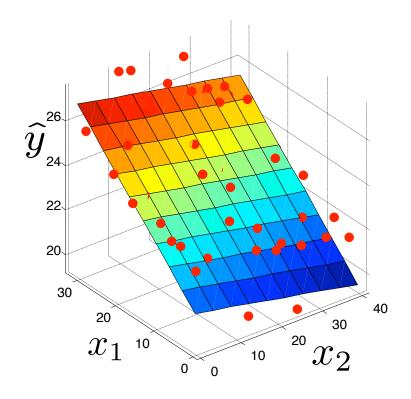
- Billionaire says: Wait, that's not what I meant!
- You say: Chill out, dude.
- He says: I want to predict a continuous variable for continuous inputs: I want to predict salaries from GPA.
- You say: I can regress that...





Linear Regression





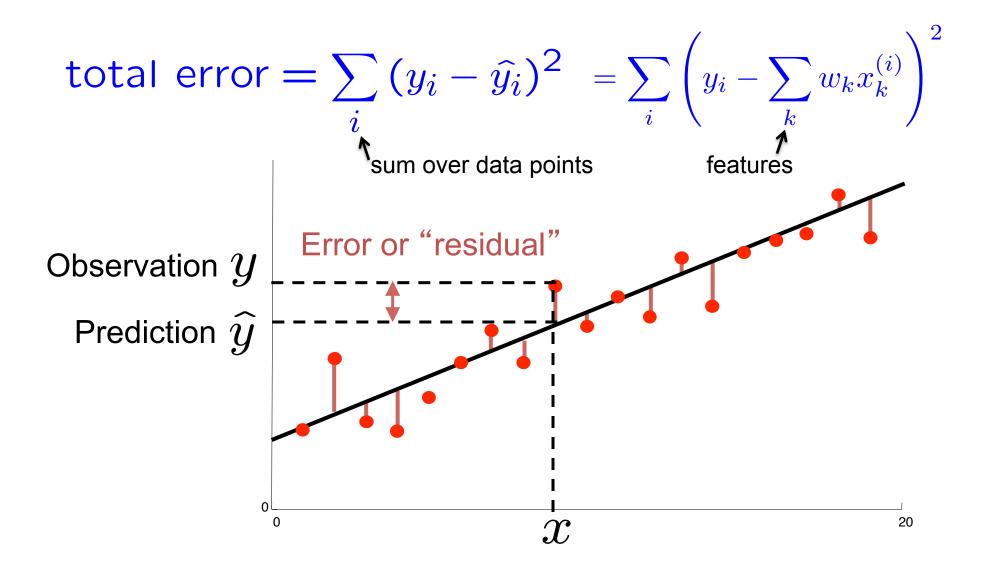
Prediction

$$\hat{y} = w_0 + w_1 x_1$$

Prediction

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2$$

Ordinary Least Squares (OLS)



The regression problem

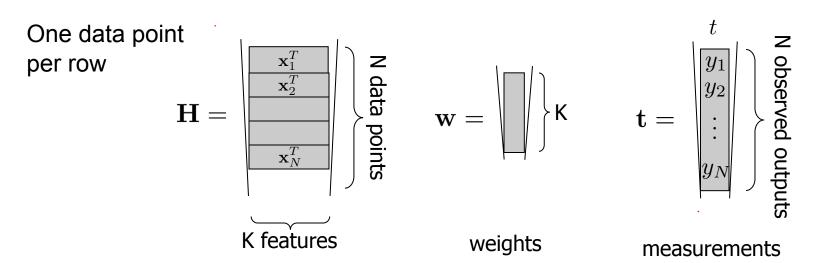
• Precisely, minimize the residual squared error:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i} \left(y_i - \sum_{k} w_k x_i^k \right)^2$$

Regression: matrix notation

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i} \left(y_i - \sum_{k} w_k x_i^k \right)^2 = \sum_{i} \left(\mathbf{x}_i^T \mathbf{w} - y_i \right)^2$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \underbrace{(\mathbf{H}\mathbf{w} - \mathbf{t})^T (\mathbf{H}\mathbf{w} - \mathbf{t})}_{\text{residual error}}$$



Regression solution: simple matrix math

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \underbrace{(\mathbf{H}\mathbf{w} - \mathbf{t})^T (\mathbf{H}\mathbf{w} - \mathbf{t})}_{\text{residual error}}$$

solution:
$$\mathbf{w}^* = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{t} = \mathbf{A}^{-1} \mathbf{b}$$

where
$$\mathbf{A} = \mathbf{H}^{\mathrm{T}}\mathbf{H} = \mathbf{b} = \mathbf{H}^{\mathrm{T}}\mathbf{t} = \mathbf{K} \times \mathbf{K}$$
 matrix of K×1 vector feature correlations

But, why?

- Billionaire (again) says: Why sum squared error???
- You say: Gaussians, Dr. Gateson, Gaussians...
- Model: prediction is deterministic linear function plus Gaussian noise:

$$y_{\text{observed}} = \sum_{k} w_k x_k + \epsilon \qquad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Learn w using MLE:

$$\Pr(y_{\text{observed}} \mid \mathbf{x}, \mathbf{w}, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(y_{\text{observed}} - \sum_k w_k x_k)^2}{2\sigma^2}}$$

Maximizing log-likelihood

Maximize wrt w:

$$\ln P(\mathcal{D} \mid \mathbf{w}, \sigma) = \ln \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{\frac{-\left[t_j - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}{2\sigma^2}}$$

$$\arg \max_w \ln \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N + \sum_{j=1}^N \frac{-\left[t_j - \sum_i w_i h_i(x_j)\right]^2}{2\sigma^2}$$

$$= \arg \max_w \sum_{j=1}^N \frac{-\left[t_j - \sum_i w_i h_i(x_j)\right]^2}{2\sigma^2} \qquad \text{(note that the notation here is slightly different)}$$

$$= \arg \min_w \sum_{j=1}^N [t_j - \sum_i w_i h_i(x_j)]^2$$

Least-squares Linear Regression is MLE for Gaussian noise!!!