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Example application: Tracking

Observe noisy measurements of
missile location: Y,, Y,, ...

Radar

Where is the missile now? Where will it be in 10 seconds?



Probabilistic approach

e Our measurements of the missile location were
Y, Y, 0 Y,

* Let X, be the true <missile location, velocity> at
time t

* To keep this simple, suppose that everything is
discrete, i.e. X, takes the values 1, ..., k

Gridthespace: + ¢ @« » o ¢ o &



Probabilistic approach

* First, we specify the conditional distribution
Pr(X, | X.,):

Ny N . . . From basic physics, we can bound
s »e S the distance that the missile can
:: > ¢ have traveled

* Then, we ép;e'ci.f;/ .PE(Yt | X,=<(10,20), 200 mph
toward the northeast>):

With probability %2, Y, = X, (ignoring the velocity). Otherwise, Y, is a
uniformly chosen grid location



1960’s

Hidden Markov models

* Assume that the joint distribution on X; X,, ..., X, and Y, Y,,
..., Y, factors as follows:

Pr(z1,...Tn,y1,-..,Yn) = Pr(x1) Pr(y; | 1) H Pr(zs | x¢—1) Pr(y: | x¢)
t=2

* To find out where the missile is now, we do marginal

inference:
Pr(xn ‘ Y1y - - 7yn)

* To find the most likely trajectory, we do MAP (maximum a
posteriori) inference:

arngXPr(xl,...,:En ! y17---7?/n)



Inference

Recall, to find out where the missile is now, we do marginal

inference: Pr(x
( n | Y1, 7yn) X, X, X, X,
How does one compute this? Yo Y, Y Y,

Applying rule of conditional probability, we have:

Pr(zn, y1,---,Yn)

PI’(.Tn ‘ yla'”ayn) —

Pr(ys, ..., ¥n)
Naively, would seem to require k™! summations, Is there a
more efficient
Pr(xnayla"‘ayn) — Z Pr(a;l)‘"axnayla"‘ayn) algorithm?
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Marginal inference in HMMs

* Use dynamic programming Pr(A=a)=Y Pr(B =bA=a)

Pr(z,,y1,...,yn) = Z Pr(a;n_l,a:nlyl,..;,yn) . b o
Tp_1 Pr(A=d,B=0b) =Pr(A=a)Pr(B=b| A=ad)

= Z Pr(zn_1,91, - Yn—1) Pr(@n, yn | Tn-1,91,- -, Yn—1)

Tn—1 Conditional independence in HMMs
- Z Pr(xn—la Y1y .- 7yn—1> PI‘(CE'n, Yn | xn—l)

ot Pr(A=a,B=b)=Pr(A=a)Pr(B=0| A=a)
= Z Pr(zn—1,91,- s Yn—1) Pr(@pn | Tn—1) Pr(yn | n, Tpn-1)

Tp—1 Conditional independence in HMMs
= Z Pr(zn-1,91,- ., Yn—1) Pr(zn | 2n-1) Pr(yn | z5)

Tn—1

* For n=1, initialize Pr(zy,y1) = Pr(z;) Pr(y; | 1)
e Total running time is O(nk) — linear time! Easy to do filtering



MAP inference in HMMs

MAP inference in HMMs can also be solved in linear time!
argmax Pr(zy,...x, | y1,...,yn) = argmax Pr(x1, ... Tn,Y1,---,Yn)

= argmax log Pr(x1,...Tn,Y1,---,Yn)
— argmax log | Pr(e1) Pr(yr | 21)| + > log | Pr(z; | @i 1) Pr(y, | z;)
i=2

Formulate as a shortest paths problem

Weight for edge (s, x,) is Weight for edge (x, ;, X;) is log [Pr(xi | z_1) Pr(y; | azi)]
Path from s to t gives
the MAP assignment

Called the Viterbi algorithm



Applications of HMMs

Speech recognition

— Predict phonemes from the sounds forming words (i.e., the
actual signals)

Natural language processing

— Predict parts of speech (verb, noun, determiner, etc.) from
the words in a sentence

Computational biology
— Predict intron/exon regions from DNA
— Predict protein structure from DNA (locally)

And many many more!



Hidden Markov models

* We can represent a hidden Markov model with a graph:

X, X, X3 X, X Xg
>
Shading in denotes
observed variables
Y, Y, Y, Y, Yo Y

Pr(zi,...2n,y1,---,Yn) = Pr(xy) Pr(yy | z1) H Pr(zs | x4—1) Pr(y: | x¢)
t=2

* Thereis a 1-1 mapping between the graph structure and the factorization
of the joint distribution

* More generally, a Bayesian network is defined by a graph G=(V,E) with one
node per variable, and a distribution for each variable conditioned on its

parents’ values:
Pr(v) = H Pr(v; | Vpa@))

icV '\

pa(i) denotes the parents of variable i



Bayesian networks

Pr(v)

Will your car start this morning?

Starter

Radio

FuelPump

Distributor

EngineQfanks

BattefyState

SparkPlugs
BakeryAge
GasInTank

Heckerman et al., Decision-Theoretic Troubleshooting, 1995

1980’s

= [ Pr(vi | vpars)

eV

Alternator

Leak

FanBelt



Bayesian networks

Pr(v) =

What is the differential diagnosis?

H Pr(vi ‘ Vpa(i))

eV

O @ @
HRBP HR HR SAT
EKG

Fig. 1 The ALARM network representing causal relationships is shown with diagnostic (@), tntermediate (Q) and
meusurement { @) nodes. CO: cardiac output, CVP: central venous pressure, LVED volume: left ventricular end-
diastolic volume, LV fatlure: left ventriadar fatlure, MV: minute ventilation, PA Sat: pulmonary artery axygen satu-
ration, PAP: pulmonary artery pressure, PCWP: puimonary capillary wedge pressure, Pres: breathing pressure, RR:

Beinlich et al., The ALARM Monitoring System, 1989
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BIRTH

September 4, 1936, Tel Aviv.

EDUCATION

B.S., Electrical Engineering (Technion,
1960); M.S., Electronics (Newark College
of Engineering, 1961); M.S., Physics
(Rutgers University, 1965); Ph.D.,
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Institute of Brooklyn, 1965).
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Research Engineer, New York University
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Judea Pearl created the representational and computational foundation for the processing of information under
uncertainty.

He is credited with the invention of Bayesian networks, a mathematical formalism for defining complex probability
models, as well as the principal algorithms used for inference in these models. This work not only revolutionized
the field of artificial intelligence but also became an important tool for many other branches of engineering and
the natural sciences. He later created a mathematical framework for causal inference that has had significant
impact in the social sciences.

Judea Pearl was born on September 4, 1936, in Tel Aviv, which was at that time administered under the British
Mandate for Palestine. He grew up in Bnei Brak, a Biblical town his grandfather went to reestablish in 1924. In
1956, after serving in the Israeli army and joining a Kibbutz, Judea decided to study engineering. He attended the
Technion, where he met his wife, Ruth, and received a B.S. degree in Electrical Engineering in 1960. Recalling
the Technion faculty members in a 2012 interview in the Technion Magazine, he emphasized the thrill of
discovery:



Inference in Bayesian networks

 Computing marginal probabilities in tree structured Bayesian
networks is easy

— The algorithm called “belief propagation” generalizes what we showed on the
previous slides to arbitrary trees

e Wait... thisisn’t a tree! What can we do?

HR BP HR HR SAT
EKG




Inference in Bayesian networks

* In some cases (such as this) we can transform this into what is
called a “junction tree”, and then run belief propagation
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Approximate inference

 There is also a wealth of approximate inference algorithms that can
be applied to Bayesian networks such as these

&)
HR SAT

HRBP HR
EKG

* Markov chain Monte Carlo algorithms repeatedly sample
assignments for estimating marginals

e Variational inference algorithms (which are deterministic) attempt
to fit a simpler distribution to the complex distribution, and then
computes marginals for the simpler distribution



