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Basic PCA algorithm

Start from m by n data matrix X
Recenter: subtract mean from each row of X

— X, < X=X

Compute covariance matrix:

— X<—=1/mX_X_

Find eigen vectors and values of

Principal components: k eigen vectors with
highest eigen values



Linear projections, a review

k
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* Project a point into a (lower dimensional)
Space:
— point: x = (Xy,...,X,,)
— select a basis — set of unit (length 1) basis vectors
(ug,...,u,)
* we consider orthonormal basis:
—u;*u;=1, and u;*u=0 for i=j
— select a center — X, defines offset of space

— best coordinates in lower dimensional space
defined by dot-products: (z,,...,,), z, = (x-x)®u,



PCA finds projection that minimizes
reconstruction error

* Given m data points: x' = (x,...,x [), i=1..m

* Will represent.each point as a projection: N
X2

k — )
X' =X+ E Z;'llj m Z;
j=1

. PCA: 2= (x' - %) -y

— Given k<n, find (uy,...,u,)

minimizing reconstruction error:

m
error; = Z (x' — )7;7/)2
1=1



k
Understanding the st 3
reconstruction error N
z; = (X' —X) - u;
* Note that x' can be represented OGiven k<n, find (u,...,u,)
exactly by n-dimensional projection: minimizing reconstruction error:

n
x' =X+ Z zta
j=1

* Rewriting error:

m
errory = Z (x! — %4)2
1=1
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Error is the sum of squared weights for dimensions
that have been cut!



Reconstruction error and covariance matrix

™m n
error, = Y Y [u;- (x' - %)]2 Thus, to mir\imize the
i=1j=k+1 reconstruction error we want to
m  n minimize
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Dimensionality reduction with PCA

In high-dimensional problem, data usually lies near a linear subspace, as
noise introduces small variability

Only keep data projections onto principal components with large eigenvalues

Can ignore the components of lesser significance.
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You might lose some information, but if the eigenvalues are small, you don’t lose
h
mue [Slide from Aarti Singh]



PCA example =%+ =y
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What's the difference between the first

eigenvector and linear regression?

Suppose we have data { (x,y) }
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Predict y from x

Predict x from y

[Pictures from “Cerebral Mastication” blog]
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Elge nfaces [Turk, Pentland "91]

Principal components:

* Input images:




Eigenfaces reconstruction

* Each image corresponds to adding together
the principal components:




Scaling up

* Covariance matrix can be really big!
— 2isnbyn
— 10000 features can be common!
— finding eigenvectors is very slow...

e Use singular value decomposition (SVD)
— finds to k eigenvectors
— great implementations available, e.g., Matlab svd



SVD

* Write X=WSV'
— X < data matrix, one row per datapoint

—W < weight matrix, one row per datapoint —
coordinate of X' in eigenspace

—S < singular value matrix, diagonal matrix
* in our setting each entry is eigenvalue A,

— V' < singular vector matrix

* in our setting each row is eigenvector \J



PCA using SVD algorithm

Start from m by n data matrix X
Recenter: subtract mean from each row of X
— X, < X-X

Call SVD algorithm on X_ — ask for k singular
vectors

Principal components: k singular vectors with
highest singular values (rows of V')

— Coefficients: project each point onto the new vectors



Non-linear methods

e Linear

Principal Component Analysis (PCA)

Factor Analysis

Independent Component Analysis (ICA)

* Nonlinear

Laplacian Eigenmaps
ISOMAP
Local Linear Embedding (LLE)

Latent Dirichlet allocation

“swiss roll”

Slide from Aarti Singh
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Probabilistic topic models

Topic proportions and

Documents .
assignments

gene 0.04
dna 0.02
genetic 0.01
sikfye 0.02

evolve 0.01
organism 0.01
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brain 0.04
neuron 0.02

nerve 0.01
data 0.02

number 0.02
computer 0.01
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Graphical model for Latent Dirichlet Allocation (LDA)

Inference

Pneumonia
Common cold

Triage note

* Diabetes

Low Dimensional representation:
distribution of topics for the note
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Probabilistic topic models

Topic word distributions

pna .0100
cough .0095
pneumonia .0090
cxr .0085
levaquin .0060

A1

B2

sore throat .05
swallow .0092
voice .0080
fevers .0075
ear .0016

cellulitis .0105
swelling .0100
redness .0055

lle .0050

T

fevers .0045

(Blei, Ng, Jordan JMLR ‘03)



Example of learned representation

Paraphrased note:

“Patient has URI [upper respiratory infection]
symptoms like cough, runny nose, ear pain. Denies
fevers. history of seasonal allergies”

Inferred Topic
Cold/URI Allergy

Distribution
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What you need to know

Dimensionality reduction
— why and when it’s important

Simple feature selection
Regularization as a type of feature selection
Principal component analysis

— minimizing reconstruction error
— relationship to covariance matrix and eigenvectors
— using SVD



