Dimensionality Reduction (continued) Lecture 25

David Sontag
New York University

Slides adapted from Carlos Guestrin and Luke Zettlemoyer

Basic PCA algorithm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X

$$-X_{c} \leftarrow X - \overline{X}$$

Compute covariance matrix:

$$-\Sigma \leftarrow 1/m X_c^T X_c$$

- Find eigen vectors and values of Σ
- Principal components: k eigen vectors with highest eigen values

Linear projections, a review

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$

- Project a point into a (lower dimensional) space:
 - **point**: $\mathbf{x} = (x_1, ..., x_n)$
 - select a basis set of unit (length 1) basis vectors
 (u₁,...,u_k)
 - we consider orthonormal basis:
 - $-\mathbf{u}_{i} \cdot \mathbf{u}_{i} = 1$, and $\mathbf{u}_{i} \cdot \mathbf{u}_{j} = 0$ for $i \neq j$
 - select a center \bar{x} , defines offset of space
 - **best coordinates** in lower dimensional space defined by dot-products: $(z_1,...,z_k)$, $z_i = (x-\overline{x}) \cdot u_i$

PCA finds projection that minimizes reconstruction error

- Given m data points: $\mathbf{x}^{i} = (x_{1}^{i},...,x_{n}^{i})$, i=1...m
- Will represent each point as a projection:

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j \quad \bar{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^m \mathbf{x}^i$$

$$\bar{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}^{i}$$

PCA:

$$z_j^i = (\mathbf{x}^i - \mathbf{\bar{x}}) \cdot \mathbf{u}_j$$

- Given k<n, find $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing reconstruction error:

$$error_k = \sum_{i=1}^m (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Understanding the reconstruction error

 Note that xⁱ can be represented exactly by n-dimensional projection:

$$\mathbf{x}^i = \bar{\mathbf{x}} + \sum_{j=1}^n z_j^i \mathbf{u}_j$$

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$

$$z_j^i = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_j$$

□Given k<n, find $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing reconstruction error:

$$error_k = \sum_{i=1}^m (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Rewriting error:

$$error_{k} = \sum_{i=1}^{m} \left(x^{i} - \left[\bar{x} + \sum_{j=1}^{k} z_{j}^{i} u_{j} \right] \right)^{2} = \sum_{i=1}^{m} \left(\left[\bar{x} + \sum_{j=1}^{n} z_{j}^{i} u_{j} \right] - \left[\bar{x} + \sum_{j=1}^{k} z_{j}^{i} u_{j} \right] \right)^{2}$$

$$= \sum_{i=1}^{m} \left(\sum_{j=k+1}^{n} z_{j}^{i} u_{j} \right)^{2} = \sum_{i=1}^{m} \sum_{j=k+1}^{n} z_{j}^{i} u_{j} \cdot u_{j} z_{j}^{i} + \sum_{i=1}^{m} \sum_{j=k+1}^{n} \sum_{l=k+1}^{n} z_{j}^{i} u_{j} \cdot u_{l} z_{l}^{i}$$

$$=\sum_{i=1}^{m}\sum_{j=k+1}^{n}(z_{j}^{i})^{2}$$

Error is the sum of squared weights for dimensions that have been cut!

Reconstruction error and covariance matrix

$$error_k = \sum_{i=1}^m \sum_{j=k+1}^n [\mathbf{u}_j \cdot (\mathbf{x}^i - \bar{\mathbf{x}})]^2$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} u_j^T (x^i - \bar{x})(x^i - \bar{x})^T u_j$$

$$= \sum_{j=k+1}^{n} u_j^T \left[\sum_{i=1}^{m} (x^i - \bar{x})(x^i - \bar{x})^T \right] u_j$$

$$error_k = \sum_{j=k+1}^n u_j^T \Sigma u_j$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T}$$

Thus, to minimize the reconstruction error we want to **minimize**

$$\sum_{j=k+1}^{n} u_j^T \Sigma u_j$$

Recall that to maximize the variance we want to **maximize**

$$\sum_{j=1}^{k} u_j^T \Sigma u_j$$

These are equivalent!

$$\sum_{j=1}^{k} u_j^T \Sigma u_j + \sum_{j=k+1}^{n} u_j^T \Sigma u_j = \sum_{j=1}^{n} u_j^T \Sigma u_j = \text{trace}(\Sigma)$$

Dimensionality reduction with PCA

In high-dimensional problem, data usually lies near a linear subspace, as noise introduces small variability

Only keep data projections onto principal components with large eigenvalues

Can *ignore* the components of lesser significance.

You might lose some information, but if the eigenvalues are small, you don't lose much [Slide from Aarti Singh]

PCA example

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$

Reconstruction:

♦

0

0

What's the difference between the first eigenvector and linear regression?

Suppose we have data $\{(x,y)\}$

[Pictures from "Cerebral Mastication" blog]

Eigenfaces [Turk, Pentland '91]

• Input images:

Principal components:

Eigenfaces reconstruction

• Each image corresponds to adding together the principal components:

Scaling up

- Covariance matrix can be really big!
 - $-\Sigma$ is n by n
 - 10000 features can be common!
 - finding eigenvectors is very slow...
- Use singular value decomposition (SVD)
 - finds to k eigenvectors
 - great implementations available, e.g., Matlab svd

SVD

- Write $X = W S V^T$
 - $-X \leftarrow$ data matrix, one row per datapoint
 - W ← weight matrix, one row per datapoint coordinate of xⁱ in eigenspace
 - -S ← singular value matrix, diagonal matrix
 - in our setting each entry is eigenvalue λ_i
 - $-\mathbf{V}^{\mathsf{T}} \leftarrow \text{singular vector matrix}$
 - in our setting each row is eigenvector \mathbf{v}_{j}

PCA using SVD algorithm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X
 X_c ← X X
- Call SVD algorithm on X_c ask for k singular vectors
- Principal components: k singular vectors with highest singular values (rows of V^T)
 - Coefficients: project each point onto the new vectors

Non-linear methods

Linear

Principal Component Analysis (PCA)

Factor Analysis
Independent Component Analysis (ICA)

Nonlinear

Laplacian Eigenmaps

ISOMAP

Local Linear Embedding (LLE)

Latent Dirichlet allocation

Probabilistic topic models

Probabilistic topic models

Graphical model for Latent Dirichlet Allocation (LDA)

Topic word distributions

(Blei, Ng, Jordan JMLR '03)

Example of learned representation

Paraphrased note:

"Patient has URI [upper respiratory infection] symptoms like cough, runny nose, ear pain. Denies fevers. history of seasonal allergies"

What you need to know

- Dimensionality reduction
 - why and when it's important
- Simple feature selection
- Regularization as a type of feature selection
- Principal component analysis
 - minimizing reconstruction error
 - relationship to covariance matrix and eigenvectors
 - using SVD