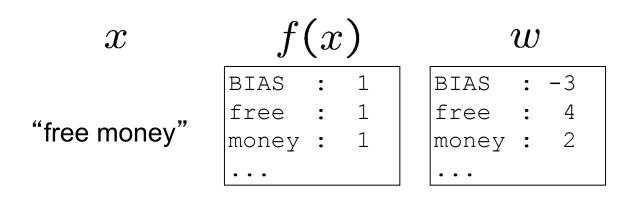
Linear classifiers Lecture 3

David Sontag New York University

Slides adapted from Luke Zettlemoyer, Vibhav Gogate, and Carlos Guestrin

Example: Spam

- Imagine 3 features (spam is "positive" class):
 - 1. free (number of occurrences of "free")
 - 2. money (occurrences of "money") $w \cdot f(x)$
 - 3. BIAS (intercept, always has value 1) $\sum w_i \cdot f_i(x)$



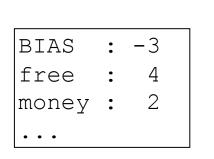
(1)(-3) + (1)(4) + (1)(2) +

= 3

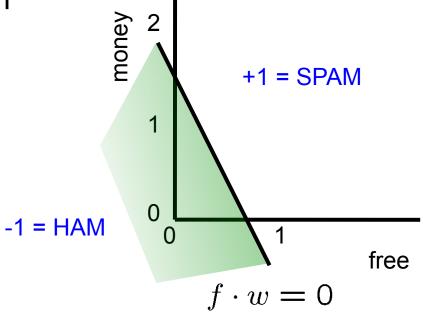
w.f(x) > 0 → SPAM!!!

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1



w



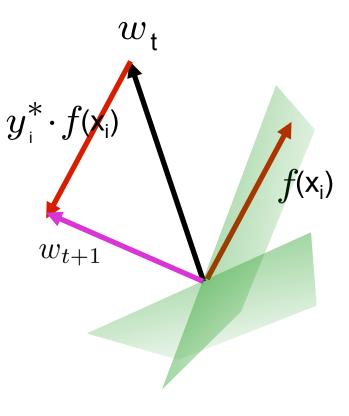
The perceptron algorithm

- Start with weight vector = $\vec{0}$
- For each training instance (x_i,y_i*):
 - Classify with current weights

$$y_{i} = \begin{cases} +1 & \text{if } w \cdot f(x_{i}) \geq 0\\ -1 & \text{if } w \cdot f(x_{i}) < 0 \end{cases}$$

If correct (i.e., y=y^{*}_i), no change!
If wrong: update

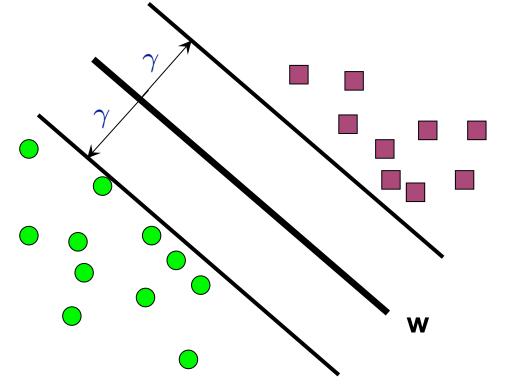
$$w = w + y_i^* f(x_i)$$



Def: Linearly separable data

 $\exists \mathbf{w} \text{ such that } \forall t$

 $y_t(\mathbf{w} \cdot \mathbf{x}_t) \ge \gamma > 0$ Called the margin



Equivalently, for \mathbf{y}_{t} = +1, $w \cdot x_t \geq \gamma$

and for
$$y_t = -1$$
,
 $w \cdot x_t \leq -\gamma$

Mistake Bound: Separable Case

 Assume the data set D is linearly separable with margin γ, i.e.,

$$\exists \mathbf{w}^*, |\mathbf{w}^*|_2 = 1, \ \forall t, y_t \mathbf{x}_t^\top \mathbf{w}^* \ge \gamma$$

- Assume $|\mathbf{x}_t|_2 \leq R, \forall t$
- Theorem: The maximum number of mistakes made by the perceptron algorithm is bounded by R^2/γ^2

Proof by induction

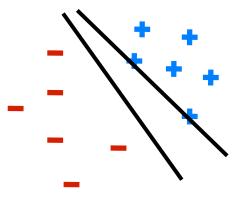
Assume we make a mistake for (\mathbf{x}_t, y_t) $|\mathbf{w}_{t+1}|_2^2 = |\mathbf{w}_t + y_t \mathbf{x}_t| \le |\mathbf{w}_t|_2^2 + R^2$ $\mathbf{w}_{t+1}^{\top}\mathbf{w}^* = \mathbf{w}_t^{\top}\mathbf{w}^* + y_t\mathbf{x}_t^{\top}\mathbf{w}^* \ge \mathbf{w}_t^{\top}\mathbf{w}^* + \gamma$ $\mathbf{w}_t^\top \mathbf{w}^* \geq M_t \cdot \gamma$ $|\mathbf{w}_t|_2^2 \stackrel{\mathbf{v}}{\leq} M_t \cdot R^2$ $M_t \leq \frac{R^2}{\gamma^2}$

(full proof given on board)

[Rong Jin]

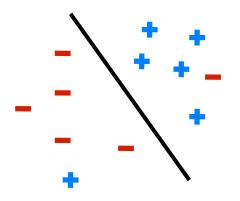
Properties of the perceptron algortihm

- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is linearly separable, perceptron will eventually converge



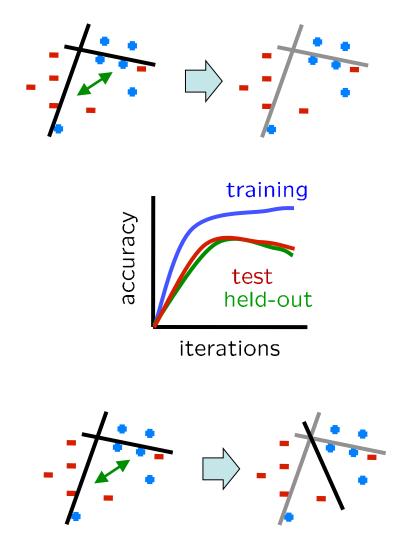
Separable

Non-Separable



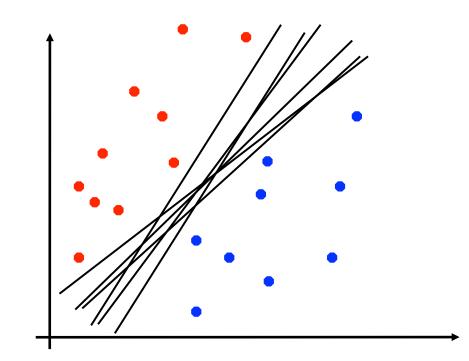
Problems with the perceptron algorithm

- **Noise**: if the data isn't linearly separable, no guarantees of convergence or accuracy
- Frequently the training data *is* linearly separable! Why?
 - When the number of features is much larger than the number of data points, there is lots of flexibility
 - As a result, Perceptron can significantly overfit the data
- Averaged perceptron is an algorithmic modification that helps with both issues
 - Averages the weight vectors across all iterations



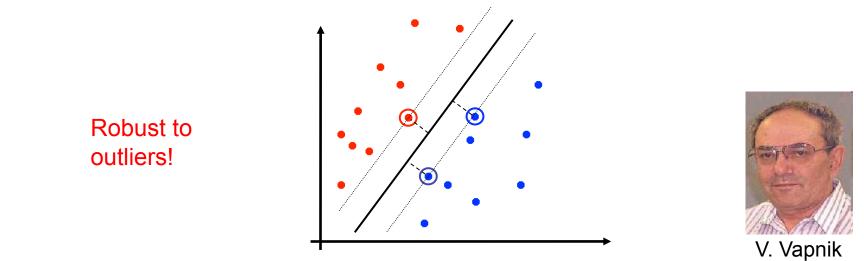
Linear Separators

Which of these linear separators is optimal?



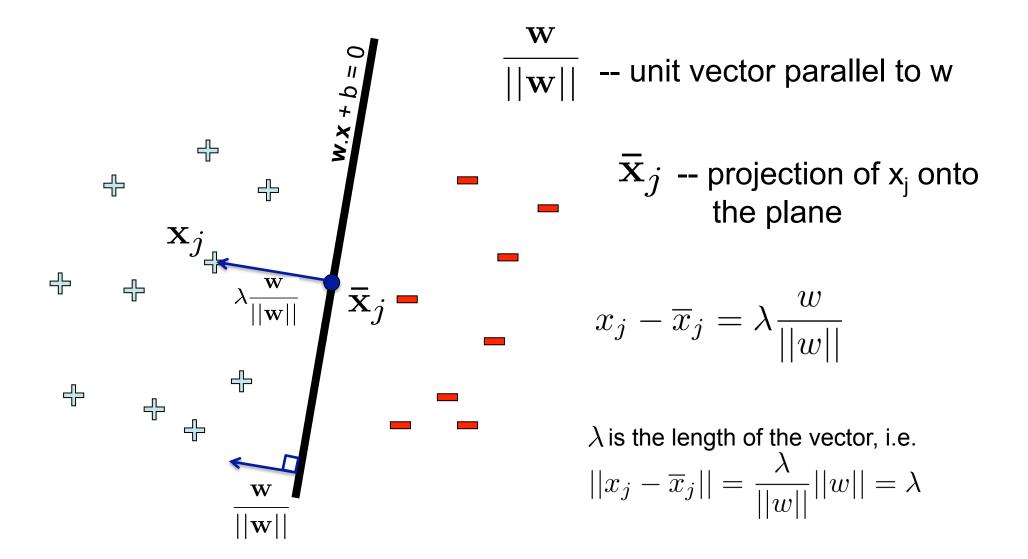
Support Vector Machine (SVM)

SVMs (Vapnik, 1990's) choose the linear separator with the largest margin

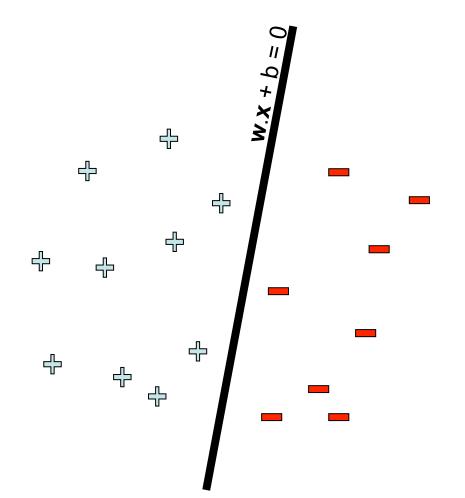


- Good according to intuition, theory, practice
- SVM became famous when, using images as input, it gave accuracy comparable to neural-network with hand-designed features in a handwriting recognition task

Review: Normal to a plane



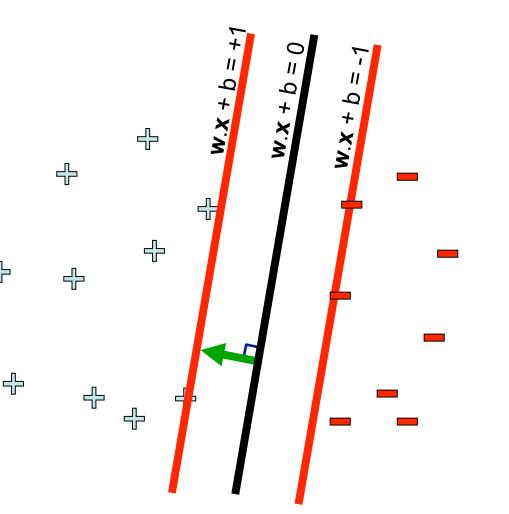
Scale invariance



Any other ways of writing the same dividing line?

- **w.x** + b = 0
- 2**w.x** + 2b = 0
- 1000**w.x** + 1000b = 0

Scale invariance



During learning, we set the scale by asking that, for all *t*,

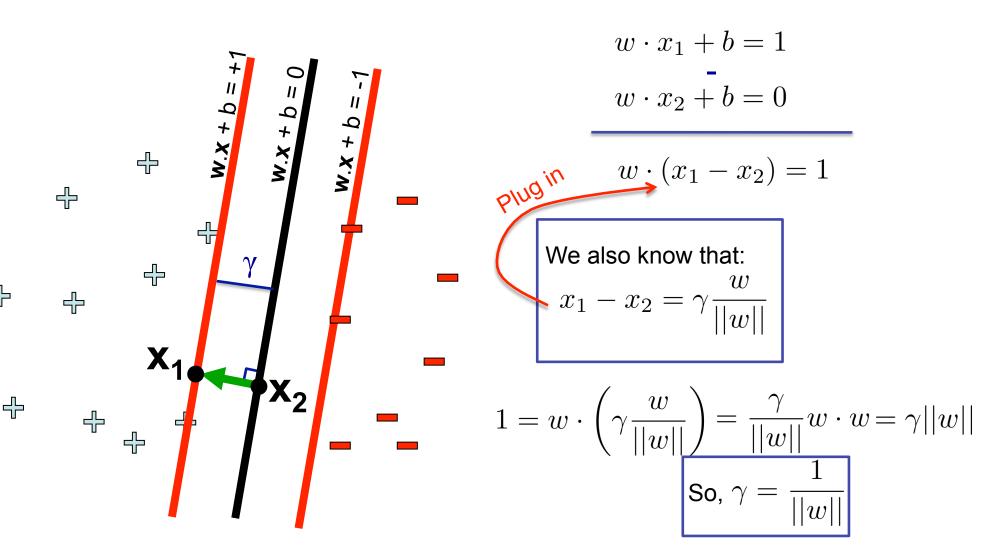
for y_t = +1,
$$w \cdot x_t + b \ge 1$$

and for y_t = -1, $w \cdot x_t + b \le -1$

That is, we want to satisfy all of the **linear** constraints

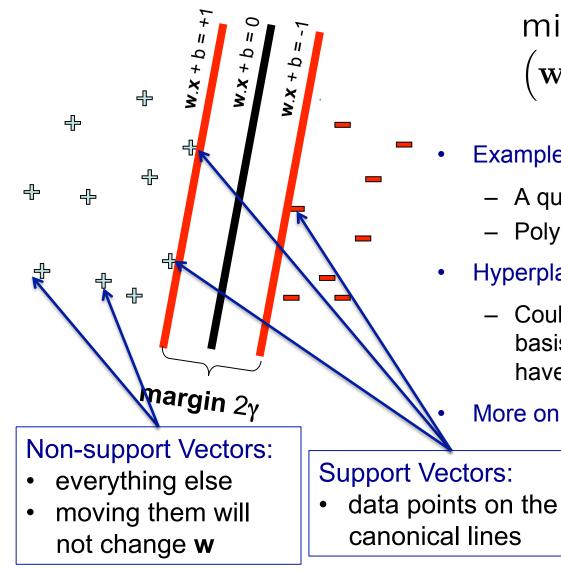
$$y_t (w \cdot x_t + b) \ge 1 \quad \forall t$$

What is γ as a function of **w**?



Final result: can maximize margin by minimizing $||w||_2!!!$

Support vector machines (SVMs)



 $\begin{array}{ll} \text{minimize}_{\mathbf{w},b} & \mathbf{w}.\mathbf{w} \\ \left(\mathbf{w}.\mathbf{x}_{j}+b\right)y_{j} \geq \mathbf{1}, \ \forall j \end{array}$

Example of a **convex optimization** problem

- A quadratic program
- Polynomial-time algorithms to solve!
- Hyperplane defined by **support vectors**
 - Could use them as a lower-dimension basis to write down line, although we haven't seen how yet

More on these later