Support vector machines
Lecture 4

David Sontag
New York University

Slides adapted from Luke Zettlemoyer, Vibhav Gogate,
and Carlos Guestrin

Q: What does the Perceptron mistake
bound tell us?

Theorem: The maximum number of mistakes made by the perceptron
algorithm is bounded above by R?/4?

Batch learning: setting we consider for most of the class.
— Assume training data drawn from same distribution as future test data
— Use training data to find the hypothesis

The mistake bound gives us an upper bound on the perceptron
running time

— At least one mistake made per pass through the data

— Running time is at most ~ <§“>2 <€<—— computed on training data

Does not tell us anything about generalization — this is addressed
by the concept of VC-dimension (in a couple lectures)

Q: What does the Perceptron mistake
bound tell us?

Theorem: The maximum number of mistakes made by the perceptron
algorithm is bounded above by R?/42

Demonstration in Matlab that Perceptron takes many more iterations to
converge when there is a smaller margin (relative to R)

Online versus batch learning

Online Learning

* In the online setting we
fort=1,2,... measure regret, i.e. the total

receive question x; € X cumulative loss
predict p; € D
receive true answer y; € Y

 No assumptions at all about

suffer loss I(ps, ys '
(P 1) the order of the data points!

R and gamma refer to all
data points (seen and future)

* Perceptron mistake bound

tell us that the algorithm has
bounded regret

[Shai Shalev-Shwartz, “Online Learning and Online Convex Optimization”, ‘“11]

Recall from last lecture...
Support vector machines (SVMs)

~
+ (=)
]

minimizey, , WwW.w

< o :
: ; (w.xj +b) yj > 1, Vj
2 s
.{'lz ==
« Example of a convex optimization problem
.:I'}- ==
T & — A quadratic program
= — Polynomial-time algorithms to solve!
aly « Hyperplane defined by support vectors
.:ﬂ:.

— Could use them as a lower-dimension
basis to write down line, although we
haven’t seen how yet

argin 2,Y
Non-support Vectors:
« everything else Support Vgctors:
 moving them will * data points on the
not change w canonical lines

What if the data is not linearly separable”?

<:z:(1) xgm)> — m features
y; € {—1,41} — class

Add More Features!!!

- (=D

2(n)

= (1) .(2)
£T €T

@) =1 _1),.0)

What about overfitting? et

What if the data is not linearly separable”?

minimizew’b W.W + C #(mistakes)
(W.Xj -+ b) y; > 1 , Vg

w = * First Idea: Jointly minimize w.w and
_ number of training mistakes
. v N _ — How to tradeoff two criteria?
-+ T — Pick C using held-out data
. T » Tradeoff #(mistakes) and w.w
L
= = — 0/1 loss
L

— Not QP anymore

— Also doesn’t distinguish near misses
and really bad mistakes

— NP hard to find optimal solution!!!

Allowing for slack: “Soft margin” SVM

~
+

o

j v MiNiMizey ;, W.W+CZX ¢
. 3 i - (W.Xj—l—b)yj21—§j Vi €20

“slack variables”

- = Slack penalty C > 0:

= = *C=00 = have to separate the data!
*C=0 -> ignores the data entirely!

For each data point:
If margin = 1, don’t care
If margin < 1, pay linear penalty

Allowing for slack: “Soft margin” SVM

~
+ ()

~

1
1

]

MiNiMizey ;, W.W+CZX ¢

- (W.Xj —I—b) y; > 1-¢ ,Vj &0
=)

“slack variables”

e

Ne}

+ x ;

ol £ >

= What is the (optimal) value of & as a function
of wand b?

If (w-z;+b)y; >1,theng= 0
If (w-z;+b)y; <1,theng=1—(w-x; +b)y,

Sometimes written as ‘l'
(1—(w-:cj+b)yj>+ « 5J:max(071—(w‘$j+b)yj)

Equivalent hinge loss formulation

MiNiMIZey ;, W.W+CX &
(W.Xj -+ b) Y > 1] - ij , V9 &0

Substituting &; = max (0,1 — (w - x; +b)y;) into the objective, we get:

min ||w]|? —I—CZmaX(O,l —(w-z; +b)y;)
J

The hinge loss is defined as L(y, y) = max (O, 1— ;Qy)

: 2
min [[w]f3 +C | Liy;,w - z; +)

/‘ j
This is called regularization; This part is empirical risk minimization,
used to prevent overfitting! using the hinge loss

Hinge loss vs. 0/1 loss

Hinge loss:
L(y,y) = max (0, 1— @y)

/

0-1 Loss:—
L(y,9) = 1|y # v

yy

Hinge loss upper bounds 0/1 loss!

How do we do multi-class classification?

One versus

Any problems?

Could we learn this dataset? -

all classification

Learn 3 classifiers:
- vs {0,+}, weights w_
*+ vs {0,-}, weights w,
*0 Vs {+,-}, weights w

Predict label using:

@eargmgx wg - T + by,

EEERN
00000
A

Multi-class SVM

Simultaneously learn 3 sets
of weights:

How do we guarantee the
correct labels?

*Need new constraints!

The “score” of the correct
class must be better than the
“score” of wrong classes:

w¥i) . T+ b¥i) <) . x; + b)Yy £ Y

Multi-class SVM

As for the SVM, we introduce slack variables and maximize margin:

minimizey; >, wW.wW) + Oy ¢;

To predict, we use: ,--\ ~=--}
=1 @& | = |
| | Y NI |
] ™= - 7)

Now can we learn it? - i _\': Ig I
ke
B — /

’
, ——
’-
\
\
\
\
\

v
(VSN B
\

What you need to know

Perceptron mistake bound

Maximizing margin

Derivation of SVM formulation

Relationship between SVMs and empirical risk
minimization

— 0/1 loss versus hinge loss

Tackling multiple class

— One against All

— Multiclass SVMs

What's Next!

* Learn one of the most interesting and
exciting recent advancements in machine
learning

— The “kernel trick”

— High dimensional feature spaces at no extra
cost!

« But first, a detour
— Constrained optimization!

