
Support vector machines
Lecture 4

David Sontag

New York University

Slides adapted from Luke Zettlemoyer, Vibhav Gogate,
and Carlos Guestrin

Q: What does the Perceptron mistake
bound tell us?

•  Batch learning: setting we consider for most of the class.
–  Assume training data drawn from same distribution as future test data

–  Use training data to find the hypothesis

•  The mistake bound gives us an upper bound on the perceptron
running time
–  At least one mistake made per pass through the data
–  Running time is at most

•  Does not tell us anything about generalization – this is addressed
by the concept of VC-dimension (in a couple lectures)

Theorem: The maximum number of mistakes made by the perceptron
algorithm is bounded above by

computed on training data

Q: What does the Perceptron mistake
bound tell us?

Theorem: The maximum number of mistakes made by the perceptron
algorithm is bounded above by

Demonstration in Matlab that Perceptron takes many more iterations to
converge when there is a smaller margin (relative to R)

Online versus batch learning

[Shai Shalev-Shwartz, “Online Learning and Online Convex Optimization”, ‘11]

•  In the online setting we
measure regret, i.e. the total
cumulative loss

•  No assumptions at all about
the order of the data points!

•  R and gamma refer to all
data points (seen and future)

•  Perceptron mistake bound
tell us that the algorithm has
bounded regret

Recall from last lecture…
Support vector machines (SVMs)

•  Example of a convex optimization problem

–  A quadratic program

–  Polynomial-time algorithms to solve!

•  Hyperplane defined by support vectors

–  Could use them as a lower-dimension
basis to write down line, although we
haven’t seen how yet

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -

1

w
.x

 +
 b

 =
 0

margin 2γ	

Support Vectors:
•  data points on the

canonical lines

Non-support Vectors:
•  everything else
•  moving them will

not change w

What if the data is not linearly separable?

Add More Features!!!

What about overfitting?

φ(x) =





x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .





7

•  First Idea: Jointly minimize w.w and
number of training mistakes
–  How to tradeoff two criteria?

–  Pick C using held-out data

•  Tradeoff #(mistakes) and w.w
–  0/1 loss

–  Not QP anymore

–  Also doesn’t distinguish near misses
and really bad mistakes

–  NP hard to find optimal solution!!!

+ C #(mistakes)

What if the data is not linearly separable?

Allowing for slack: “Soft margin” SVM

For each data point:

• If margin ≥ 1, don’t care

• If margin < 1, pay linear penalty

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -

1

w
.x

 +
 b

 =
 0

ξ

ξ

ξ

ξ

+ C Σj ξj
- ξj ξj≥0

Slack penalty C > 0:
• C=∞  have to separate the data!
• C=0  ignores the data entirely!

“slack variables”

Allowing for slack: “Soft margin” SVM

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -

1

w
.x

 +
 b

 =
 0

ξ

ξ

ξ

ξ

+ C Σj ξj
- ξj ξj≥0

“slack variables”

What is the (optimal) value of ξj as a function
of w and b?

If then ξj = 0

If then ξj =

Sometimes written as

Equivalent hinge loss formulation

+ C Σj ξj
- ξj ξj≥0

Substituting into the objective, we get:

The hinge loss is defined as

This part is empirical risk minimization,
using the hinge loss

This is called regularization;
used to prevent overfitting!

Hinge loss vs. 0/1 loss

Hinge loss upper bounds 0/1 loss!

Hinge loss:

0-1 Loss:

1 0

1

How do we do multi-class classification?

One versus all classification

Learn 3 classifiers:
• - vs {o,+}, weights w-
• + vs {o,-}, weights w+

• o vs {+,-}, weights wo

Predict label using:

w+

w-

Any problems?

Could we learn this dataset? 

wo

Multi-class SVM

Simultaneously learn 3 sets
of weights:

• How do we guarantee the
correct labels?

• Need new constraints!

w+

w-

wo

The “score” of the correct
class must be better than the
“score” of wrong classes:

As for the SVM, we introduce slack variables and maximize margin:

Now can we learn it? 

Multi-class SVM

To predict, we use:

What you need to know

•  Perceptron mistake bound

•  Maximizing margin

•  Derivation of SVM formulation

•  Relationship between SVMs and empirical risk
minimization

–  0/1 loss versus hinge loss

•  Tackling multiple class

– One against All

– Multiclass SVMs

What’s Next!

•  Learn one of the most interesting and
exciting recent advancements in machine
learning
– The “kernel trick”

– High dimensional feature spaces at no extra
cost!

•  But first, a detour
– Constrained optimization!

