Support Vector Machines & Kernels Lecture 5

David Sontag New York University

Slides adapted from Luke Zettlemoyer and Carlos Guestrin

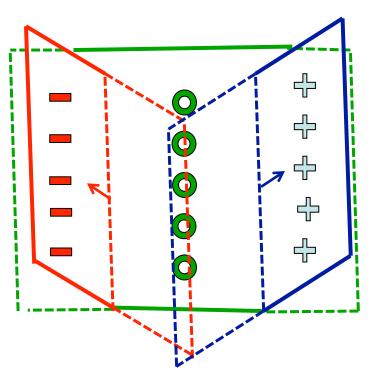
Multi-class SVM

As for the SVM, we introduce slack variables and maximize margin:

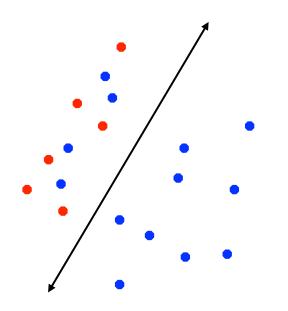
$$\begin{array}{l} \text{minimize}_{\mathbf{w},b} \quad \sum_{y} \mathbf{w}^{(y)} \cdot \mathbf{w}^{(y)} + C \sum_{j} \xi_{j} \\ \mathbf{w}^{(y_{j})} \cdot \mathbf{x}_{j} + b^{(y_{j})} \geq \mathbf{w}^{(y')} \cdot \mathbf{x}_{j} + b^{(y')} + 1 - \xi_{j}, \ \forall y' \neq y_{j}, \ \forall j \\ \xi_{j} \geq 0, \ \forall j \end{array}$$

To predict, we use: $\hat{y} \leftarrow \arg \max_{k} w_k \cdot x + b_k$

Now can we learn it? \rightarrow



How to deal with imbalanced data?



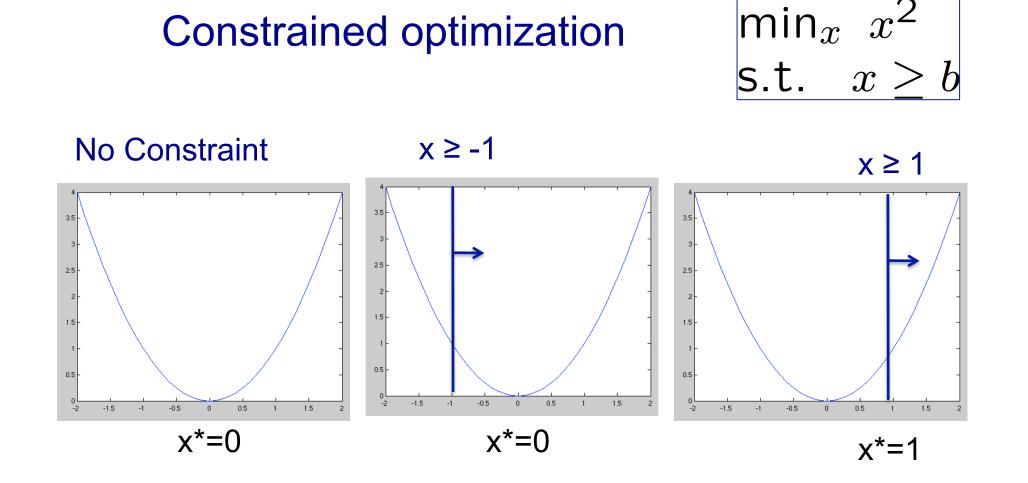
- In many practical applications we may have imbalanced data sets
- We may want errors to be equally distributed between the positive and negative classes
- A slight modification to the SVM objective does the trick!

$$\min_{w,b} \frac{1}{2} ||w||_2^2 + \frac{C}{N_+} \sum_{j:y_j=+1} \xi_j + \frac{C}{N_-} \sum_{j:y_j=-1} \xi_j$$

Class-specific weighting of the slack variables

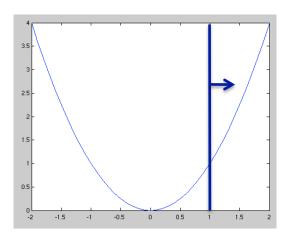
What's Next!

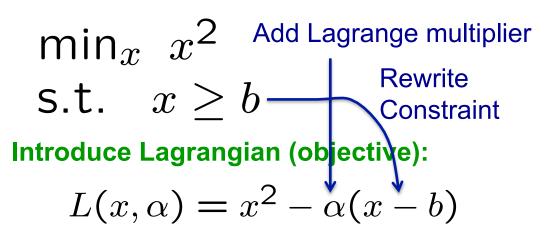
- Learn one of the most interesting and exciting recent advancements in machine learning
 - The "kernel trick"
 - High dimensional feature spaces at no extra cost!
- But first, a detour
 - Constrained optimization!



How do we solve with constraints? → Lagrange Multipliers!!!

Lagrange multipliers – Dual variables





We will solve:

 $\min_x \max_\alpha L(x, \alpha)$

Why is this equivalent?

• min is fighting max! x<b \rightarrow (x-b)<0 \rightarrow max_{α}- α (x-b) = ∞

min won't let this happen!

 $(x-b) = \infty$ S.t. $\alpha \ge 0$

Add new constraint

x>b, $\alpha \ge 0 \rightarrow (x-b) > 0 \rightarrow \max_{\alpha} - \alpha (x-b) = 0$, $\alpha *=0$

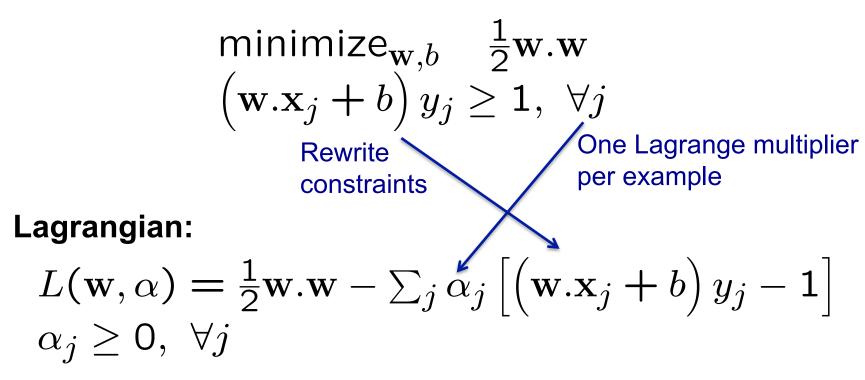
• min is cool with 0, and L(x, α)=x² (original objective)

 $x=b \rightarrow \alpha$ can be anything, and L(x, α)=x² (original objective)

The *min* on the outside forces *max* to behave, so constraints will be satisfied.

Dual SVM derivation (1) – the linearly separable case

Original optimization problem:



Our goal now is to solve: $\min_{\vec{w},b} \max_{\vec{\alpha} \ge 0} L(\vec{w},\vec{\alpha})$

Dual SVM derivation (2) – the linearly separable case

(Primal)
$$\min_{\vec{w},b} \max_{\vec{\alpha} \ge 0} \frac{1}{2} ||\vec{w}||^2 - \sum_j \alpha_j \left[(\vec{w} \cdot \vec{x}_j + b) y_j - 1 \right]$$

Swap min and max
$$\max_{\vec{\alpha} \ge 0} \min_{\vec{w},b} \frac{1}{2} ||\vec{w}||^2 - \sum_j \alpha_j \left[(\vec{w} \cdot \vec{x}_j + b) y_j - 1 \right]$$

Slater's condition from convex optimization guarantees that these two optimization problems are equivalent!

Dual SVM derivation (3) – the linearly separable case

(Dual)
$$\max_{\vec{\alpha} \ge 0} \min_{\vec{w}, b} \frac{1}{2} ||\vec{w}||^2 - \sum_j \alpha_j \left[(\vec{w} \cdot \vec{x}_j + b) y_j - 1 \right]$$

Can solve for optimal **w**, b as function of α :

$$\frac{\partial L}{\partial w} = w - \sum_{j} \alpha_{j} y_{j} x_{j} \quad \Rightarrow \quad \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$
$$\frac{\partial L}{\partial b} = -\sum_{j} \alpha_{j} y_{j} \quad \Rightarrow \quad \sum_{j} \alpha_{j} y_{j} = 0$$

Substituting these values back in (and simplifying), we obtain:

(Dual)
$$\alpha \ge 0, \sum_{j} \alpha_{j} y_{j} = 0$$
 $\sum_{j} \alpha_{j} - \frac{1}{2} \sum_{i,j} y_{i} y_{j} \alpha_{i} \alpha_{j} (\vec{x}_{i} \cdot \vec{x}_{j})$
Sums over all training examples scalars dot product

Dual SVM derivation (3) – the linearly separable case

(Dual)
$$\max_{\vec{\alpha} \ge 0} \min_{\vec{w}, b} \frac{1}{2} ||\vec{w}||^2 - \sum_j \alpha_j \left[(\vec{w} \cdot \vec{x}_j + b) y_j - 1 \right]$$

Can solve for optimal **w**, b as function of α :

$$\frac{\partial L}{\partial w} = w - \sum_{j} \alpha_{j} y_{j} x_{j} \quad \Rightarrow \quad \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$
$$\frac{\partial L}{\partial b} = -\sum_{j} \alpha_{j} y_{j} \quad \Rightarrow \quad \sum_{j} \alpha_{j} y_{j} = 0$$

Substituting these values back in (and simplifying), we obtain:

(Dual)
$$\max_{\vec{\alpha} \ge 0, \sum_{j} \alpha_{j} y_{j} = 0} \sum_{j} \alpha_{j} - \frac{1}{2} \sum_{i,j} y_{i} y_{j} \alpha_{i} \alpha_{j} \left(\vec{x}_{i} \cdot \vec{x}_{j} \right)$$

So, in dual formulation we will solve for α directly!

• w and b are computed from α (if needed)

Dual SVM derivation (3) – the linearly separable case

Lagrangian:

$$L(\mathbf{w}, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \ge 0, \ \forall j$$

 $\alpha_j > 0$ for some *j* implies constraint is tight. We use this to obtain *b*:

$$y_j \left(\vec{w} \cdot \vec{x}_j + b \right) = 1 \quad (1)$$
$$y_j y_j \left(\vec{w} \cdot \vec{x}_j + b \right) = y_j \quad (2)$$
$$\left(\vec{w} \cdot \vec{x}_j + b \right) = y_j \quad (3)$$

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x}_i$$

 $b = y_k - \mathbf{w}.\mathbf{x}_k$
for any k where $lpha_k > 0$

Dual for the non-separable case – same basic story (we will skip details)

Primal:

 $\begin{array}{ll} \text{minimize}_{\mathbf{w},b} & \frac{1}{2}\mathbf{w}.\mathbf{w} + C\sum_{j}\xi_{j} \\ \left(\mathbf{w}.\mathbf{x}_{j} + b\right)y_{j} \geq 1 - \xi_{j}, \ \forall j \\ & \xi_{j} \geq 0, \ \forall j \end{array}$

Solve for w,b,
$$\alpha$$
:

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$
$$b = y_{k} - \mathbf{w} \cdot \mathbf{x}_{k}$$

for any k where $C>\alpha_k>0$

Dual: maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $C \ge \alpha_{i} \ge 0$

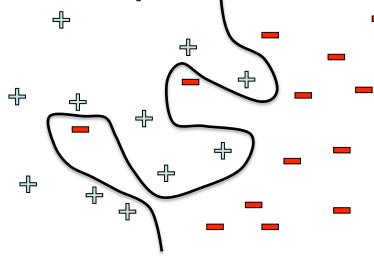
What changed?

- Added upper bound of C on $\alpha_i!$
- Intuitive explanation:
 - Without slack, $\alpha_i \rightarrow \infty$ when constraints are violated (points misclassified)
 - Upper bound of C limits the α_{i} , so misclassifications are allowed

Wait a minute: why did we learn about the dual SVM?

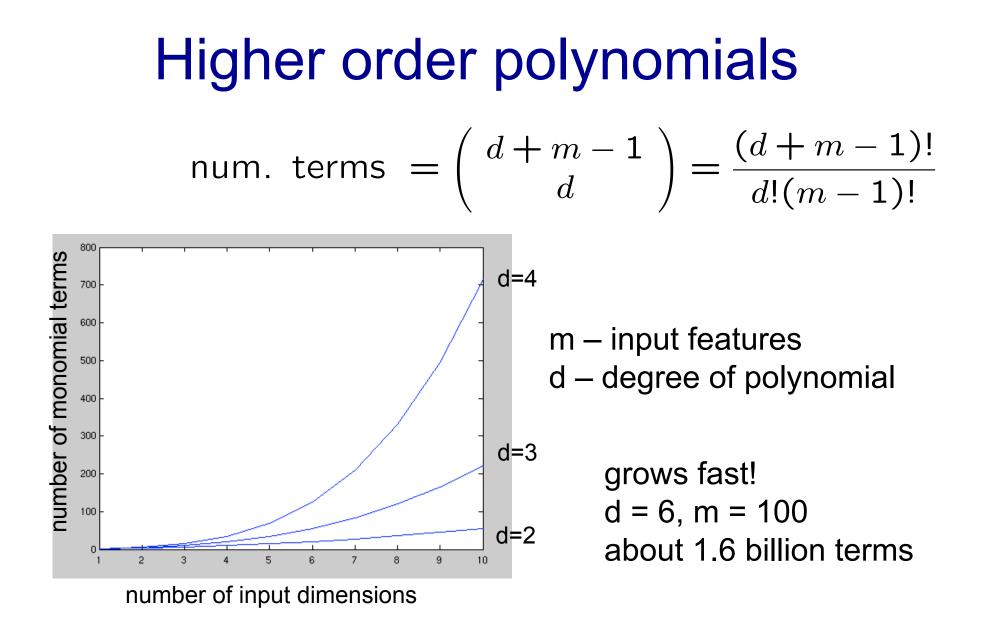
- There are some quadratic programming algorithms that can solve the dual faster than the primal
 - At least for small datasets
- But, more importantly, the "kernel trick"!!!

Reminder: What if the data is not linearly separable? Use features of features of features of features....



$$\phi(x) = \begin{pmatrix} x^{(1)} & \ddots & \ddots & \\ x^{(n)} & x^{(1)} x^{(2)} & \\ x^{(1)} x^{(3)} & & \\ & \ddots & \\ & e^{x^{(1)}} & \\ & & \ddots & \end{pmatrix}$$

Feature space can get really large really quickly!



Dual formulation only depends on dot-products, not on **w**!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $C \ge \alpha_{i} \ge 0$

First, we introduce features:

$$\mathbf{x}_i \mathbf{x}_j \rightarrow \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)$$

Remember the examples x only appear in one dot product

Next, replace the dot product with a Kernel:

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$
 $K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $C \ge \alpha_{i} \ge 0$

Why is this useful???

Efficient dot-product of polynomials

Polynomials of degree exactly *d*

$$d=1$$

$$\phi(u).\phi(v) = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = u_1v_1 + u_2v_2 = u.v$$

$$d=2$$

$$\phi(u).\phi(v) = \begin{pmatrix} u_1^2 \\ u_1u_2 \\ u_2u_1 \\ u_2^2 \end{pmatrix} \cdot \begin{pmatrix} v_1^2 \\ v_1v_2 \\ v_2v_1 \\ v_2^2 \end{pmatrix} = u_1^2v_1^2 + 2u_1v_1u_2v_2 + u_2^2v_2^2$$

$$= (u_1v_1 + u_2v_2)^2$$

$$= (u.v)^2$$

For any *d* (we will skip proof):

$$\phi(u).\phi(v) = (u.v)^d$$

 Cool! Taking a dot product and exponentiating gives same results as mapping into high dimensional space and then taking dot produce

Finally: the "kernel trick"! maximize_{α} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$ $K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$ $\sum_{i} \alpha_{i} y_{i} = 0$ $C > \alpha_{i} > 0$

- Never compute features explicitly!!!
 - Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features
- But, O(n²) time in size of dataset to compute objective
 - Naïve implements slow
 - much work on speeding up

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})$$
$$b = y_{k} - \mathbf{w} \cdot \Phi(\mathbf{x}_{k})$$

for any k where $C > \alpha_k > 0$

Common kernels

- Polynomials of degree exactly d $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$
- Polynomials of degree up to *d*

$$K(\mathbf{u},\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

Gaussian kernels

$$K(\vec{u}, \vec{v}) = \exp\left(-\frac{||\vec{u} - \vec{v}||_2^2}{2\sigma^2}\right)$$

• Sigmoid

$$K(\mathbf{u},\mathbf{v}) = \tanh(\eta\mathbf{u}\cdot\mathbf{v} + \nu)$$

• And many others: very active area of research!