
Support Vector Machines & Kernels
Lecture 5

David Sontag

New York University

Slides adapted from Luke Zettlemoyer and Carlos Guestrin

As for the SVM, we introduce slack variables and maximize margin:

Now can we learn it?

Multi-class SVM

To predict, we use:

•  In many practical applications we may have
imbalanced data sets

•  We may want errors to be equally distributed
between the positive and negative classes

•  A slight modification to the SVM objective
does the trick!

How to deal with imbalanced data?

Class-specific weighting of the slack variables

What’s Next!

•  Learn one of the most interesting and
exciting recent advancements in machine
learning
– The “kernel trick”

– High dimensional feature spaces at no extra
cost!

•  But first, a detour
– Constrained optimization!

Constrained optimization

x*=0

No Constraint x ≥ -1

x*=0 x*=1

x ≥ 1

How do we solve with constraints?
 Lagrange Multipliers!!!

Lagrange multipliers – Dual variables

Introduce Lagrangian (objective):

We will solve:

Add Lagrange multiplier

Add new
constraint

Why is this equivalent?
•  min is fighting max!
x<b (x-b)<0 maxα-α(x-b) = ∞

•  min won’t let this happen!

x>b, α≥0 (x-b)>0 maxα-α(x-b) = 0, α*=0
•  min is cool with 0, and L(x, α)=x2 (original objective)

x=b α can be anything, and L(x, α)=x2 (original objective)

Rewrite
Constraint

The min on the outside forces max to behave, so constraints will be satisfied.

Dual SVM derivation (1) – the linearly
separable case

Original optimization problem:

Lagrangian:

Rewrite
constraints

One Lagrange multiplier
per example

Our goal now is to solve:

Dual SVM derivation (2) – the linearly
 separable case

Swap min and max

Slater’s condition from convex optimization guarantees that
these two optimization problems are equivalent!

(Primal)

(Dual)

Dual SVM derivation (3) – the linearly
 separable case

Can solve for optimal w, b as function of α:

φ(x) =

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

∂L

∂w
= w −

�

j

αjyjxj

7

(Dual)

Substituting these values back in (and simplifying), we obtain:

(Dual)

Sums over all training examples dot product scalars

Dual SVM derivation (3) – the linearly
 separable case

Can solve for optimal w, b as function of α:

φ(x) =

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

∂L

∂w
= w −

�

j

αjyjxj

7

So, in dual formulation we will solve for α directly!
•  w and b are computed from α (if needed)

(Dual)

Substituting these values back in (and simplifying), we obtain:

(Dual)

Dual SVM derivation (3) – the linearly
 separable case

Lagrangian:

αj > 0 for some j implies constraint
is tight. We use this to obtain b:

(1)

(2)

(3)

Dual for the non-separable case – same basic
story (we will skip details)

Primal: Solve for w,b,α:

Dual:

What changed?
•  Added upper bound of C on αi!
•  Intuitive explanation:

•  Without slack, αi ∞ when constraints are violated (points
misclassified)

•  Upper bound of C limits the αi, so misclassifications are allowed

Wait a minute: why did we learn about the dual
SVM?

•  There are some quadratic programming
algorithms that can solve the dual faster than the
primal

– At least for small datasets

•  But, more importantly, the “kernel trick”!!!

Reminder: What if the data is not
linearly separable?

Use features of features
of features of features….

Feature space can get really large really quickly!

φ(x) =

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

7

Higher order polynomials

number of input dimensions

nu
m

be
r

of
 m

on
om

ia
l t

er
m

s

d=2

d=4

d=3

m – input features
d – degree of polynomial

grows fast!
d = 6, m = 100
about 1.6 billion terms

Dual formulation only depends on
dot-products, not on w!

Remember the
examples x only
appear in one dot
product

First, we introduce features:

Next, replace the dot product with a Kernel:

Why is this useful???

Efficient dot-product of polynomials
Polynomials of degree exactly d

d=1

φ(x) =

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

∂L

∂w
= w −

�

j

αjyjxj

φ(u).φ(v) =

�
u1
u2

�
.

�
v1
v2

�
= u1v1 + u2v2 = u.v

7

d=2

For any d (we will skip proof):

•  Cool! Taking a dot product and exponentiating gives same
results as mapping into high dimensional space and then taking
dot produce

φ(x) =

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

∂L

∂w
= w −

�

j

αjyjxj

φ(u).φ(v) =

�
u1
u2

�
.

�
v1
v2

�
= u1v1 + u2v2 = u.v

φ(u).φ(v) = (u.v)d

7

φ(x) =

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

∂L

∂w
= w −

�

j

αjyjxj

φ(u).φ(v) =

�
u1
u2

�
.

�
v1
v2

�
= u1v1 + u2v2 = u.v

φ(u).φ(v) =

u21
u1u2
u2u1
u22

 .

v21
v1v2
v2v1
v22

 = u21v
2
1 + 2u1v1u2v2 + u22v

2
2

φ(u).φ(v) = (u.v)d

7

φ(x) =

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

∂L

∂w
= w −

�

j

αjyjxj

φ(u).φ(v) =

�
u1
u2

�
.

�
v1
v2

�
= u1v1 + u2v2 = u.v

φ(u).φ(v) =

u21
u1u2
u2u1
u22

 .

v21
v1v2
v2v1
v22

 = u21v
2
1 + 2u1v1u2v2 + u22v

2
2

= (u1v1 + u2v2)
2

φ(u).φ(v) = (u.v)d

7

φ(x) =

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

∂L

∂w
= w −

�

j

αjyjxj

φ(u).φ(v) =

�
u1
u2

�
.

�
v1
v2

�
= u1v1 + u2v2 = u.v

φ(u).φ(v) =

u21
u1u2
u2u1
u22

 .

v21
v1v2
v2v1
v22

 = u21v
2
1 + 2u1v1u2v2 + u22v

2
2

= (u1v1 + u2v2)
2

= (u.v)2

φ(u).φ(v) = (u.v)d

7

Finally: the “kernel trick”!

•  Never compute features explicitly!!!
–  Compute dot products in closed form

•  Constant-time high-dimensional dot-
products for many classes of features

•  But, O(n2) time in size of dataset to
compute objective
–  Naïve implements slow
–  much work on speeding up

Common kernels
•  Polynomials of degree exactly d

•  Polynomials of degree up to d

•  Gaussian kernels

•  Sigmoid

•  And many others: very active area of research!

