Support Vector Machines & Kernels
Lecture 5

David Sontag
New York University

Slides adapted from Luke Zettlemoyer and Carlos Guestrin

Multi-class SVM

As for the SVM, we introduce slack variables and maximize margin:

minimizey; >, wW.wW) + Oy ¢;

To predict, we use: ,--\ ~=--}
=1 @& | = |
| | Y NI |
] ™= - 7)

Now can we learn it? - i _\': Ig I
ke
B — /

’
, ——
’-
\
\
\
\
\

v
(VSN B
\

How to deal with imbalanced data?

* In many practical applications we may have
imbalanced data sets

 We may want errors to be equally distributed
between the positive and negative classes

« A slight modification to the SVM objective
o does the trick!

Class-specific weighting of the slack variables

What's Next!

* Learn one of the most interesting and
exciting recent advancements in machine
learning

— The “kernel trick”

— High dimensional feature spaces at no extra
cost!

« But first, a detour
— Constrained optimization!

Constrained optimization

No Constraint X = -1

x*=0 x*=0

4 T
\
/
st \ / J
\ {
! {
3k J,’ i
\\\ ; jf.r’
Y /
5 /
\ /
2t /
Y /
\\ [/
1.5} \ /-
\ /
N /
1k
05t \ /
\\\ g
0 1 1 1 e " 1 1
2 -15 -1 -05 1] 05 1
X* —_— 1

How do we solve with constraints?
- Lagrange Multipliers!!!

Lagrange multipliers — Dual variables

\ —] min.; 562 Add Lagrange multiplier
1\ /| Rewrite
\ —>/ | s.T. x Z b Constraint
\ / Introduce Lagrangian (objective):
| \ B L(z,a) = 22 — alx — b)

We will solve:

Why is this equivalent?

* min is fighting max! Ming MaXq L(ﬂ% 04)
X<b = (x-b)<0 = max - o (x-b) = st. a>0
* min won't let this happen! ~
PP \ Add new
x>b, @20 > (x-b)>0 > max - & (x-b) =0, a*=0 constraint

« minis cool with 0, and L(x, a)=x?(original objective)

x=b 2 « can be anything, and L(x, &)=x2 (original objective)

The min on the outside forces max to behave, so constraints will be satisfied.

Dual SVM derivation (1) — the linearly
separable case

Original optimization problem:

minimizey, %w.w

Rewrite One Lagrange multiplier
constraints per example

Lagrangian:

L(w,a) = %W.W — > Q; {(W.Xj + b) Y — 1}
Ozj Z O, \V/]

Our goal now is to solve: min max L(w, Q)
w,b a>0

Dual SVM derivation (2) — the linearly
separable case

2
(Primal) W0 WAX 3 ‘”wH ZO‘J (@ - %5 +b)y; — 1]

Swap min and max

(Dual) mg%c rgm —||wH ZO‘J w- T+ b)y; — 1]

Slater’s condition from convex optimization guarantees that
these two optimization problems are equivalent!

Dual SVM derivation (3) — the linearly

separable case

N S Lo
(Dual) ~ max min 5 lll] —Z%‘ (@ - @5 +b)y; — 1]
J

Can solve for optimal w, b as function of «:
oL
B —w — Z QYT 4 — W — Z A5Y5X4
J J
= oy, 2 D ay =0
J J
Substituting these values back in (and simplifying), we obtain:

(Dual) 550 5205 Z% Z }/iyjaioéjl(?i fa)

ajyj—o 1,7 Y X v\

Sums over all training examples scalars dot product

Dual SVM derivation (3) — the linearly

separable case

N S Lo
(Dual) ~ max min 5 lll] —Z%‘ (@ - @5 +b)y; — 1]
J

Can solve for optimal w, b as function of «:

oL
B —w — Z QYT 4 — W — Z A5Y5X4
/ J

oL
%:—Zajyj 7D oy =0
J J
Substituting these values back in (and simplifying), we obtain:

]- — —
(Dual) 45¢ %ﬂ?;(jyjzo zj: ATy ZZ; yiyjooy (L - ;)

So, in dual formulation we will solve for a directly!
« wand b are computed from « (if needed)

Dual SVM derivation (3) — the linearly
separable case

Lagrangian:
L(w,a) = %W.W — > Q; [(W.Xj + b) Y — 1}
Oéj Z O, \V/j

;> 0 for some j implies constraint
is tight. We use this to obtain b: W = Z QY X,
— — i
yj (W-25+b)=1 (1) b=y, — W.Xg
N for any k where o, > 0
Yy (0- T +b) =y; (2) k

(W-Z; +b)=y; ()

Dual for the non-separable case — same basic
story (we will skip details)

Primal: Solve forw,b, o:
minimizey, %w.w +C X5 W = Z QYiXq
(W.Xj —|— b) yj 2 1 — fj, \V/j b — ykz_ W.Xk

— for any kK where C' > ap, > 0

Dual: maximizes > ;o — %Zi,j GO Y Y XX

>iaiy; = 0
C > Oy > 0

What changed?

» Added upper bound of C on «!

 Intuitive explanation:
» Without slack, a; = <« when constraints are violated (points
misclassified)
« Upper bound of C limits the «,, so misclassifications are allowed

Wait a minute: why did we learn about the dual
SVM?

* There are some quadratic programming

algorithms that can solve the dual faster than the
primal

— At least for small datasets

* But, more importantly, the “kernel trick™!!!

Reminder: What if the data is not

linearly separable?

Use features of features
of features of features....

- [20

()

= (1),.(2)
xr xr

_ @) =1 1.0

(1)

Feature space can get really large really quickly!

number of monomial terms

800

700

600 -

500

400 -

300

200 -

100

Higher order polynomials

num. terms =<

d+m—1
d

d=3

1 d=4

d=2

)] 1
2 3 4 5 5} 7 8 9

number of input dimensions

>_

m — input features
d — degree of polynomial

_ (d4+m—1)!

d'(m —1)!

grows fast!
d=6,m=100
" about 1.6 billion terms

Dual formulation only depends on
dot-products, not on w!

maximizeg >0 — % Z’L,j QO Y Y XX
2. @iyi = O H_/\
C Z 87 2 O

Remember the

First, we introduce features: examples x only
XX > d(x:). Dlx. appear in one dot
L (%) (3> product

Next, replace the dot product with a Kernel:
. 1
MaXimiIZEy ZZ Q; — 5 ZZJ OéZ'Oéij'yjK(XZ', X])
K(xi,x;) = P(x;) - P(x5)

> ia;y; = 0
CZO%>O

Why is this useful???

Efficient dot-product of polynomials

Polynomials of degree exactly d

d=1
d(u).¢p(v) = (“) . (o1) = ULV1 + UV = UV
u2 U2
d=2 [ud [vf)
o(u).o(v) = Zigi . :;:j = wsv? + 2uiviUUs + UusU3
\ 3)\ 3) = (wn +uze)?
= (u.v)?

For any d (we will skip proof):
o(u).¢(v) = (u.v)*

Cool! Taking a dot product and exponentiating gives same
results as mapping into high dimensional space and then taking
dot produce

Finally: the "kernel trick™
maximizeg D O — %Zz,j ozz-ozjy,,;yjK(Xi, X])

K(x;,x5) = P(x;) - P(x5)

> iy =0
CZO(Z'>O

Never compute features explicitly!!!

— Compute dot products in closed form

. . . . W = o Y; P(x;
Constant-time high-dimensional dot- Z i P (x)
products for many classes of features t

But, O(n?) time in size of dataset to

compute objective

— Naive implements slow
— much work on speeding up

b=y, — w.d(xp)

for any k where C > a;, > 0

Common kernels

Polynomials of degree exactly d
K(u,v) = (u-v)?

Polynomials of degree up to d
K(u,v) = (u-v+1)¢

Gaussian kernels

S o2
K (@,) = exp (—”“ ””2>

202

Sigmoid
K(u,v) =tanh(pu-v +vr)

And many others: very active area of research!

