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As for the SVM, we introduce slack variables and maximize margin: 

Now can we learn it?   

Multi-class SVM 

To predict, we use: 



•  In many practical applications we may have 
imbalanced data sets 

•  We may want errors to be equally distributed 
between the positive and negative classes 

•  A slight modification to the SVM objective 
does the trick! 

How to deal with imbalanced data? 

Class-specific weighting of the slack variables 



What’s Next! 

•  Learn one of the most interesting and 
exciting recent advancements in machine 
learning 
– The “kernel trick” 

– High dimensional feature spaces at no extra 
cost! 

•  But first, a detour 
– Constrained optimization! 



Constrained optimization 

x*=0 

No Constraint x ≥ -1 

x*=0 x*=1 

x ≥ 1 

How do we solve with constraints?  
  Lagrange Multipliers!!!  



Lagrange multipliers – Dual variables 

Introduce Lagrangian (objective): 

We will solve: 

Add Lagrange multiplier 

Add new 
constraint 

Why is this equivalent? 
•  min is fighting max! 
x<b  (x-b)<0  maxα-α(x-b) = ∞ 

•  min won’t let this happen! 

x>b, α≥0  (x-b)>0  maxα-α(x-b) = 0, α*=0 
•  min is cool with 0, and L(x, α)=x2 (original objective) 

x=b  α can be anything, and L(x, α)=x2 (original objective) 

Rewrite 
Constraint 

The min on the outside forces max to behave, so constraints will be satisfied.  



Dual SVM derivation (1) – the linearly 
separable case 

Original optimization problem: 

Lagrangian: 

Rewrite 
constraints 

One Lagrange multiplier 
per example 

Our goal now is to solve: 



Dual SVM derivation (2) –  the linearly 
 separable case 

Swap min and max 

Slater’s condition from convex optimization guarantees that 
these two optimization problems are equivalent! 

(Primal) 

(Dual) 



Dual SVM derivation (3) –  the linearly 
 separable case 

Can solve for optimal w, b as function of α: 
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(Dual) 

 

Substituting these values back in (and simplifying), we obtain: 

(Dual) 

Sums over all training examples dot product scalars 



Dual SVM derivation (3) –  the linearly 
 separable case 

Can solve for optimal w, b as function of α: 
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So, in dual formulation we will solve for α directly! 
•  w and b are computed from α (if needed) 

(Dual) 

 

Substituting these values back in (and simplifying), we obtain: 

(Dual) 



Dual SVM derivation (3) –  the linearly 
 separable case 

Lagrangian: 

αj > 0 for some j implies constraint 
is tight. We use this to obtain b: 

(1) 

(2) 

(3) 



Dual for the non-separable case – same basic 
story (we will skip details) 

Primal: Solve for w,b,α: 

Dual: 

What changed?  
•  Added upper bound of C on αi! 
•  Intuitive explanation:  

•  Without slack, αi  ∞ when constraints are violated (points 
misclassified) 

•  Upper bound of C limits the αi, so misclassifications are allowed    



Wait a minute: why did we learn about the dual 
SVM? 

•  There are some quadratic programming 
algorithms that can solve the dual faster than the 
primal 

– At least for small datasets 

•  But, more importantly, the “kernel trick”!!! 



Reminder: What if the data is not 
linearly separable? 

Use features of features  
of features of features…. 

Feature space can get really large really quickly! 
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Higher order polynomials 

number of input dimensions 
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d=2 

d=4 

d=3 

m – input features 
d – degree of polynomial 

grows fast! 
d = 6, m = 100 
about 1.6 billion terms 



Dual formulation only depends on 
dot-products, not on w! 

Remember the 
examples x only 
appear in one dot 
product 

First, we introduce features:   

Next, replace the dot product with a Kernel: 

 

Why is this useful??? 



Efficient dot-product of polynomials 
Polynomials of degree exactly d 

d=1 
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d=2 

For any d (we will skip proof): 

•  Cool! Taking a dot product and exponentiating gives same 
results as mapping into high dimensional space and then taking 
dot produce 
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Finally: the “kernel trick”! 

•  Never compute features explicitly!!! 
–  Compute dot products in closed form 

•  Constant-time high-dimensional dot-
products for many classes of features 

•  But, O(n2) time in size of dataset to 
compute objective 
–  Naïve implements slow 
–  much work on speeding up 



Common kernels 
•  Polynomials of degree exactly d 

•  Polynomials of degree up to d 

•  Gaussian kernels 

•  Sigmoid 

•  And many others: very active area of research! 


