
Support Vector Machines & Kernels
Lecture 6

David Sontag

New York University

Slides adapted from Luke Zettlemoyer, Carlos Guestrin,
 and Vibhav Gogate

SVMs in the dual

Primal: Solve for w, b:

Dual:

dot product

The dual is also a quadratic program, and can be efficiently solved
to optimality

Support vectors

•  Complementary slackness conditions:

•  Support vectors: points xj such that
(includes all j such that , but also additional points
where)

•  Note: the SVM dual solution may not be unique!

Dual SVM interpretation: Sparsity

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -

1

w
.x

 +
 b

 =
 0

Support Vectors:
•  αj≥0

Non-support Vectors:
• αj=0
• moving them will not
change w

Final solution tends to
be sparse

• αj=0 for most j

• don’t need to store these
points to compute w or make
predictions

Classification rule using dual solution

Using dual solution

dot product of feature vectors of
new example with support vectors

SVM with kernels

•  Never compute features explicitly!!!
–  Compute dot products in closed form

•  O(n2) time in size of dataset to
compute objective
–  much work on speeding up

Predict with:

Efficient dot-product of polynomials
Polynomials of degree exactly d

d=1

φ(x) =

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

∂L

∂w
= w −

�

j

αjyjxj

φ(u).φ(v) =

�
u1
u2

�
.

�
v1
v2

�
= u1v1 + u2v2 = u.v

7

d=2

For any d (we will skip proof):

•  Cool! Taking a dot product and exponentiating gives same
results as mapping into high dimensional space and then taking
dot product

φ(x) =

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

∂L

∂w
= w −

�

j

αjyjxj

φ(u).φ(v) =

�
u1
u2

�
.

�
v1
v2

�
= u1v1 + u2v2 = u.v

φ(u).φ(v) = (u.v)d

7

φ(x) =

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

∂L

∂w
= w −

�

j

αjyjxj

φ(u).φ(v) =

�
u1
u2

�
.

�
v1
v2

�
= u1v1 + u2v2 = u.v

φ(u).φ(v) =

u21
u1u2
u2u1
u22

 .

v21
v1v2
v2v1
v22

 = u21v
2
1 + 2u1v1u2v2 + u22v

2
2

φ(u).φ(v) = (u.v)d

7

φ(x) =

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

∂L

∂w
= w −

�

j

αjyjxj

φ(u).φ(v) =

�
u1
u2

�
.

�
v1
v2

�
= u1v1 + u2v2 = u.v

φ(u).φ(v) =

u21
u1u2
u2u1
u22

 .

v21
v1v2
v2v1
v22

 = u21v
2
1 + 2u1v1u2v2 + u22v

2
2

= (u1v1 + u2v2)
2

φ(u).φ(v) = (u.v)d

7

φ(x) =

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

∂L

∂w
= w −

�

j

αjyjxj

φ(u).φ(v) =

�
u1
u2

�
.

�
v1
v2

�
= u1v1 + u2v2 = u.v

φ(u).φ(v) =

u21
u1u2
u2u1
u22

 .

v21
v1v2
v2v1
v22

 = u21v
2
1 + 2u1v1u2v2 + u22v

2
2

= (u1v1 + u2v2)
2

= (u.v)2

φ(u).φ(v) = (u.v)d

7

Quadratic kernel

[Tommi Jaakkola]

Quadratic kernel

[Cynthia Rudin]

Feature mapping given by:

Common kernels

•  Polynomials of degree exactly d

•  Polynomials of degree up to d

•  Gaussian kernels

•  And many others: very active area of research!
(e.g., structured kernels that use dynamic programming
to evaluate)

Euclidean distance,
squared

Gaussian kernel

[Cynthia Rudin] [mblondel.org]

Kernel algebra

[Justin Domke]

Q: How would you prove that the “Gaussian kernel” is a valid kernel?
A: Expand the Euclidean norm as follows:

Then, apply (e) from above

To see that this is a kernel, use the
Taylor series expansion of the
exponential, together with repeated
application of (a), (b), and (c):

The feature mapping is
infinite dimensional!

Overfitting?

•  Huge feature space with kernels: should we worry about
overfitting?
–  SVM objective seeks a solution with large margin

•  Theory says that large margin leads to good generalization
(we will see this in a couple of lectures)

–  But everything overfits sometimes!!!

–  Can control by:

•  Setting C

•  Choosing a better Kernel

•  Varying parameters of the Kernel (width of Gaussian, etc.)

•  SVMlight: one of the most widely used SVM packages. Fast
optimization, can handle very large datasets, C++ code.

•  LIBSVM

•  Both of these handle multi-class, weighted SVM for
unbalanced data, etc.

•  There are several new approaches to solving the SVM
objective that can be much faster:

–  Stochastic subgradient method (discussed in a few lectures)

–  Distributed computation (also to be discussed)

•  See http://mloss.org, “machine learning open source software”

Software

Machine learning methodology:
Cross Validation

Choosing among several hypotheses

•  Suppose you are considering between several
different hypotheses, e.g.

•  For the SVM, we get one linear classifier for each
choice of the regularization parameter C

•  How do you choose between them?

regression

General strategy

Split the data up into three parts:

Assumes that the available data is randomly allocated to these
three, e.g. 60/20/20.

Typical approach

• Learn	 a	 model	 from	 the	 training	 set	
(e.g.,	 fix	 a	 C	 and	 learn	 the	 SVM)	

• 	 Es=mate	 your	 future	 performance	 with	 	
	 	 	 the	 valida=on	 data	

This the model you learned.

More data is better
With more data you can learn better

Blue: Observed data
Red: Predicted curve
True: Green true distribution

Compare the predicted curves

Cross Validation

Recycle	 the	 data!	

Use (almost) all of this for training:

Your	 single	 test	 data	 point	
Lets	 say	 we	 have	 N data	 points	
k	 indices	 the	 data	 points,	 i.e.	 k=1...N

Let	 (xk,yk)	 be	 the	 kth	 example	

Temporarily	 remove	 (xk,yk)	 from	 the	
dataset	

Train on the remaining N-1 data points

Test your error on (xk,yk)	 	

Do this for each k=1..N and report the
average error

LOOCV (Leave-one-out Cross Validation)

Once the best parameters (e.g., choice of C for the SVM) are found, re-train
using all of the training data

LOOCV (Leave-one-out Cross

Validation)
There are N data points.
Repeat learning N times.

Notice the test data
(shown in red) is changing
each time

K-fold cross validation

k-fold

train validate
Train on (k - 1) splits Test

In	 3	 fold	 cross	 valida=on,	 there	 are	 3	 runs.	
In	 5	 fold	 cross	 valida=on,	 there	 are	 5	 runs.	
In	 10	 fold	 cross	 valida=on,	 there	 are	 10	 runs.	

the	 error	 is	 averaged	 over	 all	 runs	

