Support Vector Machines & Kernels
Lecture 6

David Sontag
New York University

Slides adapted from Luke Zettlemoyer, Carlos Guestrin,
and Vibhav Gogate

SVMs in the dual

Primal: Solve for w, b:
minimizey , iw.w+CY;¢; W=) oYX
(W.Xj —|— b) yj 2 1 — fj, \V/j b — ykz_ W.Xk

for any kK where C' > ap, > 0

Dual: maximize, D i O — %Zi,j GO Y Y KX

H_l
> iogy; = 0 \
C > Oy > O

dot product

The dual is also a quadratic program, and can be efficiently solved
to optimality

Support vectors

« Complementary slackness conditions:
aj ly; (0" - T +0) —14+§] =0 = aj =0 V y;(0" - 75 +b) =1

:>Oé;k:0 V y](w*a‘:’]+b)§1

« Support vectors: points x such that y;(W* - Z; +b) <1
(mcludes all j such that o} > 0, but also additional points
where o = 0 A y; (W™ - Z; —I—b) =1)

* Note: the SVM dual solution may not be unique!

Dual SVM interpretation: Sparsity

W=) oysX;
)

Final solution tends to
be sparse

* ;=0 for most |

don’t need to store these
points to compute w or make
predictions

Non-support Vectors:

o =0

j .
-moving them will not | | SuUpport Vectors:
change w + 20

Classification rule using dual solution

Yy <— sign(-

l Using dual solution

Yy < sign {Z ;Y (T; - T) + b

N

W = Z QY X
1
b=y — W.Xp
for any kK where C > a3 >0

dot product of feature vectors of
new example with support vectors

SVM with kernels

maximizea Y a; — 5 Y s oYy K (i, %)
K(x;,x5) = P(x;) - P(x5)

> iy =0
CZO(Z'>O

* Never compute features explicitly!!!
— Compute dot products in closed form Predict with:

y < sign lz oy K(x;,z) +b

1

« O(n?) time in size of dataset to
compute objective
— much work on speeding up

Efficient dot-product of polynomials

Polynomials of degree exactly d

d=1
d(u).¢p(v) = (“) . (o1) = ULV1 + UV = UV
u2 U2
d=2 [ud [vf)
o(u).o(v) = Zigi . :;:j = wsv? + 2uiviUUs + UusU3
\ 3)\ 3) = (wn +uze)?
= (u.v)?

For any d (we will skip proof):
o(u).¢(v) = (u.v)*

Cool! Taking a dot product and exponentiating gives same
results as mapping into high dimensional space and then taking
dot product

Quadratic kernel

Non-linear separator in the original x-space
[Tommi Jaakkola]

Quadratic kernel

j=1 (=1

= ZZZB —|—2ch
g=1 /=1

= Z(aﬁ(j)a:(g) +Z \ﬁx \ﬁz) +
j.0=1

Feature mapping given by:
B(x) = [z12 0@ 282) \/oe® ae®

[Cynthia Rudin]

Common kernels

Polynomials of degree exactly d
K(u,v) = (u-v)?

Polynomials of degree up to d
Ku,v)=(u-v+ 1)

Gaussian kernels

7 72 Euclidean distance
U (v ,
K(u,7) = exp (— | 572 I2 ’ squared
O

And many others: very active area of research!
(e.g., structured kernels that use dynamic programming
to evaluate)

Gaussian kernel

[Cynthia Rudin] [mblondel.org]

Kernel algebra

kernel composition feature composition
a) k(x,v) = ka(x,v) + ky(x, V) P(x) = (@,(x), P(x)),
b) k(x,v) = fka(x,v), f >0 P(x) = v/ [a(x)
) k(x,V) = ko (x, v)Fy(x, V) G (X) = Dai(X) Bp; (X)
d) k(x,v) = xI'Av, A positive semi-definite ¢(x) = L'x, where A = LL'.
e) k(x,v) = f(x)f(v)ka(x,V) ¢(x) = f(x)Pa(x)

Q: How would you prove that the “Gaussian kernel” is a valid kernel?
A: Expand the Euclidean norm as follows:

= o2 =112 =112 > o
uUu— v U U u-v
exp(I~ 2\2> - (_”20";)6@ (_||20H22>6Xp(02>
()
To see that this is a kernel, use the

Th | f b Taylor series expansion of the
en, apply (e) rom above exponential, together with repeated

application of (a), (b), and (c):

The feature mapping is X
infinite dimensional! - n;) nl

[Justin Domke]

Overfitting?

* Huge feature space with kernels: should we worry about
overfitting?
— SVM objective seeks a solution with large margin

* Theory says that large margin leads to good generalization
(we will see this in a couple of lectures)

— But everything overfits sometimes!!!
— Can control by:

« Setting C

« Choosing a better Kernel

« Varying parameters of the Kernel (width of Gaussian, etc.)

Software

SVM/ght: one of the most widely used SVM packages. Fast
optimization, can handle very large datasets, C++ code.

LIBSVM

Both of these handle multi-class, weighted SVM for
unbalanced data, etc.

There are several new approaches to solving the SVM
objective that can be much faster:

— Stochastic subgradient method (discussed in a few lectures)

— Distributed computation (also to be discussed)

See hitp://mloss.org, “machine learning open source software”

Machine learning methodology:
Cross Validation

Choosing among several hypotheses

Suppose you are considering between several
different hypotheses, e.qg.

regression

* linear Quadratic piecewise linear

For the SVM, we get one linear classifier for each
choice of the regularization parameter C @

How do you choose between them?

General strategy

Split the data up into three parts:

training set validation set test set

Assumes that the available data is randomly allocated to these
three, e.g. 60/20/20.

Typical approach

eLearn a model from the training set
(e.g., fixa Cand learn the SVM)

the validation data

f e Estimate your future performance with
|

|

|

| — This the model you learned.

|

More data Is better

With more data you can learn better Blue: Observed data

Red: Predicted curve
True: Green true distribution

Compare the predicted curves

Cross Validation

%o

Use (almost) all of this for training:

Recycle the data!

training set

validation set

test set

LOOCYV (Leave-one-out Cross Validation)

Lets say we have N data points
Your single test data point k indices the data points, i.e. k=1...N

Let (x,,y,) be the kth example

Temporarily remove (x,,y,) from the
dataset

Train on the remaining N-1 data points

. . Test your error on (x,,y,)

X — Do this for each k=1..N and report the
average error

Once the best parameters (e.g., choice of C for the SVM) are found, re-train
using all of the training data

LOOCYV (Leave-one-out Cross
Validation)

. . | . ° .ot There are N data points.
T\T \T . Repeatlearning N times.
i i i i i Notice the test data

(shown in red) is changing
each time

X —» X—> X —»

K-fold cross validation

validate train

¢ .) ,
/_ rres \[Train on (k 1) splits \
L I 1 1 [|

k-fold

] I I

In 3 fold cross validation, there are 3 runs.
In 5 fold cross validation, there are 5 runs.
In 10 fold cross validation, there are 10 runs.

the error is averaged over all runs

