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SVMs in the dual 

Primal: Solve for w, b: 

Dual: 

dot product 

The dual is also a quadratic program, and can be efficiently solved 
to optimality 



Support vectors 

•  Complementary slackness conditions: 

•  Support vectors: points xj such that 
(includes all j such that            , but also additional points 
where                                             ) 

•  Note: the SVM dual solution may not be unique! 



Dual SVM interpretation: Sparsity 
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Support Vectors: 
•  αj≥0 

Non-support Vectors: 
• αj=0 
• moving them will not 
change w 

Final solution tends to 
be sparse 

• αj=0 for most j 

• don’t need to store these 
points to compute w or make 
predictions  



Classification rule using dual solution 

Using dual solution 

dot product of feature vectors of 
new example with support vectors 



SVM with kernels 

•  Never compute features explicitly!!! 
–  Compute dot products in closed form 

•  O(n2) time in size of dataset to 
compute objective 
–  much work on speeding up 

Predict with: 



Efficient dot-product of polynomials 
Polynomials of degree exactly d 
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d=2 

For any d (we will skip proof): 

•  Cool! Taking a dot product and exponentiating gives same 
results as mapping into high dimensional space and then taking 
dot product 
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Quadratic kernel 

[Tommi Jaakkola] 



Quadratic kernel 

[Cynthia Rudin] 

Feature mapping given by: 



Common kernels 

•  Polynomials of degree exactly d 

•  Polynomials of degree up to d 

•  Gaussian kernels 

•  And many others: very active area of research! 
(e.g., structured kernels that use dynamic programming 
to evaluate) 

Euclidean distance, 
squared 



Gaussian kernel 

[Cynthia Rudin] [mblondel.org] 



Kernel algebra 

[Justin Domke] 

Q: How would you prove that the “Gaussian kernel” is a valid kernel? 
A: Expand the Euclidean norm as follows: 

Then, apply (e) from above 

To see that this is a kernel, use the 
Taylor series expansion of the 
exponential, together with repeated 
application of (a), (b), and (c): 

The feature mapping is 
infinite dimensional! 



Overfitting? 

•  Huge feature space with kernels: should we worry about 
overfitting? 
–  SVM objective seeks a solution with large margin 

•  Theory says that large margin leads to good generalization 
(we will see this in a couple of lectures) 

–  But everything overfits sometimes!!! 

–  Can control by: 

•  Setting C  

•  Choosing a better Kernel 

•  Varying parameters of the Kernel (width of Gaussian, etc.) 



•  SVMlight: one of the most widely used SVM packages. Fast 
optimization, can handle very large datasets, C++ code. 

•  LIBSVM 

•  Both of these handle multi-class, weighted SVM for 
unbalanced data, etc. 

•  There are several new approaches to solving the SVM 
objective that can be much faster: 

–  Stochastic subgradient method (discussed in a few lectures) 

–  Distributed computation (also to be discussed) 

•  See http://mloss.org, “machine learning open source software” 

Software 



Machine learning methodology: 
Cross Validation 



Choosing among several hypotheses 

•  Suppose you are considering between several 
different hypotheses, e.g. 

•  For the SVM, we get one linear classifier for each 
choice of the regularization parameter C 

•  How do you choose between them? 

regression 



General strategy 

Split the data up into three parts: 

Assumes that the available data is randomly allocated to these 
three, e.g. 60/20/20. 



Typical approach 

• Learn	  a	  model	  from	  the	  training	  set	  
(e.g.,	  fix	  a	  C	  and	  learn	  the	  SVM)	  

• 	  Es=mate	  your	  future	  performance	  with	  	  
	  	  	  the	  valida=on	  data	  

This the model you learned. 



More data is better 
With more data you can learn better 

Blue: Observed data   
Red: Predicted curve     
True: Green true distribution 

Compare the predicted curves 



Cross Validation 

Recycle	  the	  data!	  

Use (almost) all of this for training: 



Your	  single	  test	  data	  point	  
Lets	  say	  we	  have	  N data	  points	  
k	  indices	  the	  data	  points,	  i.e.	  k=1...N 

Let	  (xk,yk)	  be	  the	  kth	  example	  

Temporarily	  remove	  (xk,yk)	  from	  the	  
dataset	  

Train on the remaining N-1 data points 

Test your error on (xk,yk)	  	  

Do this for each k=1..N and report the 
average error 

LOOCV (Leave-one-out Cross Validation) 

Once the best parameters (e.g., choice of C for the SVM) are found, re-train 
using all of the training data 



LOOCV (Leave-one-out Cross 

Validation) 
There are N data points.  
Repeat learning N times. 

Notice the test data 
(shown in red) is changing 
each time 



K-fold cross validation 

k-fold 

train validate 
Train on (k - 1) splits Test 

In	  3	  fold	  cross	  valida=on,	  there	  are	  3	  runs.	  
In	  5	  fold	  cross	  valida=on,	  there	  are	  5	  runs.	  
In	  10	  fold	  cross	  valida=on,	  there	  are	  10	  runs.	  

the	  error	  is	  averaged	  over	  all	  runs	  


