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What’s next...

We gave several machine learning algorithms:
— Perceptron
— Linear support vector machine (SVM)

— SVM with kernels, e.g. polynomial or Gaussian

How do we guarantee that the learned classifier will perform well
on test data?

How much training data do we need?



Example: Perceptron applied to spam classification

* Inyour homework, you trained a spam classifier using perceptron
— The training error was always zero
— With few data points, there was a big gap between training error and

test error!
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How much training data do you need?

 Depends on what hypothesis class the learning algorithm considers

* For example, consider a memorization-based learning algorithm

Input: training data S = { (x,, yi) }

Output: function f(x) which, if there exists (x,, y,) in S such that x=x, predicts y,,
and otherwise predicts the majority label

This learning algorithm will always obtain zero training error

But, it will take a huge amount of training data to obtain small test error
(i.e., its generalization performance is horrible)

* Linear classifiers are powerful precisely because of their simplicity

Generalization is easy to guarantee



Roadmap of next two lectures

Generalization of finite hypothesis spaces

VC-dimension

* Will show that linear classifiers need to see approximately d training points,
where d is the dimension of the feature vectors

* Explains the good performance we obtained using perceptron'I||
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Choosing among several classifiers

Suppose Facebook holds a competition for the best face recognition
classifier (+1 if image contains a face, -1 if it doesn’t)

All recent worldwide graduates of machine learning and computer vision

classes decide to co
[H|=
20,000 face recognition algorithms

Facebook gets ba

They evaluate all 20,000 algorithms on m labeled images (not previously
shown to the competitors) and chooses a winner

The winner obtains(98% accuracy pn thes

Facebook already has a face recognition algorithm that is known to be 95%
accurate

— Should they deploy the winner’s algorithm instead?
— Can’trisk doing worse... would be a public relations disaster!

[Fictional example]



A simple setting...

H, SH

consistent
with data

e (Classification
— m data points

— Finite number of possible hypothesis (e.g., 20,000 face
recognition classifiers)

* Alearner finds a hypothesis h that is consistent with
training data
— Gets zero error in training: error,,,..(h) =0

— l.e., assume for now that the winner gets 100% accuracy on the
m labeled images (we’ll handle the 98% case afterward)

 What is the probability that h has more than ¢ true error?

— error,, (h) 2 €



Introduction to probability: outcomes

* An outcome space specifies the possible outcomes that we would
like to reason about, e.g.

Coin toss

- QOBSEH ...

* We specify a probability p(x) for each outcome x such that




Introduction to probability: events

 Aneventis a subset of the outcome space, e.g.

- TR—
{ 0’ @, @ }  0dd die tosses

* The probability of an event is given by the sum of the probabilities
of the outcomes it contains,

p(E) = Z p(x) E.g.. p(E)= p(@) * p(@) * p(@)

zel = 1/2. if fair die

E

O



Introduction to probability: union bound

* P(AorBorCorDor...)
=<P(A)+P(B) +P(C)+P([D) + ...

Q: When is this a tight bound?  A: For disjoint events

(i.e., non-overlapping circles)



Introduction to probability: independence

e Two events A and B are independent if
p(ANB) =p(A)p(B)

Are these events independent?
1
wA(E) = (5)

* Suppose our outcome space had two different die:

— {@h \ ,QQ ’QE}} Y ,@Q } 2 die tosses

62 = 36 outcomes

and each die is (defined to be) independent, i.e.

(@) = @) P @) (@EH = @) r &P



Introduction to probability: independence

 Two events A and B are independent if
p(ANB) = p(A)p(B)

Yes! p(ANB) = p(% y)




A simple setting...

H, SH

consistent
with data

e (Classification
— m data points

— Finite number of possible hypothesis (e.g., 20,000 face
recognition classifiers)

* Alearner finds a hypothesis h that is consistent with
training data
— Gets zero error in training: error,,,..(h) =0

— l.e., assume for now that the winner gets 100% accuracy on the
m labeled images (we’ll handle the 98% case afterward)

 What is the probability that h has more than ¢ true error?

— error,, (h) 2 €



How likely is a bad hypothesis to get
m data points right?

Hypothesis h that is consistent with training data
— got mi.i.d. points right
— h “bad” if it gets all this data right, but has high true error
— What is the probability of this happening?

Probability that h with error,, .(h) = € classifies a randomly drawn data
point correctly:

1. Pr(h gets data point wrong | error ((h) =€) = ¢ E.g., probability of a biased coin coming up tails
2. Pr(h gets data point wrong | error,,.(h) 2 e) 2 ¢

3. Pr(h gets data point right | error,(h) =2 €) = 1 - Pr(h gets data point wrong | error,..(h) 2 €)

<1-¢
Probability that h with error,, .(h) > € gets miid data points correct:

Pr(h gets m jid data points right | error, .(h) 2 €) = (1-¢)™ <e*m

E.g., probability of m biased coins coming up heads



Are we done?
Pr(h gets m jid data points right | error,.(h) 2 ) < e®*m

Says “if h gets m data points correct, then with very high
probablllty (i.e. 1-e*™M) it is close to perfect (i.e., will have
error<e)’

This only considers one hypothesis!

Suppose 1 billion people entered the competition, and
each person submits a random function

For m small enough, one of the functions will classify all
points correctly — but all have very large true error



How likely is learner to pick a bad hypothesis?

Pr(h gets m jid data points right | error,, .(h) 2 €) < e*m

Suppose there are |H_| hypotheses consistent with the training data

— How likely is learner to pick a bad one, i.e. with true error > €?
— We need to a bound that holds for all of them!

P(errory,.(h4) = ¢ OR errory,.(h,) 2 ¢ OR ... OR errory,(hy, ) 2 €)

<> . P(error, (h,) = ¢) < Union bound
< D (1-g)m < bound on individual h;s
< |H|(1-¢)m < |Hel = [H|

< |H| e™me & (1-¢) < e for 0<e<1



Analysis done on blackboard
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Generalization error of finite hypothesis spaces
[Haussler '88]

We just proved the following result:

Theorem: Hypothesis space H finite, dataset D
with mi.i.d. samples, 0 < € <1 :for any
learned hypothesis h that is consistent on the
training data:

P(erroryye(h) >¢€) < |Hle ™



Using 2 PAC bound Argument: Since for all h we know that
P(errorgrye(h) > €) < |H|e ™€

Typically, 2 use cases: ... with probability 1-0 the following
— 1: Pick € and §, compute m holds... (either case 1 or case 2)

— 2: Pick m and 9, compute ¢
Says: we are willing to

_ tolerate a & probability of
p(errortrue(h) > 6) < |I_I|6 e < 0 } having = ¢ error
In (|H|e™™) <In§
In|H| —me <Iné

Case/ \E)ase 5
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m > € >
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Log dependence on |H], € has stronger \
OK if exponential size (but influence than & ¢ shrinks at rate O(1/m)

not doubly)



