Learning theory Lecture 8

David Sontag
New York University

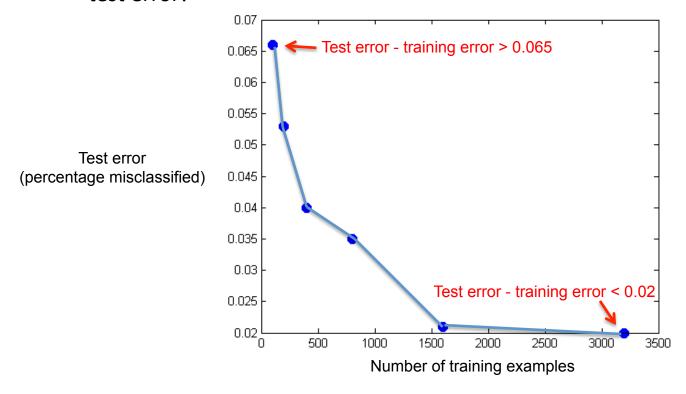
Slides adapted from Carlos Guestrin & Luke Zettlemoyer

What's next...

- We gave several machine learning algorithms:
 - Perceptron
 - Linear support vector machine (SVM)
 - SVM with kernels, e.g. polynomial or Gaussian
- How do we guarantee that the learned classifier will perform well on test data?
- How much training data do we need?

Example: Perceptron applied to spam classification

- In your homework, you trained a spam classifier using perceptron
 - The training error was always zero
 - With few data points, there was a big gap between training error and test error!



How much training data do you need?

- Depends on what hypothesis class the learning algorithm considers
- For example, consider a memorization-based learning algorithm
 - Input: training data $S = \{ (x_i, y_i) \}$
 - Output: function $f(\mathbf{x})$ which, if there exists (\mathbf{x}_i, y_i) in S such that $\mathbf{x} = \mathbf{x}_i$, predicts y_i , and otherwise predicts the majority label
 - This learning algorithm will always obtain zero training error
 - But, it will take a *huge* amount of training data to obtain small test error (i.e., its generalization performance is horrible)
- Linear classifiers are powerful precisely because of their simplicity
 - Generalization is easy to guarantee

Roadmap of next two lectures

1. Generalization of finite hypothesis spaces

2. VC-dimension

Will show that linear classifiers need to see approximately d training points,
 where d is the dimension of the feature vectors

Test error (percentage

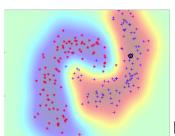
misclassified)

Explains the good performance we obtained using perceptron!!!!

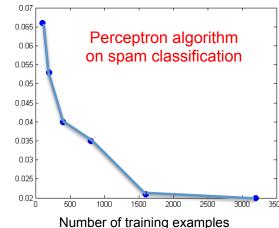
(we had 1899 features)

3. Margin based generalization

 Applies to infinite dimensional feature vectors (e.g., Gaussian kernel)



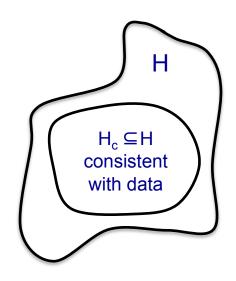
[Figure from Cynthia Rudin]



Choosing among several classifiers

- Suppose Facebook holds a competition for the best face recognition classifier (+1 if image contains a face, -1 if it doesn't)
- All recent worldwide graduates of machine learning and computer vision classes decide to compete
- Facebook gets back 20,000 face recognition algorithms
- They evaluate all 20,000 algorithms on **m** labeled images (not previously shown to the competitors) and chooses a winner
- The winner obtains 98% accuracy on these m images!!.
- Facebook already has a face recognition algorithm that is known to be 95% accurate
 - Should they deploy the winner's algorithm instead?
 - Can't risk doing worse... would be a public relations disaster!

A simple setting...



- Classification
 - m data points
 - Finite number of possible hypothesis (e.g., 20,000 face recognition classifiers)
- A learner finds a hypothesis h that is consistent with training data
 - Gets zero error in training: $error_{train}(h) = 0$
 - I.e., assume for now that the winner gets 100% accuracy on the
 m labeled images (we'll handle the 98% case afterward)
- What is the probability that h has more than ε **true** error?
 - $error_{true}(h) ≥ ε$

Introduction to probability: outcomes

 An outcome space specifies the possible outcomes that we would like to reason about, e.g.

$$\Omega = \{$$
 \emptyset , \emptyset \emptyset \emptyset Coin toss $\Omega = \{$ \emptyset , \emptyset \emptyset \emptyset Die toss

We specify a probability p(x) for each outcome x such that

$$p(x) \ge 0,$$
 $\sum_{x \in \Omega} p(x) = 1$ E.g., $p(x) = 0.6$ $p(x) = 0.4$

Introduction to probability: events

An event is a subset of the outcome space, e.g.

$$\mathbf{E} = \{ \begin{tabular}{c} \b$$

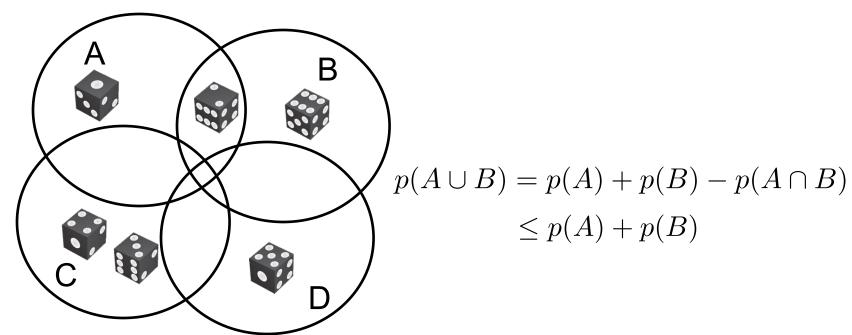
 The probability of an event is given by the sum of the probabilities of the outcomes it contains,

$$p(E) = \sum_{x \in E} p(x)$$
 E.g., p(E) = p(\vec{\pi}) + p(\vec{\pi}) + p(\vec{\pi}) = 1/2, if fair die

Introduction to probability: union bound

P(A or B or C or D or ...)

$$\leq P(A) + P(B) + P(C) + P(D) + ...$$



Q: When is this a tight bound?

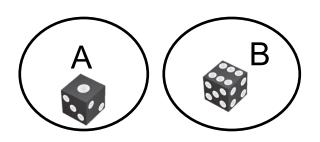
A: For disjoint events

(i.e., non-overlapping circles)

Introduction to probability: independence

Two events A and B are independent if

$$p(A \cap B) = p(A)p(B)$$



Are these events independent?

No!
$$p(A \cap B) = 0$$
 $p(A)p(B) = \left(\frac{1}{6}\right)^2$

Suppose our outcome space had two different die:

$$\Omega = \{ \bigcirc, \bigcirc, \bigcirc, \cdots, \bigcirc \bigcirc \}$$

2 die tosses

 $6^2 = 36$ outcomes

and each die is (defined to be) independent, i.e.

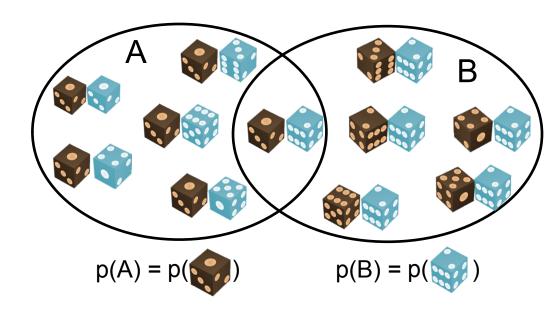
$$p(\bigcirc) = p(\bigcirc) p(\bigcirc)$$

$$p(\bigcirc) = p(\bigcirc) p(\bigcirc)$$

Introduction to probability: independence

Two events A and B are independent if

$$p(A \cap B) = p(A)p(B)$$

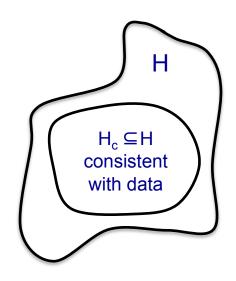


Are these events independent?

Yes!
$$p(A \cap B) = p($$

$$p(A)p(B) = P(P) p(P)$$

A simple setting...



- Classification
 - m data points
 - Finite number of possible hypothesis (e.g., 20,000 face recognition classifiers)
- A learner finds a hypothesis h that is consistent with training data
 - Gets zero error in training: $error_{train}(h) = 0$
 - I.e., assume for now that the winner gets 100% accuracy on the
 m labeled images (we'll handle the 98% case afterward)
- What is the probability that h has more than ε **true** error?
 - $error_{true}(h) ≥ ε$

How likely is a **bad** hypothesis to get *m* data points right?

- Hypothesis h that is consistent with training data
 - got m i.i.d. points right
 - h "bad" if it gets all this data right, but has high true error
 - What is the probability of this happening?
- Probability that h with error_{true}(h) ≥ ε classifies a randomly drawn data point correctly:
 - 1. Pr(h gets data point wrong | error_{true}(h) = ε) = ε E.g., probability of a biased coin coming up tails
 - 2. Pr(h gets data point wrong | error_{true}(h) $\geq \varepsilon$) $\geq \varepsilon$
 - 3. Pr(h gets data point $right \mid error_{true}(h) \ge \varepsilon$) = 1 Pr(h gets data point $wrong \mid error_{true}(h) \ge \varepsilon$) $\le 1 \varepsilon$
- Probability that h with error_{true}(h) $\geq \varepsilon$ gets m iid data points correct:

Pr(h gets m iid data points right | error_{true}(h) $\geq \epsilon$) $\leq (1-\epsilon)^{m} \leq e^{-\epsilon m}$

Are we done?

Pr(h gets m iid data points right | error_{true}(h) $\geq \epsilon$) $\leq e^{-\epsilon m}$

- Says "if h gets m data points correct, then with very high probability (i.e. $1-e^{-\epsilon m}$) it is close to perfect (i.e., will have error $\leq \epsilon$)"
- This only considers one hypothesis!
- Suppose 1 billion people entered the competition, and each person submits a random function
- For m small enough, one of the functions will classify all points correctly – but all have very large true error

How likely is learner to pick a bad hypothesis?

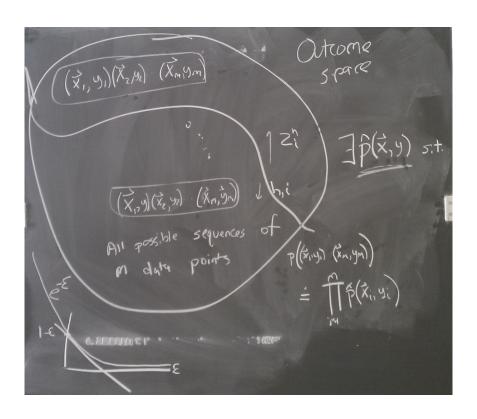
Pr(h gets m *iid* data points right | error_{true}(h) $\geq \epsilon$) $\leq e^{-\epsilon m}$

Suppose there are |H_c| hypotheses consistent with the training data

- − How likely is learner to pick a bad one, i.e. with *true* error $\ge ε$?
- We need to a bound that holds for all of them!

$$\begin{split} P(error_{true}(h_1) & \geq \epsilon \text{ OR error}_{true}(h_2) \geq \epsilon \text{ OR } \dots \text{ OR error}_{true}(h_{|H_c|}) \geq \epsilon) \\ & \leq \sum_k P(error_{true}(h_k) \geq \epsilon) & \leftarrow \text{ Union bound} \\ & \leq \sum_k (1 - \epsilon)^m & \leftarrow \text{ bound on individual } h_j s \\ & \leq |H|(1 - \epsilon)^m & \leftarrow |H_c| \leq |H| \\ & \leq |H| \ e^{-m\epsilon} & \leftarrow (1 - \epsilon) \leq e^{-\epsilon} \text{ for } 0 \leq \epsilon \leq 1 \end{split}$$

Analysis done on blackboard



In(x)=y:]

Z! = Event that h correctly

classies the it data prints

P(MZ!) = MP(Z!) by independence

Event that h classifier all vidata points correctly

error fine(h) > E Means
$$P(Z) \le I = E$$
 $P(MZ!) = MP(Z!) = MP(Z!) = MP(MZ!) = EMP(MZ!) = EMP(MZ!) = EMP(MZ!) = EMP(MZ!)

Let the be the set of hypotheses s.t.

 $A \in A$
 $A$$

Generalization error of finite hypothesis spaces [Haussler '88]

We just proved the following result:

Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\mathsf{error}_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$$

Using a PAC bound

Typically, 2 use cases:

not doubly)

- 1: Pick ε and δ, compute m
- 2: Pick m and δ , compute ϵ

Argument: Since for all h we know that

$$P(\mathsf{error}_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$$

... with probability 1- δ the following holds... (either case 1 or case 2)

$$p(\operatorname{error}_{true}(h) \geq \epsilon) \leq |H| e^{-m\epsilon} \leq \delta \quad \text{Says: we are willing to tolerate a δ probability of having $\geq \epsilon$ error}$$

$$\ln \left(|H| e^{-m\epsilon} \right) \leq \ln \delta \quad \text{In } |H| - m\epsilon \leq \ln \delta$$

$$\operatorname{Case 1} \quad \epsilon \geq \frac{\ln |H| + \ln \frac{1}{\delta}}{\epsilon}$$

$$\epsilon \geq \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$$
 Log dependence on |H|,
$$\epsilon \text{ has stronger}$$
 OK if exponential size (but influence than \$\delta\$
$$\epsilon \text{ shrinks at rate O(1/m)}$$