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A simple setting...

H, SH

consistent
with data

e (Classification
— m data points

— Finite number of possible hypothesis (e.g., 20,000 face
recognition classifiers)

* Alearner finds a hypothesis h that is consistent with
training data
— Gets zero error in training: error,,,..(h) =0

— l.e., assume for now that the winner gets 100% accuracy on the
m labeled images (we’ll handle the 98% case afterward)

 What is the probability that h has more than ¢ true error?

— error,, (h) 2 €



Using 2 PAC bound Argument: Since for all h we know that
P(errorgrye(h) > €) < |H|e ™€

Typically, 2 use cases: ... with probability 1-0 the following
— 1: Pick € and §, compute m holds... (either case 1 or case 2)

— 2: Pick m and 9, compute ¢
Says: we are willing to

_ tolerate a & probability of
p(errortrue(h) > 6) < |I_I|6 e < 0 } having = ¢ error
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Limitations of Haussler ‘88 bound

There may be no consistent hypothesis h (where error,,,;,(h)=0)
Size of hypothesis space

— What if |H| is really big?

— What if it is continuous?
First Goal: Can we get a bound for a learner with error,,; (h) in

training set?



Introduction to probability (continued)

P(Au®)= P(R)+ P(B) - P(ANB)
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[Figures from http://ibscrewed4maths.blogspot.com/]



Introduction to probability (continued)

z!" = Event that h correctly classifies
the i’th data point

= {(Z1,91) - .- (ZmsYm) : h(Z:) = yi}
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A random variable X is a partition of the = wzy: (@i, yi)A(T:) = yil
outcome space B )
- Each disjoint set of outcomes is given a label =D B(E Y1 [h(F) =y

Pr(Z = 1) = Pr({(F1, 1) - .- (T ym) : W(F) = yi})
Pr(Z! =0) = Pr({(Z1,51) . .. (Zom>ym) : (%) # v;}) € Discrete random variable

“Probability that variable X assumes state x”



Introduction to probability (continued)

Notation: Val(X) = set D of all values assumed by variable X

p(X) specifies a distribution: p(X =2x) > 0 Vz € Val(X)
xeVal(X)
X=x is simply an event, so can apply union bound, conditioning, etc.

Two random variables X and Y are independent if:
p(X=2,Y=y)=pX =z)p(Y =y) Vxe Val(X),y € Val(Y)

The expectation of X is defined as: E[X]= > p(X ==z
x€Val(X)

Forexample, E[Z!|= Y  p(Z} =2)z =p(Z!=1)
z€{0,1}



Question: What's the expected error of a
hypothesis?

The probability of a hypothesis incorrectly classifying: Z T, y)1[h(T) # 9]

(Z,y)

We showed that the Z random variables are independent and identically
distributed (i.i.d.) with Pr(Z]" = 0) = >~ j(Z, y)1[h(Z) # ]

(Z,y)

Estimating the true error probability is like estimating the parameter of a
coin!

Chernoff bound: for mi.i.d. coin flips, X,,...,X.,, where X, € {0,1}. For O<e<1:

1
P (H—in > e) < g—2me
m =
Z..

B> X = — S Bl =

True error Observed fraction of
probability points incorrectly classified

(by linearity of expectation)



Generalization bound for |H| hypothesis

Theorem: Hypothesis space H finite, dataset D
with mi.i.d. samples, 0 < e < 1: for any learned
hypothesis h:

2
P (erroriye(h) — errory.qin(h) > €) < |H|e 2™

Why? Same reasoning as before. Use the Union
bound over individual Chernoff bounds



PAC bound and Bias-Variance tradeoff

for all h, with probability at least 1-6:

In|H|+ In %
erroryye(h) < errory,qin(h) + \ 0
2m
\ ]\
) Al
“bias” “variance”

* Forlarge |H|
— low bias (assuming we can find a good h)
— high variance (because bound is looser)

* Forsmall |H]
— high bias (is there a good h?)
— low variance (tighter bound)



PAC bound: How much data?

2
P (erroriye(h) — errorygin(h) > €) < |H|e™2™¢

In|H|+In3

2m

errortrue(h) S errortrain(h) + \

* Given 0,e how big should m be?
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Returning to our example...

Suppose Facebook holds a competition for the best face recognition
classifier (+1 if image contains a face, -1 if it doesn’t)

All recent worldwide graduates of machine learning and computer vision
classes decide to compete

Facebook gets back 20,000 face recognition algorithms

They evaluate all 20,000 algorithms on m labeled images (not previously
shown to the competitors) and chooses a winner

The winner obtains 98% accuracy on these m images!!!

Facebook already has a face recognition algorithm that is known to be 95%
accurate

— Should they deploy the winner’s algorithm instead?
— Can’trisk doing worse... would be a public relations disaster!

[Fictional example]



Returning to our example...

H|=20,000 competitors
errorye (facebook) = .05 M P

In|H|+Ini
errorrqye(h) < errOrtrain(h) + S 0
=.02 error on m = 100 images
the m images
Suppose 6=0.01 and m=100: 02+ \/ln(zo,oogé; In(100) ~ 29
Suppose 6=0.01 and m=10,000: 02+ \/ln(%’(’;’g)ogoln(loo) ~ .047

So, with only ~100 test images, confidence interval too large! Do not deploy!

But, if the competitor’s error is still .02 on m>10,000 images, then
we can say that it is truly better with probability at least 99/100



What about continuous hypothesis spaces?

In |H |

Ing

errOrtrue(h) < errOrtrafin(h) + \
2m

e Continuous hypothesis space:
— |H| =00

— Infinite variance???

* Only care about the maximum number of

points that can be classified exactly!



How many points can a linear boundary classify
exactly? (1-D)

2 Points: Yes!!

..... +_
...... -+
3 Points: No...
++_ .....
+_- .....
...... -++
._+_ .....

etc (8 total)



Shattering and Vapnik—Chervonenkis Dimension

A set of points is shattered by a hypothesis
space H iff:

— For all ways of splitting the examples into
positive and negative subsets

— There exists some consistent hypothesis h

The VC Dimension of H over input space X

— The size of the largest finite subset of X
shattered by H



How many points can a linear boundary classify
exactly? (2-D)

3 Points:  ves!! X \Q ) Ol** {
S gl A

+ = + =
P = &

4 Points: No...

etc.

[Figure from Chris Burges]



How many points can a linear boundary classify
exactly? (d-D)

* Alinear classifier wy+3,_; 4w;x;can represent all assignments
of possible labels to d+1 points

— But not d+2!!
— Thus, VC-dimension of d-dimensional linear classifiers is d+1
— Bias term w, required

— Rule of Thumb: number of parameters in model often
matches max number of points

* Question: Can we get a bound for error in as a function of
the number of points that can be completely labeled?



PAC bound using VC dimension

e VCdimension: number of training points that can be
classified exactly (shattered) by hypothesis space H!!!
— Measures relevant size of hypothesis space

VC(H) (In‘_,g’(’}{) F1) +1n%

m

errortrue(h') < errortrain(h) | \

* Same bias / variance tradeoff as always
— Now, just a function of VC(H)

* Note: all of this theory is for binary classification
— Can be generalized to multi-class and also regression



Examples of VC dimension

VCO(H) (In—-22 -4+ 1)41In%
erroryrye(h) < errortmm(h)—|—$ ( VC(H) ) 0

m

* Linear classifiers:
— VC(H) = d+1, for d features plus constant term b

e SVM with Gaussian Kernel
— VC(H) =

A A
AR B A
B BN
N

oA

[Figure from Chris Burges]



What you need to know

* Finite hypothesis space
— Derive results
— Counting number of hypothesis
— Mistakes on Training data

* Complexity of the classifier depends on number of
points that can be classified exactly
— Finite case — number of hypotheses considered
— Infinite case — VC dimension

e Bias-Variance tradeoff in learning theory



