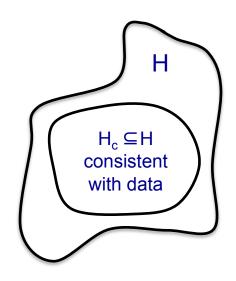
Learning theory Lecture 9

David Sontag
New York University

Slides adapted from Carlos Guestrin & Luke Zettlemoyer

A simple setting...



- Classification
 - m data points
 - Finite number of possible hypothesis (e.g., 20,000 face recognition classifiers)
- A learner finds a hypothesis h that is consistent with training data
 - Gets zero error in training: $error_{train}(h) = 0$
 - I.e., assume for now that the winner gets 100% accuracy on the
 m labeled images (we'll handle the 98% case afterward)
- What is the probability that h has more than ε **true** error?
 - $error_{true}(h) ≥ ε$

Using a PAC bound

Typically, 2 use cases:

- 1: Pick ε and δ, compute m
- 2: Pick m and δ , compute ϵ

Argument: Since for all h we know that

$$P(\mathsf{error}_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$$

... with probability 1- δ the following holds... (either case 1 or case 2)

$$p(\mathrm{error}_{true}(h) \geq \epsilon) \leq |H|e^{-m\epsilon} \leq \delta \quad \text{Says: we are willing to tolerate a δ probability of having \geq ϵ error}$$

$$\ln \left(|H|e^{-m\epsilon}\right) \leq \ln \delta \quad \text{Case 1} \quad \text{Case 2}$$

$$m \geq \frac{\ln |H| + \ln \frac{1}{\delta}}{\epsilon} \quad \epsilon \geq \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$$
 Log dependence on |H|, \$\epsilon\$ has stronger OK if exponential size (but influence than \$\delta\$ in shrinks at rate O(1/m) not doubly)

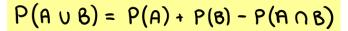
Limitations of Haussler '88 bound

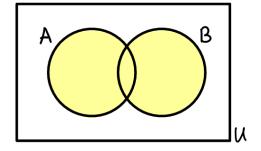
- There may be no consistent hypothesis h (where $error_{train}(h)=0$)
- Size of hypothesis space
 - What if |H| is really big?
 - What if it is continuous?
- First Goal: Can we get a bound for a learner with error_{train}(h) in training set?

Introduction to probability (continued)

U = outcome space

A,B events

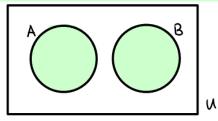




Mutually Exclusive

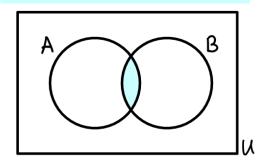
$$P(A \cap B) = O$$

 $P(A \cup B) = P(A) + P(B)$



Independence

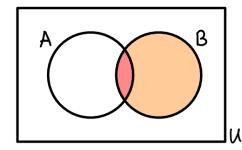
$$P(A \cap B) = P(A)P(B)$$



Condition

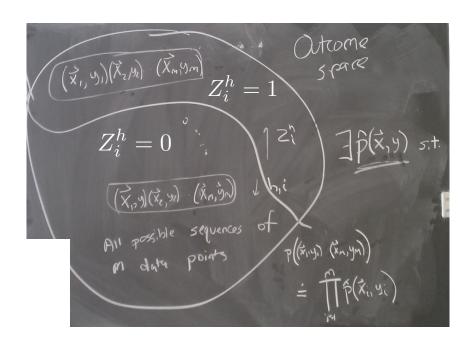
Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$



[Figures from http://ibscrewed4maths.blogspot.com/]

Introduction to probability (continued)



A **random variable** X is a partition of the outcome space

Each disjoint set of outcomes is given a label

$$\Pr(Z_i^h = 1) = \Pr(\{(\vec{x}_1, y_1) \dots (\vec{x}_m, y_m) : h(\vec{x}_i) = y_i\})$$

$$\Pr(Z_i^h = 0) = \Pr(\{(\vec{x}_1, y_1) \dots (\vec{x}_m, y_m) : h(\vec{x}_i) \neq y_i\})$$

 Z_i^h = Event that h correctly classifies the i'th data point

$$= \{ (\vec{x}_1, y_1) \dots (\vec{x}_m, y_m) : h(\vec{x}_i) = y_i \}$$

$$p(Z_i^h) = \sum_{(\vec{x}_1, y_1) \dots (\vec{x}_m, y_m) \in Z_i^h} p((\vec{x}_1, y_1) \dots (\vec{x}_m, y_m))$$

$$= \sum_{(\vec{x}_1, y_1) \dots (\vec{x}_m, y_m)} \left(\prod_{j=1}^m \hat{p}(\vec{x}_j, y_j) \right) 1[h(\vec{x}_i) = y_i]$$

$$= \sum_{\vec{x}_i, y_i} \hat{p}(\vec{x}_i, y_i) 1[h(\vec{x}_i) = y_i]$$

$$= \sum_{\vec{x}_i, y_i} \hat{p}(\vec{x}_i, y_i) 1[h(\vec{x}_i) = y_i]$$

Discrete random variable

"Probability that variable X assumes state x"

Introduction to probability (continued)

Notation: Val(X) = set D of all values assumed by variable X

p(X) specifies a distribution:
$$p(X=x) \geq 0 \ \, \forall x \in \mathrm{Val}(X)$$

$$\sum_{x \in \mathrm{Val}(X)} p(X=x) = 1$$

X=x is simply an event, so can apply union bound, conditioning, etc.

Two random variables **X** and **Y** are **independent** if:

$$p(X = x, Y = y) = p(X = x)p(Y = y) \quad \forall x \in Val(X), y \in Val(Y)$$

The **expectation** of **X** is defined as: $E[X] = \sum_{x \in Val(X)} p(X = x)x$

For example,
$$E[Z_i^h] = \sum_{z \in \{0,1\}} p(Z_i^h = z)z = p(Z_i^h = 1)$$

Question: What's the expected error of a hypothesis?

- The probability of a hypothesis incorrectly classifying: $\sum_{(\vec{x},y)} \hat{p}(\vec{x},y) \mathbb{1}[h(\vec{x}) \neq y]$
- We showed that the Z_i^h random variables are **independent** and **identically distributed** (i.i.d.) with $\Pr(Z_i^h=0)=\sum_{(\vec{x},y)}\hat{p}(\vec{x},y)\mathbb{1}[h(\vec{x})\neq y]$
- Estimating the true error probability is like estimating the parameter of a coin!
- Chernoff bound: for m i.i.d. coin flips, $X_1,...,X_m$, where $X_i \in \{0,1\}$. For $0 < \varepsilon < 1$:

$$P\left(\theta-\frac{1}{m}\sum_{i}x_{i}>\epsilon\right)\leq e^{-2m\epsilon^{2}}$$

$$E[\frac{1}{m}\sum_{i=1}^{m}X_{i}]=\frac{1}{m}\sum_{i=1}^{m}E[X_{i}]=\theta$$
 True error Observed fraction of probability points incorrectly classified (by linearity of expectation)

Generalization bound for |H| hypothesis

Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h:

$$P\left(\operatorname{error}_{true}(h) - \operatorname{error}_{train}(h) > \epsilon\right) \le |H|e^{-2m\epsilon^2}$$

Why? Same reasoning as before. Use the Union bound over individual Chernoff bounds

PAC bound and Bias-Variance tradeoff

for all h, with probability at least 1- δ :

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$
"bias" "variance"

- For large | H |
 - low bias (assuming we can find a good h)
 - high variance (because bound is looser)
- For small | H |
 - high bias (is there a good h?)
 - low variance (tighter bound)

PAC bound: How much data?

$$P\left(\text{error}_{true}(h) - \text{error}_{train}(h) > \epsilon\right) \le |H|e^{-2m\epsilon^2}$$

$$\text{error}_{true}(h) \le \text{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

• Given δ,ϵ how big should m be?

$$m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{1}{\delta} \right)$$

Returning to our example...

- Suppose Facebook holds a competition for the best face recognition classifier (+1 if image contains a face, -1 if it doesn't)
- All recent worldwide graduates of machine learning and computer vision classes decide to compete
- Facebook gets back 20,000 face recognition algorithms
- They evaluate all 20,000 algorithms on **m** labeled images (not previously shown to the competitors) and chooses a winner
- The winner obtains 98% accuracy on these m images!!!
- Facebook already has a face recognition algorithm that is known to be 95% accurate
 - Should they deploy the winner's algorithm instead?
 - Can't risk doing worse... would be a public relations disaster!

[Fictional example]

Returning to our example...

$$\begin{array}{l} \mathrm{error}_{true}(\mathrm{facebook}) = .05 \\ \mathrm{error}_{true}(h) \leq \mathrm{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}} \\ = .02 \ \mathrm{error} \ \mathrm{on} \\ \mathrm{the} \ \mathrm{m} \ \mathrm{images} \end{array}$$

Suppose
$$\delta$$
=0.01 and m=100: $.02 + \sqrt{\frac{\ln(20,000) + \ln(100)}{200}} \approx .29$

Suppose
$$\delta$$
=0.01 and m=10,000: $.02 + \sqrt{\frac{\ln(20,000) + \ln(100)}{20,000}} \approx .047$

So, with only ~100 test images, confidence interval too large! Do not deploy!

But, if the competitor's error is still .02 on m>10,000 images, then we can say that it is truly better with probability at least 99/100

What about continuous hypothesis spaces?

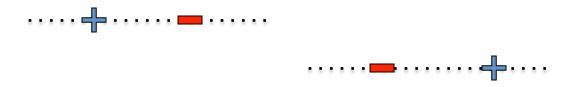
$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

- Continuous hypothesis space:
 - $|H| = \infty$
 - Infinite variance???

 Only care about the maximum number of points that can be classified exactly!

How many points can a linear boundary classify exactly? (1-D)

2 Points: Yes!!



3 Points: No...

Shattering and Vapnik-Chervonenkis Dimension

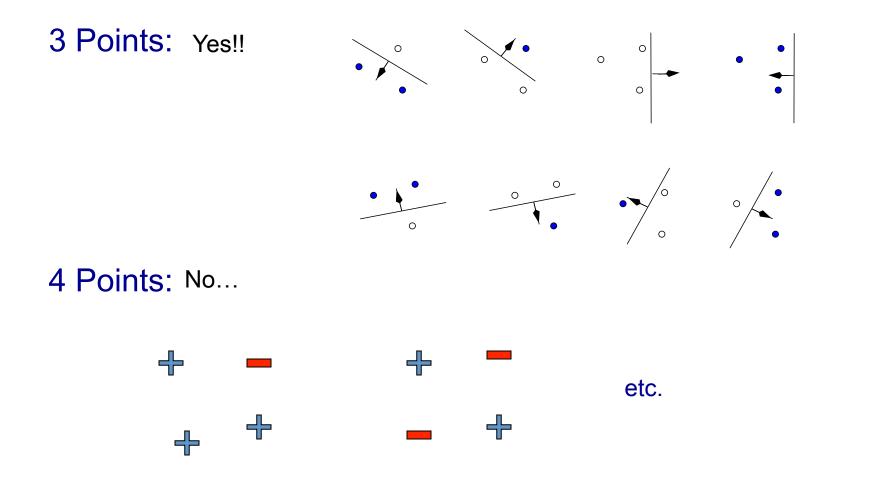
A **set of points** is *shattered* by a hypothesis space H iff:

- For all ways of splitting the examples into positive and negative subsets
- There exists some consistent hypothesis h

The *VC Dimension* of H over input space X

The size of the *largest* finite subset of X shattered by H

How many points can a linear boundary classify exactly? (2-D)



How many points can a linear boundary classify exactly? (d-D)

- A linear classifier $w_0 + \sum_{j=1..d} w_j x_j$ can represent all assignments of possible labels to d+1 points
 - But not d+2!!
 - Thus, VC-dimension of d-dimensional linear classifiers is d+1
 - Bias term w₀ required
 - Rule of Thumb: number of parameters in model often matches max number of points
- Question: Can we get a bound for error in as a function of the number of points that can be completely labeled?

PAC bound using VC dimension

- VC dimension: number of training points that can be classified exactly (shattered) by hypothesis space H!!!
 - Measures relevant size of hypothesis space

$$\mathrm{error}_{true}(h) \leq \mathrm{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}}$$

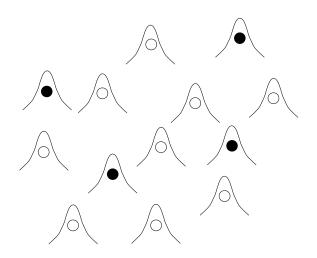
- Same bias / variance tradeoff as always
 - Now, just a function of VC(H)
- Note: all of this theory is for binary classification
 - Can be generalized to multi-class and also regression

Examples of VC dimension

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}}$$

- Linear classifiers:
 - VC(H) = d+1, for d features plus constant term b
- SVM with Gaussian Kernel

$$-VC(H) = \infty$$



What you need to know

- Finite hypothesis space
 - Derive results
 - Counting number of hypothesis
 - Mistakes on Training data
- Complexity of the classifier depends on number of points that can be classified exactly
 - Finite case number of hypotheses considered
 - Infinite case VC dimension
- Bias-Variance tradeoff in learning theory