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What	  about	  con:nuous	  hypothesis	  spaces?	  

•  Con:nuous	  hypothesis	  space:	  	  
– |H|	  =	  ∞	  
–  Infinite	  variance???	  

•  Only	  care	  about	  the	  maximum	  number	  of	  
points	  that	  can	  be	  classified	  exactly!	  



How	  many	  points	  can	  a	  linear	  boundary	  classify	  
exactly?	  (1-‐D)	  

2 Points: 

3 Points: 

etc (8 total) 

Yes!! 

No… 



ShaLering	  and	  Vapnik–Chervonenkis	  Dimension	  

A	  set	  of	  points	  is	  sha$ered	  by	  a	  hypothesis	  
space	  H	  iff:	  

– For	  all	  ways	  of	  spli+ng	  the	  examples	  into	  
posi:ve	  and	  nega:ve	  subsets	  

– There	  exists	  some	  consistent	  hypothesis	  h	  

The	  VC	  Dimension	  of	  H	  over	  input	  space	  X	  
– The	  size	  of	  the	  largest	  finite	  subset	  of	  X	  
shaLered	  by	  H	  



How	  many	  points	  can	  a	  linear	  boundary	  classify	  
exactly?	  (2-‐D)	  

3 Points: 

4 Points: 

Yes!! 

No… 

etc. 

5

Figure 1. Three points in R2, shattered by oriented lines.

2.3. The VC Dimension and the Number of Parameters

The VC dimension thus gives concreteness to the notion of the capacity of a given set
of functions. Intuitively, one might be led to expect that learning machines with many
parameters would have high VC dimension, while learning machines with few parameters
would have low VC dimension. There is a striking counterexample to this, due to E. Levin
and J.S. Denker (Vapnik, 1995): A learning machine with just one parameter, but with
infinite VC dimension (a family of classifiers is said to have infinite VC dimension if it can
shatter l points, no matter how large l). Define the step function θ(x), x ∈ R : {θ(x) =
1 ∀x > 0; θ(x) = −1 ∀x ≤ 0}. Consider the one-parameter family of functions, defined by

f(x, α) ≡ θ(sin(αx)), x, α ∈ R. (4)

You choose some number l, and present me with the task of finding l points that can be
shattered. I choose them to be:

xi = 10−i, i = 1, · · · , l. (5)

You specify any labels you like:

y1, y2, · · · , yl, yi ∈ {−1, 1}. (6)

Then f(α) gives this labeling if I choose α to be

α = π(1 +
l∑

i=1

(1 − yi)10i

2
). (7)

Thus the VC dimension of this machine is infinite.

Interestingly, even though we can shatter an arbitrarily large number of points, we can
also find just four points that cannot be shattered. They simply have to be equally spaced,
and assigned labels as shown in Figure 2. This can be seen as follows: Write the phase at
x1 as φ1 = 2nπ + δ. Then the choice of label y1 = 1 requires 0 < δ < π. The phase at x2,
mod 2π, is 2δ; then y2 = 1 ⇒ 0 < δ < π/2. Similarly, point x3 forces δ > π/3. Then at
x4, π/3 < δ < π/2 implies that f(x4, α) = −1, contrary to the assigned label. These four
points are the analogy, for the set of functions in Eq. (4), of the set of three points lying
along a line, for oriented hyperplanes in Rn. Neither set can be shattered by the chosen
family of functions.

[Figure from Chris Burges] 



How	  many	  points	  can	  a	  linear	  boundary	  classify	  
exactly?	  (d-‐D)	  

•  A	  linear	  classifier	  ∑j=1..dwjxj	  +	  b	  	  can	  represent	  all	  
assignments	  of	  possible	  labels	  to	  d+1	  points	  	  
–  But	  not	  d+2!!	  
–  Thus,	  VC-‐dimension	  of	  d-‐dimensional	  linear	  classifiers	  is	  
d+1	  

–  Bias	  term	  b	  required	  
–  Rule	  of	  Thumb:	  number	  of	  parameters	  in	  model	  o_en	  
matches	  max	  number	  of	  points	  	  

•  Ques:on:	  Can	  we	  get	  a	  bound	  for	  error	  as	  a	  func:on	  of	  
the	  number	  of	  points	  that	  can	  be	  completely	  labeled?	  



PAC	  bound	  using	  VC	  dimension	  

•  VC	  dimension:	  number	  of	  training	  points	  that	  can	  be	  
classified	  exactly	  (shaLered)	  by	  hypothesis	  space	  H!!!	  
–  Measures	  relevant	  size	  of	  hypothesis	  space	  

•  Same	  bias	  /	  variance	  tradeoff	  as	  always	  
–  Now,	  just	  a	  func:on	  of	  VC(H)	  

•  Note:	  all	  of	  this	  theory	  is	  for	  binary	  classifica:on	  
–  Can	  be	  generalized	  to	  mul:-‐class	  and	  also	  regression	  



What	  is	  the	  VC-‐dimension	  of	  rectangle	  
classifiers?	  

•  First,	  show	  that	  there	  are	  4	  points	  that	  can	  be	  
shaLered:	  

•  Then,	  show	  that	  no	  set	  of	  5	  points	  can	  be	  
shaLered:	  

[Figures from Anand Bhaskar, Ilya Sukhar] 
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Anand Bhaskar (ab394), Ilya Sukhar (is56) 4/28/08 (Part 1)

1 VC-dimension

A set system (x, S) consists of a set x along with a collection of subsets of x. A subset containing A ✓ x is
shattered by S if each subset of A can be expressed as the intersection of A with a subset in S.

VC-dimension of a set system is the cardinality of the largest subset of A that can be shattered.

1.1 Rectangles

Let’s try rectangles with horizontal and vertical edges. In order to show that the VC dimension is 4 (in this
case), we need to show two things:

1. There exist 4 points that can be shattered.

It’s clear that capturing just 1 point and all 4 points are both trivial. The figure below shows how we
can capture 2 points and 3 points.

So, yes, there exists an arrangement of 4 points that can be shattered.

2. No set of 5 points can be shattered.

Suppose we have 5 points. A shattering must allow us to select all 5 points and allow us to select 4
points without the 5th.

Our minimum enclosing rectangle that allows us to select all five points is defined by only four points
– one for each edge. So, it is clear that the fifth point must lie either on an edge or on the inside of
the rectangle. This prevents us from selecting four points without the fifth.
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Generaliza:on	  bounds	  using	  VC	  dimension	  

•  Linear	  classifiers:	  	  
– VC(H)	  =	  d+1,	  for	  d	  features	  plus	  constant	  term	  b	  

•  Classifiers	  using	  Gaussian	  Kernel	  
– VC(H)	  =	   29

Figure 11. Gaussian RBF SVMs of sufficiently small width can classify an arbitrarily large number of
training points correctly, and thus have infinite VC dimension

Now we are left with a striking conundrum. Even though their VC dimension is infinite (if
the data is allowed to take all values in RdL), SVM RBFs can have excellent performance
(Schölkopf et al, 1997). A similar story holds for polynomial SVMs. How come?

7. The Generalization Performance of SVMs

In this Section we collect various arguments and bounds relating to the generalization perfor-
mance of SVMs. We start by presenting a family of SVM-like classifiers for which structural
risk minimization can be rigorously implemented, and which will give us some insight as to
why maximizing the margin is so important.

7.1. VC Dimension of Gap Tolerant Classifiers

Consider a family of classifiers (i.e. a set of functions Φ on Rd) which we will call “gap
tolerant classifiers.” A particular classifier φ ∈ Φ is specified by the location and diameter
of a ball in Rd, and by two hyperplanes, with parallel normals, also in Rd. Call the set of
points lying between, but not on, the hyperplanes the “margin set.” The decision functions
φ are defined as follows: points that lie inside the ball, but not in the margin set, are assigned
class {±1}, depending on which side of the margin set they fall. All other points are simply
defined to be “correct”, that is, they are not assigned a class by the classifier, and do not
contribute to any risk. The situation is summarized, for d = 2, in Figure 12. This rather
odd family of classifiers, together with a condition we will impose on how they are trained,
will result in systems very similar to SVMs, and for which structural risk minimization can
be demonstrated. A rigorous discussion is given in the Appendix.

Label the diameter of the ball D and the perpendicular distance between the two hyper-
planes M . The VC dimension is defined as before to be the maximum number of points that
can be shattered by the family, but by “shattered” we mean that the points can occur as
errors in all possible ways (see the Appendix for further discussion). Clearly we can control
the VC dimension of a family of these classifiers by controlling the minimum margin M
and maximum diameter D that members of the family are allowed to assume. For example,
consider the family of gap tolerant classifiers in R2 with diameter D = 2, shown in Figure
12. Those with margin satisfying M ≤ 3/2 can shatter three points; if 3/2 < M < 2, they
can shatter two; and if M ≥ 2, they can shatter only one. Each of these three families of

[Figure from Chris Burges] 
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[Figure from mblondel.org] 

∞ 



Gap	  tolerant	  classifiers	  

•  Suppose	  data	  lies	  in	  Rd	  in	  a	  ball	  of	  diameter	  D	  
•  Consider	  a	  hypothesis	  class	  H	  of	  linear	  classifiers	  that	  can	  only	  

classify	  point	  sets	  with	  margin	  at	  least	  M	  
•  What	  is	  the	  largest	  set	  of	  points	  that	  H	  can	  shaLer?	  

30

classifiers corresponds to one of the sets of classifiers in Figure 4, with just three nested
subsets of functions, and with h1 = 1, h2 = 2, and h3 = 3.

M = 3/2D = 2

Φ=0

Φ=0

Φ=1

Φ=−1
Φ=0

Figure 12. A gap tolerant classifier on data in R2.

These ideas can be used to show how gap tolerant classifiers implement structural risk
minimization. The extension of the above example to spaces of arbitrary dimension is
encapsulated in a (modified) theorem of (Vapnik, 1995):

Theorem 6 For data in Rd, the VC dimension h of gap tolerant classifiers of minimum
margin Mmin and maximum diameter Dmax is bounded above19 by min{!D2

max/M2
min", d}+

1.

For the proof we assume the following lemma, which in (Vapnik, 1979) is held to follow
from symmetry arguments20:

Lemma: Consider n ≤ d + 1 points lying in a ball B ∈ Rd. Let the points be shatterable
by gap tolerant classifiers with margin M . Then in order for M to be maximized, the points
must lie on the vertices of an (n − 1)-dimensional symmetric simplex, and must also lie on
the surface of the ball.

Proof: We need only consider the case where the number of points n satisfies n ≤ d + 1.
(n > d+1 points will not be shatterable, since the VC dimension of oriented hyperplanes in
Rd is d+1, and any distribution of points which can be shattered by a gap tolerant classifier
can also be shattered by an oriented hyperplane; this also shows that h ≤ d + 1). Again we
consider points on a sphere of diameter D, where the sphere itself is of dimension d− 2. We
will need two results from Section 3.3, namely (1) if n is even, we can find a distribution of n
points (the vertices of the (n−1)-dimensional symmetric simplex) which can be shattered by
gap tolerant classifiers if D2

max/M2
min = n−1, and (2) if n is odd, we can find a distribution

of n points which can be so shattered if D2
max/M2

min = (n − 1)2(n + 1)/n2.

If n is even, at most n points can be shattered whenever

n − 1 ≤ D2
max/M2

min < n. (83)

Y=+1 

Y=-1 

Y=0 

Y=0 

Y=0 

Cannot	  shaLer	  these	  points:	  

< M

VC dimension = min

✓
d,

D2

M2

◆
M = 2� = 2

1

||w||
SVM	  a@empts	  to	  
minimize	  ||w||2,	  which	  
minimizes	  VC-‐dimension!!!	  

[Figure from Chris Burges] 
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What	  is	  R=D/2	  for	  the	  Gaussian	  kernel?	  

R = max

x

||�(x)||

= max

x

p
�(x) · �(x)

= max

x

p
K(x, x)

= 1 !!!	  

What	  is	  ||w||2?	   ||w||2 =

✓
2

M

◆2

||w||2 = ||
X

i

↵iyi�(xi)||22

=
X

i

X

j

↵i↵jyiyjK(xi, xj)

[Figure from Chris Burges] 



What	  you	  need	  to	  know	  

•  Finite	  hypothesis	  space	  
–  Derive	  results	  
–  Coun:ng	  number	  of	  hypothesis	  

•  Complexity	  of	  the	  classifier	  depends	  on	  number	  of	  
points	  that	  can	  be	  classified	  exactly	  
–  Finite	  case	  –	  number	  of	  hypotheses	  considered	  
–  Infinite	  case	  –	  VC	  dimension	  

–  VC	  dimension	  of	  gap	  tolerant	  classifiers	  to	  jus:fy	  SVM	  

•  Bias-‐Variance	  tradeoff	  in	  learning	  theory	  


