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Nearest Neighbor Algorithm

* Learning Algorithm:

— Store training examples

* Prediction Algorithm:

— To classify a new example x by finding the training
example (x},y') that is nearest to x

— Guess the classy = V'



K-Nearest Neighbor Methods

e To classify a new input vector x, examine the k-closest training data points to x
and assign the object to the most frequently occurring class
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common values for k: 3, 5



Decision Boundaries

* The nearest neighbor algorithm does not explicitly compute decision
boundaries. However, the decision boundaries form a subset of the Voronoi
diagram for the training data.

I-NN Decision Surf ace

o The more examples that are stored, the more complex the decision boundaries
can become



Misclassification Errors

Example results for k-NN
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[Figures from Hastie and Tibshirani, Chapter 13]
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Nearest Neighbor

When to Consider
— Instance map to points in R"
— Less than 20 attributes per instance
— Lots of training data
Advantages
— Training is very fast
— Learn complex target functions
— Do not lose information
Disadvantages
— Slow at query time
— Easily fooled by irrelevant attributes



Issues

Distance measure
— Most common: Euclidean

Choosing k
— Increasing k reduces variance, increases bias

For high-dimensional space, problem that the nearest
neighbor may not be very close at all!

Memory-based technique. Must make a pass through
the data for each classification. This can be prohibitive
for large data sets.



Distance
 Notation: object with p features

X' =(x',x,...,x)

)

* Most common distance metric is Euclidean distance:
1

de (X', X?) = i(x‘k -x))?

 ED makes sense when different features are commensurate; each is
variable measured in the same units.

« If the features are different, say length and weight, it is not clear.



Normalization of features

Can divide features by them by the standard deviation,
making them all equally important

The estimate for the standard deviation of feature k:
1
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Weighted Euclidean distance

Finally, if we have some idea of the relative importance of
each variable, we can weight them:

1

dwe(i; J) = (zwk(xik - Xi)z)z



k-NN and irrelevant features
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k- NN and |rrelevant features
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Nearest neighbor problem

® Problem: given sample S = ((z1,91), .-, (Tm,Ym)),
find the nearest neighbor of test point .

® general problem extensively studied in computer
science.

® exact vs. approximate algorithms.

® dimensionality N crucial.

® better algorithms for small intrinsic dimension
(e.g., limited doubling dimension).

[Slides from Mehyrar Mohri]



Efficient Indexing: N=2

& Algorithm:
® compute Voronoi diagram in O(mlogm).
® point location data structure to determine NN.

® complexity: O(m)space, O(logm) time.

[Slides from Mehyrar Mohri]



Efficient Indexing: N>2

® Voronoi diagram: size in O(m!"/21).

® Linear algorithm (no pre-processing):
® compute distance ||z — z;|| for all i € [1,m)].
® complexity of distance computation: Q(Nm).

® no additional space needed.

B Tree-based data structures: pre-processing.

® often used in applications:k-d trees (k-dimensional
trees).

[Slides from Mehyrar Mohri]



Efficient Indexing for N>2: KD trees
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Construction algorithm

| Algorithm: for each non-leaf node,
® choose dimension (e.g., longest of hyperrectangle).
® choose pivot (median).

® split node according to (pivot, dimension).

—> balanced tree, binary space partitioning.

[Slides from Mehyrar Mohri]



Efficient Indexing for N>2: KD trees

& Algorithm:

Search algorithm

® find region containing z (starting from root
node, move to child node based on node test). °

® save region point Zo as current best.

® move up tree and recursively search regions /o™

intersecting hypersphere S(z, |z — zo||)

[Slides from Mehyrar Mohri]



Weighted k-NN

Consider the following generalization of the k-NN algorithm (specialized to
binary classification):
k

y(Z) < sign (Z yﬂ(a‘:},f)) with d(7;,7) = —

=1

Weighs the /’th training point’s label by how far x; is from x




k-NN is similar to SVM with Gaussian kernel!

Consider the following generalization of the k-NN algorithm (specialized to
binary classification):
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Looks at all training points (i.e., k=N), but weighs the i’th training point’s
label by how far x; is from x

Now compare this to classification with SVM and a Gaussian kernel:
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The discriminant functions are nearly identical! The SVM has parameters «;
that can be learned



KNN Advantages

* Easy to program

* No optimization or training required

e Classification accuracy can be very good; can
outperform more complex models



