Ensemble learning Lecture 13

David Sontag New York University

Slides adapted from Navneet Goyal, Tan, Steinbach, Kumar, Vibhav Gogate

Ensemble methods

Machine learning competition with a \$1 million prize

Leaderboard

Display top 20 💌 leaders.

Rank	Team Name	Best Score	<u>%</u> Improvement	Last Submit Time
1	The Ensemble	0.8553	10.10	2009-07-26 18:38:2
2	Delinor's Fragmatic Chaos	0.0004	10.09	2009-07-26 18:18:2
Gran	<u>d Prize</u> - RMSE <= 0.8563			
3	Grand Prize Team	0.8571	9.91	2009-07-24 13:07:4
4	Opera Solutions and Vandelay United	0.8573	9.89	2009-07-25 20:05:5
5	Vandelay Industries !	0.8579	9.83	2009-07-26 02:49:5
6	PragmaticTheory	0.8582	9.80	2009-07-12 15:09:5
7	BellKor in BigChaos	0.8590	9.71	2009-07-26 12:57:2
8	Dace	0.8603	9.58	2009-07-24 17:18:4
9	Opera Solutions	0.8611	9.49	2009-07-26 18:02:0
10	BellKor	0.8612	9.48	2009-07-26 17:19:1
11	BigChaos	0.8613	9.47	2009-06-23 23:06:5
12	Feeds2	0.8613	9.47	2009-07-24 20:06:4
Prog	ress Prize 2008 - RMSE = 0.8616 - 1	Winning Team	: BellKor in BigCh	aos
13	xiangliang	0.8633	9.26	2009-07-21 02:04:4
14	Gravity	0.8634	9.25	2009-07-26 15:58:3
15	Ces	0.8642	9.17	2009-07-25 17:42:3
16	Invisible Ideas	0.8644	9.14	2009-07-20 03:26:1
17	Just a guy in a garage	0.8650	9.08	2009-07-22 14:10:4
18	Craig Carmichael	0.8656	9.02	2009-07-25 16:00:5
19	<u>J Dennis Su</u>	0.8658	9.00	2009-03-11 09:41:5
20	acmehill	0.8659	8.99	2009-04-16 06:29:3
Prog	ress Prize 2007 - RMSE = 0.8712 -	Winning Team	: KorBell	

Bias/Variance Tradeoff

Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

Reduce Variance Without Increasing Bias

• Averaging reduces variance:

$$Var(\overline{X}) = \frac{Var(X)}{N}$$

(when predictions are **independent**)

Average models to reduce model variance

One problem:

only one training set

where do multiple models come from?

Bagging: Bootstrap Aggregation

- Leo Breiman (1994)
- Take repeated bootstrap samples from training set
- *Bootstrap sampling*: Given set *D* containing *N* training examples, create *D*' by drawing *N* examples at random with replacement from *D*.
- Bagging:
 - Create *k* bootstrap samples $D_1 \dots D_k$.
 - Train distinct classifier on each D_i .
 - Classify new instance by majority vote / average.

General Idea

Bagging

Training Data

• Sampling with replacement

Data ID											
Original Data	1	2	3	4	5	6	7	8	9	10	
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9	
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2	
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7	

- Build classifier on each bootstrap sample
- Each data point has probability (1 1/n)ⁿ of being selected as test data
- Training data = 1- (1 1/n)ⁿ of the original data

The 0.632 bootstrap

- This method is also called the 0.632 bootstrap
 - A particular training data has a probability of 1-1/n of not being picked
 - Thus its probability of ending up in the test data (not selected) is:

$$\left(1-\frac{1}{n}\right)^n \approx e^{-1} = 0.368$$

 This means the training data will contain approximately 63.2% of the instances

Bagging Example

_decision tree learning algorithm; very similar to ID3

CART decision boundary

100 bagged trees

shades of blue/red indicate strength of vote for particular classification

Example of Bagging

Assume that the training data is:

Goal: find a collection of 10 simple thresholding classifiers that collectively can classify correctly. -Each simple (or weak) classifier is: (x<=K → class = +1 or -1 depending on which value yields the lowest error; where K is determined by entropy minimization)

Random Forests

- Ensemble method specifically designed for decision tree classifiers
- Introduce two sources of randomness: "Bagging" and "Random input vectors"
 - Bagging method: each tree is grown using a bootstrap sample of training data
 - Random vector method: At each node, best split is chosen from a random sample of *m* attributes instead of all attributes

Random Forests

Figure 5.40. Random forests.

Methods for Growing the Trees

- Fix a *m* <= *M*. At each node
 - Method 1:
 - Choose m attributes randomly, compute their information gains, and choose the attribute with the largest gain to split
 - Method 2:
 - (When M is not very large): select L of the attributes randomly. Compute a linear combination of the L attributes using weights generated from [-1,+1] randomly. That is, new A = Sum(Wi*Ai), i=1..L.
 - Method 3:
 - Compute the information gain of all M attributes. Select the top m attributes by information gain. Randomly select one of the m attributes as the splitting node.

Random Forest Algorithm: method 1 in previous slide

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x).$$

Classification: Let $\hat{C}_b(x)$ be the class prediction of the *b*th random-forest tree. Then $\hat{C}^B_{\rm rf}(x) = majority \ vote \ \{\hat{C}_b(x)\}^B_1$.

Reduce Bias² and Decrease Variance?

- Bagging reduces variance by averaging
- Bagging has little effect on bias
- Can we average *and* reduce bias?
- Yes:

Boosting