Expectation Maximization & Regression Lecture 21

David Sontag
New York University

Slides adapted from Carlos Guestrin, Dan Klein, Luke Zettlemoyer, Dan Weld, Vibhav Gogate, and Andrew Moore

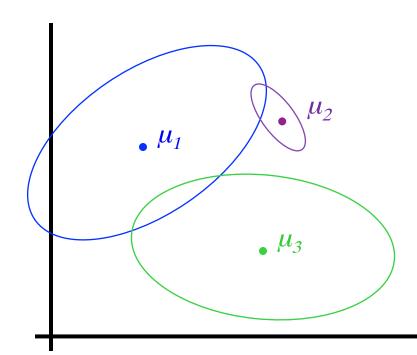
The General GMM assumption

- P(Y): There are k components
- P(X|Y): Each component generates data from a **multivariate** Gaussian with mean μ_i and covariance matrix Σ_i

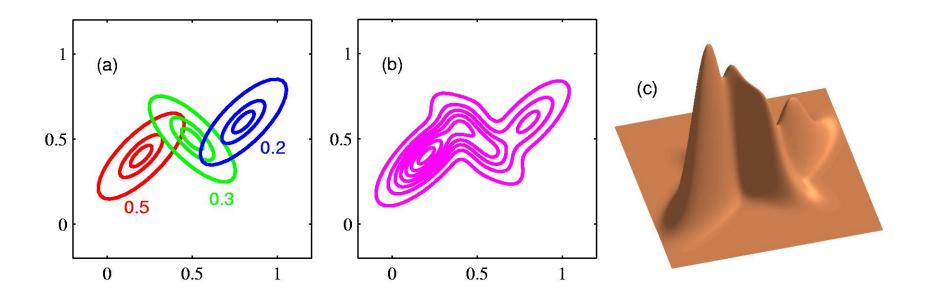
Each data point is sampled from a generative process:

- 1. Choose component i with probability P(y=i)
- 2. Generate datapoint $\sim N(m_i, \Sigma_i)$

Gaussian mixture model (GMM)



Mixtures of Gaussians



E.M. for General GMMs

 $p_k^{(t)}$ is shorthand for estimate of P(y=k) on t'th iteration

Iterate: On the *t*'th iteration let our estimates be

$$\lambda_t = \{ \mu_1^{(t)}, \mu_2^{(t)} \dots \mu_K^{(t)}, \sum_{i=1}^{L} (t), \sum_{i=1}^{L} (t), \sum_{i=1}^{L} (t), p_1^{(t)}, p_2^{(t)} \dots p_K^{(t)} \}$$

E-step

Compute "expected" classes of all datapoints for each class

$$P(Y_j = k | x_j, \lambda_t) \propto p_k^{(t)} p(x_j | \mu_k^{(t)}, \Sigma_k^{(t)})$$
Just evaluate a Gaussian at x_j

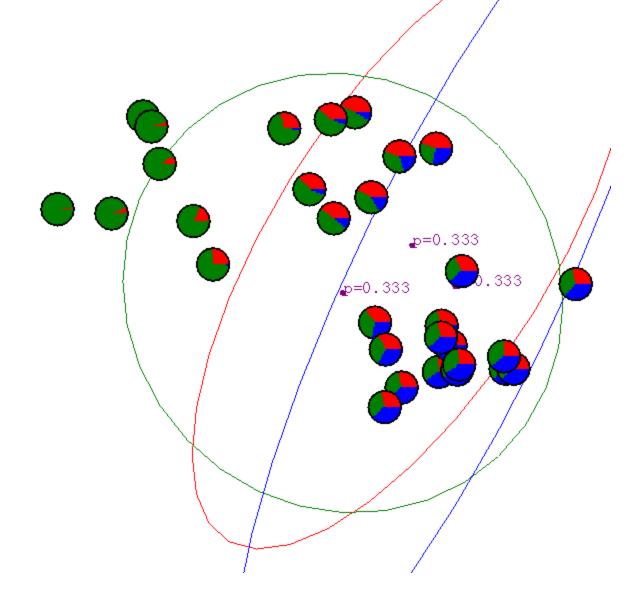
M-step

Compute weighted MLE for μ given expected classes above

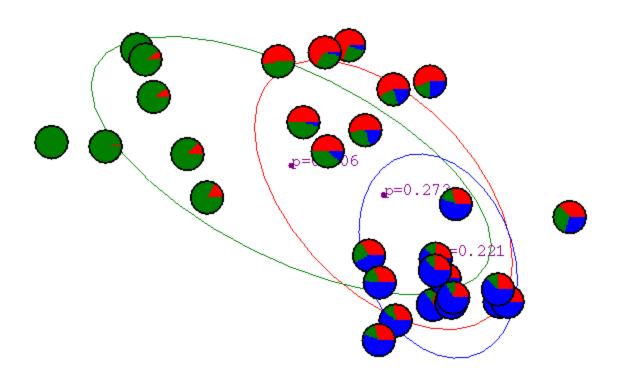
$$\mu_{k}^{(t+1)} = \frac{\sum_{j} P(Y_{j} = k \big| x_{j}, \lambda_{t}) x_{j}}{\sum_{j} P(Y_{j} = k \big| x_{j}, \lambda_{t})} \qquad \sum_{k} \frac{\sum_{j} P(Y_{j} = k \big| x_{j}, \lambda_{t}) \left[x_{j} - \mu_{k}^{(t+1)} \right] \left[x_{j} - \mu_{k}^{(t+1)} \right]^{T}}{\sum_{j} P(Y_{j} = k \big| x_{j}, \lambda_{t})}$$

$$p_{k}^{(t+1)} = \frac{\sum_{j} P(Y_{j} = k \big| x_{j}, \lambda_{t})}{m - m = \text{\#training examples}}$$

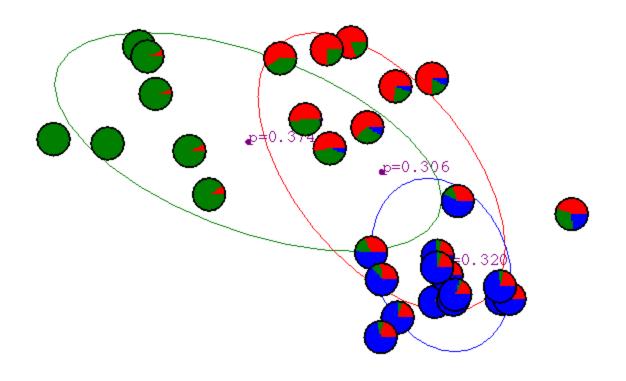
Gaussian Mixture Example: Start



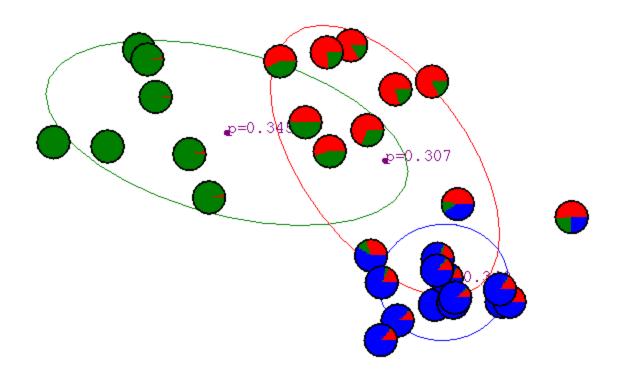
After first iteration



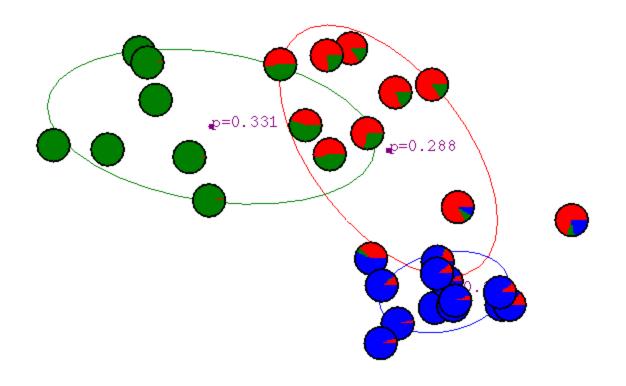
After 2nd iteration



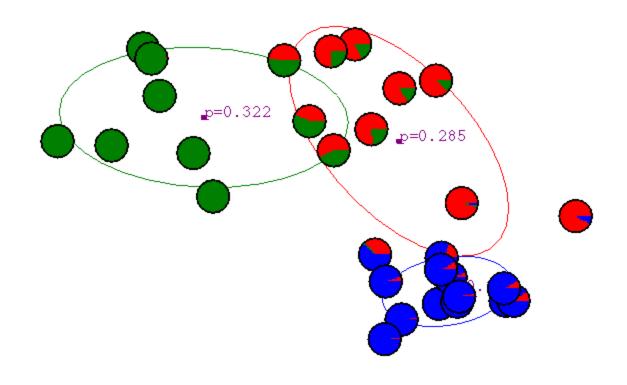
After 3rd iteration



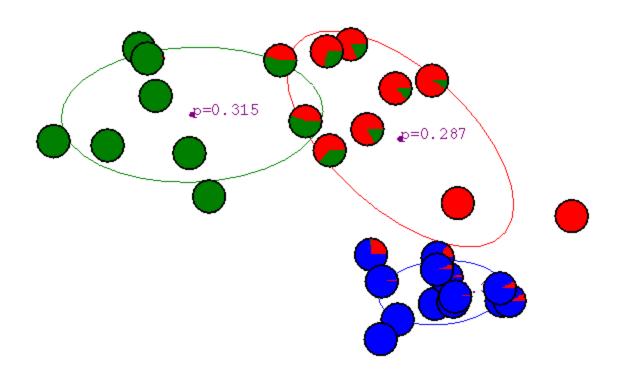
After 4th iteration



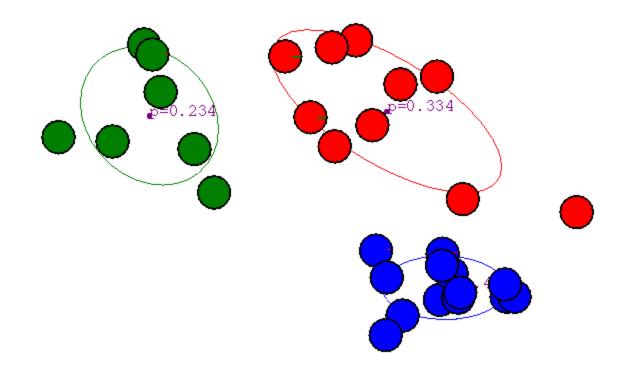
After 5th iteration



After 6th iteration



After 20th iteration



What if we do hard assignments?

Iterate: On the t'th iteration let our estimates be

$$\lambda_t = \{ \mu_1^{(t)}, \mu_2^{(t)} \dots \mu_K^{(t)} \}$$

E-step

Compute "expected" classes of all datapoints

$$P(Y_j = k | x_j, \mu_1 ... \mu_K) \propto \exp\left(-\frac{1}{2\sigma^2} ||x_j - \mu_k||^2\right) P(Y_j = k)$$

M-step

Compute most likely new μ s given class expectations

 δ represents hard assignment to "most likely" or nearest cluster

$$\mu_k = \frac{\sum_{j=1}^m P(Y_j = k | x_j) x_j}{\sum_{j=1}^m P(Y_j = k | x_j)}$$

$$\mu_{k} = \frac{\delta(Y_{j} = k, x_{j}) x_{j}}{\sum_{j=1}^{m} \delta(Y_{j} = k, x_{j})}$$

Equivalent to k-means clustering algorithm!!!

The general learning problem with missing data

Marginal likelihood: X is observed,

Z (e.g. the class labels **Y**) is missing:

$$\ell(\theta : \mathcal{D}) = \log \prod_{j=1}^{m} P(\mathbf{x}_{j} | \theta)$$

$$= \sum_{j=1}^{m} \log P(\mathbf{x}_{j} | \theta)$$

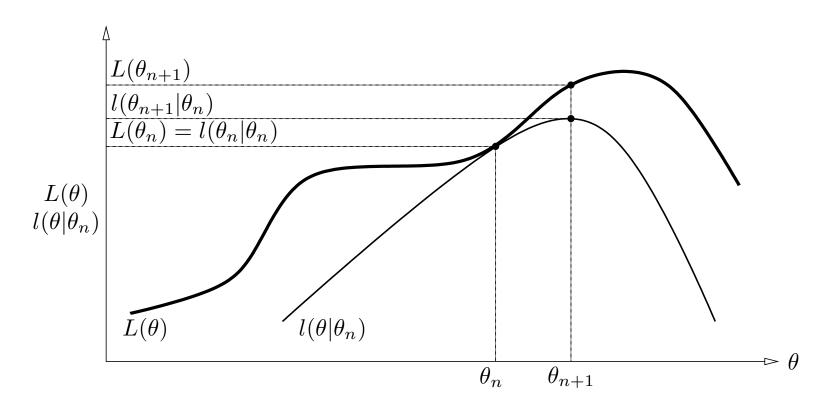
$$= \sum_{j=1}^{m} \log \sum_{\mathbf{z}} P(\mathbf{x}_{j}, \mathbf{z} | \theta)$$

Objective: Find argmax_θ I(θ:Data)

Properties of EM

- We will prove that
 - EM converges to a local maxima
 - Each iteration improves the log-likelihood
- How? (Same as k-means)
 - E-step can never decrease likelihood
 - M-step can never decrease likelihood

EM pictorially



(Figure from tutorial by Sean Borman)

What you should know

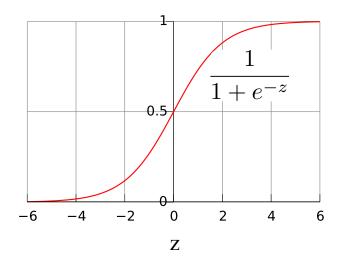
- Mixture of Gaussians
- EM for mixture of Gaussians:
 - Coordinate ascent, just like k-means
 - How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
 - Relation to K-means
 - Hard / soft clustering
 - Probabilistic model
- Remember, E.M. can get stuck in local minima,
 - And empirically it *DOES*

Logistic Regression

Learn P(Y|X) directly!

- Assume a particular functional form
- Sigmoid applied to a linear function of the data:

Logistic function (Sigmoid):



$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

$$P(Y = 0|X) = \frac{\exp(w_0 + \sum_{i=1}^n w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$$

Features can be discrete or continuous!

Naïve Bayes vs. Logistic Regression

Learning: $h:X \mapsto Y$

X – features

Y – target classes

Generative

- Assume functional form for
 - P(X|Y) assume cond indep
 - -P(Y)
 - Est. params from train data
- Gaussian NB for cont. features
- Bayes rule to calc. P(Y|X= x):
 - $P(Y \mid X) \propto P(X \mid Y) P(Y)$
- Indirect computation
 - Can generate a sample of the data
 - Can easily handle missing data

Discriminative

- Assume functional form for
 - P(Y|X) no assumptions
 - Est params from training data
- Handles discrete & cont features

- Directly calculate P(Y|X=x)
 - Can't generate data sample

Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

- Generative vs. Discriminative classifiers
- Asymptotic comparison
 (# training examples → infinity)
 - when model correct
 - NB, Linear Discriminant Analysis (with class independent variances), and Logistic Regression produce identical classifiers
 - when model incorrect
 - LR is less biased does not assume conditional independence
 - therefore LR expected to outperform NB

Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

- Generative vs. Discriminative classifiers
- Non-asymptotic analysis
 - convergence rate of parameter estimates,(n = # of attributes in X)
 - Size of training data to get close to infinite data solution
 - Naïve Bayes needs O(log n) samples
 - Logistic Regression needs O(n) samples
 - Naïve Bayes converges more quickly to its (perhaps less helpful) asymptotic estimates

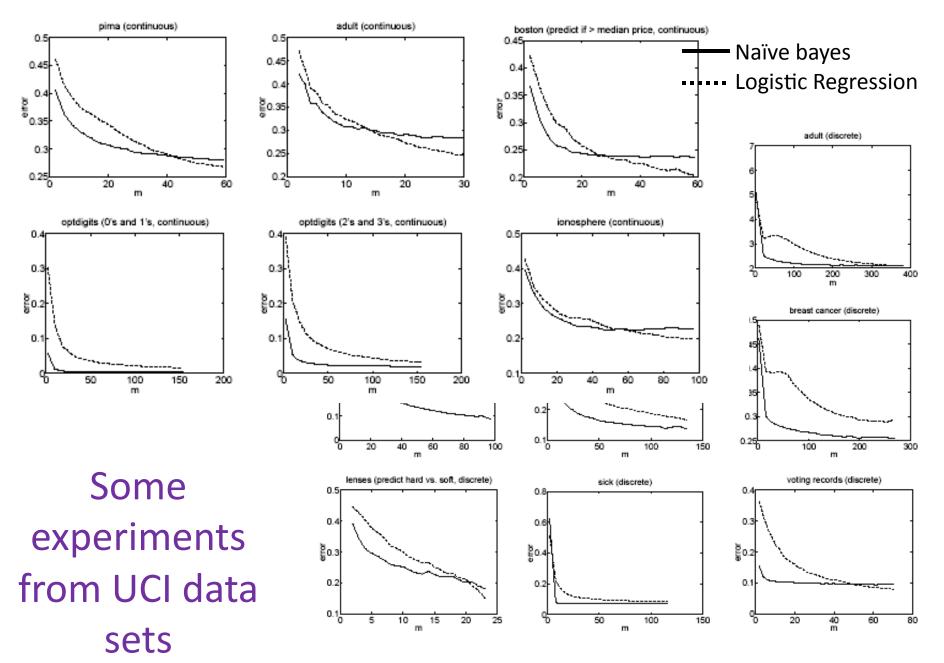


Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning repository. Plots are of generalization error vs. m (averaged over 1000 random train/test splits). Dashed line is logistic regression; solid line is naive Bayes.

Logistic regression for discrete classification

Logistic regression in more general case, where set of possible Y is $\{y_1,...,y_R\}$

Define a weight vector w_i for each y_i, i=1,...,R-1

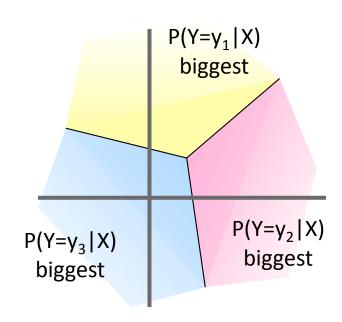
$$P(Y = 1|X) \propto \exp(w_{10} + \sum_{i} w_{1i}X_{i})$$

 $P(Y = 2|X) \propto \exp(w_{20} + \sum_{i} w_{2i}X_{i})$

$$P(Y=2|X) \propto \exp(w_{20} + \sum_{i} w_{2i}X_i)$$

• • •

$$P(Y = r|X) = 1 - \sum_{j=1}^{r-1} P(Y = j|X)$$



Logistic regression for discrete classification

• Logistic regression in more general case, where Y is in the set $\{y_1,...,y_R\}$

for *k*<*R*

$$P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^n w_{ki} X_i)}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^n w_{ji} X_i)}$$

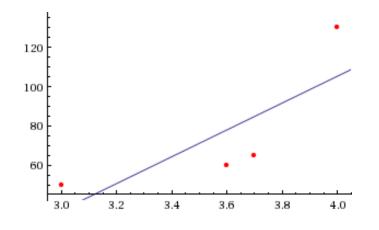
for k=R (normalization, so no weights for this class)

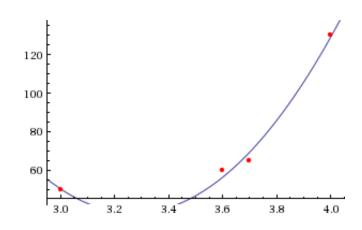
$$P(Y = y_R | X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji} X_i)}$$

Features can be discrete or continuous!

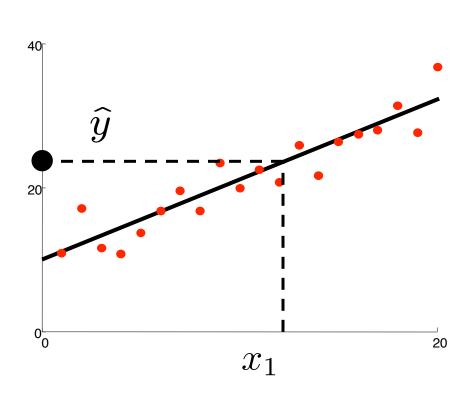
Prediction of continuous variables

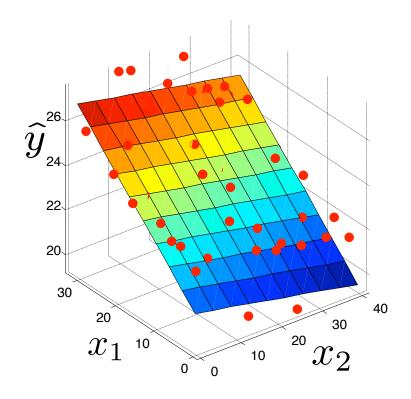
- Billionaire says: Wait, that's not what I meant!
- You say: Chill out, dude.
- He says: I want to predict a continuous variable for continuous inputs: I want to predict salaries from GPA.
- You say: I can regress that...





Linear Regression





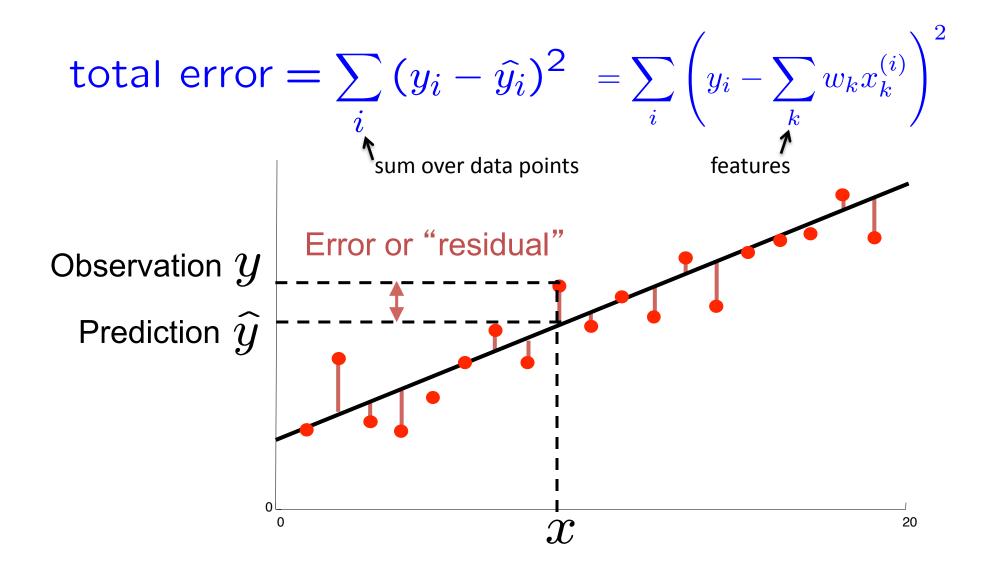
Prediction

$$\hat{y} = w_0 + w_1 x_1$$

Prediction

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2$$

Ordinary Least Squares (OLS)



The regression problem

• Precisely, minimize the residual squared error:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i} \left(y_i - \sum_{k} w_k x_i^k \right)^2$$

Regression: matrix notation

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i} \left(y_i - \sum_{k} w_k x_i^k \right)^2 = \sum_{i} \left(\mathbf{x}_i^T \mathbf{w} - y_i \right)^2$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \underbrace{(\mathbf{H}\mathbf{w} - \mathbf{t})^T (\mathbf{H}\mathbf{w} - \mathbf{t})}_{\text{residual error}}$$

One data point per row

$$\mathbf{H} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \mathbf{x}_N^T \end{bmatrix}$$
 Nobserved outputs weights weights weasurements

Regression solution: simple matrix math

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \underbrace{(\mathbf{H}\mathbf{w} - \mathbf{t})^T (\mathbf{H}\mathbf{w} - \mathbf{t})}_{\text{residual error}}$$

solution:
$$\mathbf{w}^* = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{t} = \mathbf{A}^{-1} \mathbf{b}$$

where
$$\mathbf{A} = \mathbf{H}^{\mathrm{T}}\mathbf{H} = \mathbf{b} = \mathbf{H}^{\mathrm{T}}\mathbf{t} = \mathbf{K} \times \mathbf{K}$$
 matrix of K×1 vector feature correlations

But, why?

- Billionaire (again) says: Why sum squared error???
- You say: Gaussians, Dr. Gateson, Gaussians...
- Model: prediction is deterministic linear function plus Gaussian noise:

$$y_{\text{observed}} = \sum_{k} w_k x_k + \epsilon \qquad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Learn w using MLE:

$$\Pr(y_{\text{observed}} \mid \mathbf{x}, \mathbf{w}, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(y_{\text{observed}} - \sum_k w_k x_k)^2}{2\sigma^2}}$$

Maximizing log-likelihood

Maximize wrt w:

$$\ln P(\mathcal{D} \mid \mathbf{w}, \sigma) = \ln \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{\frac{-\left[t_j - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}{2\sigma^2}}$$

$$\arg \max_w \ln \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N + \sum_{j=1}^N \frac{-\left[t_j - \sum_i w_i h_i(x_j)\right]^2}{2\sigma^2}$$

$$= \arg \max_w \sum_{j=1}^N \frac{-\left[t_j - \sum_i w_i h_i(x_j)\right]^2}{2\sigma^2}$$

$$= \arg \min_w \sum_{j=1}^N [t_j - \sum_i w_i h_i(x_j)]^2$$

$$= \arg \min_w \sum_{j=1}^N [t_j - \sum_i w_j h_i(x_j)]^2$$

$$= \arg \min_w \sum_{j=1}^N [t_j - \sum_i w_j h_i(x_j)]^2$$

$$= \arg \min_w \sum_{j=1}^N [t_j - \sum_i w_j h_i(x_j)]^2$$

Least-squares Linear Regression is MLE for Gaussian noise!!!