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The General GMM assumption

e P(Y): There are k components

e P(X]|Y): Each component generates data from a multivariate
Gaussian with mean p;and covariance matrix 2

Each data point is sampled from a generative process:

1. Choose component i with probability P(y=i)

2. Generate datapoint ¥~ N(m,, %))

Gaussian mixture model
(GMM)
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Mixtures of Gaussians
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E.M. for General GMMS [, 4. oo

. . . estimate of P(y=k) on
Iterate: On the t'th iteration let our estimates be t'th iteration

A= {0, 0 o 0, 200 200 30 p ) p 0 pl0))

E-step
Compute “expected” classes of all datapoints for each class

(1) (1) (1
P(Yj = k‘xj,)»t) x p, p(xj‘/,tk 2 ‘%Z Just evaluate a
Gaussian at X;

M-step

Compute weighted MLE for p given expected classes above
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After first iteration




After 2nd iteration




After 3rd iteration




After 4th iteration




After 5th iteration




After 6th iteration
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After 20th iteration




What if we do hard assignments?

Iterate: On the t'th iteration let our estimates be
}\'t = {’ul(t)’ 'uz(t) “K(t)}
E-step

Compute “expected” classes of all datapoints

1 2
P(Y]. = k‘xj,/,tl.../,LK) x exp(—2(72 ij — MkH )P <& k)

M-step

o represents hard

Compute most likely new ps given class expectations assignment to “most
likely” or nearest

cluster

6(YJ. =k,xj)xj
We = =

215(Yj =k,xj)

i

Equivalent to k-means clustering algorithm!!!



The general learning problem with
missing data
* Marginal likelihood: X is observed,

Z (e.g. the class labels Y) is missing:

¢(0:D) = log ﬁ P(x; | 0)
j=1

m

> log P(x; | 6)
j=1

m

Z IogZP(Xj,z | 0)
=1 z

* Objective: Find argmaxg |(8:Data)



Properties of EM

 We will prove that
— EM converges to a local maxima

— Each iteration improves the log-likelihood

* How? (Same as k-means)
— E-step can never decrease likelihood
— M-step can never decrease likelihood
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(Figure from tutorial by Sean Borman)



What you should know

e Mixture of Gaussians

 EM for mixture of Gaussians:
— Coordinate ascent, just like k-means

— How to “learn” maximum likelihood parameters (locally max. like.) in the case
of unlabeled data

— Relation to K-means
* Hard / soft clustering

* Probabilistic model

e Remember, E.M. can get stuck in local minima,
— And empirically it DOES



Logistic Regression

Logistic function (Sigmoid):

Learn P(Y|X) directly! )

- Assume a particular 1
functional form 1+e7”

o

- Sigmoid applied to a linear
function of the data:

1

14exp(wo + Y, wiX;) Features can be
P(Y =0|X) = exp(wo + Xiz wiXi) discr.ete or
1 +exp(wo+ L1 wiX;) continuous!



Naive Bayes vs. Logistic Regression

Learning: h:X— Y X — features
Y — target classes

Generative Discriminative
 Assume functional form for  Assume functional form for
— P(X]Y) assume cond indep — P(Y|X) no assumptions
— P(Y)
— Est. params from train data — Est params from training data

e Gaussian NB for cont. features ¢ Handles discrete & cont features
e Bayes rule to calc. P(Y|X=x):

— P(Y | X) o< P(X | Y) P(Y)
* Indirect computation e Directly calculate P(Y|X=x)

— Can generate a sample of the data — Can’t generate data sample
— Can easily handle missing data



Naive Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

e Generative vs. Discriminative classifiers

Asymptotic comparison
(# training examples =2 infinity)
— when model correct

* NB, Linear Discriminant Analysis (with class independent
variances), and Logistic Regression produce identical
classifiers

— when model incorrect

e LR is less biased — does not assume conditional
independence

—therefore LR expected to outperform NB



Naive Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

 Generative vs. Discriminative classifiers
* Non-asymptotic analysis
— convergence rate of parameter estimates,
(n = # of attributes in X)
* Size of training data to get close to infinite data solution

* Naive Bayes needs O(log n) samples
 Logistic Regression needs O(n) samples

— Naive Bayes converges more quickly to its (perhaps
less helpful) asymptotic estimates
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Figure 1: Results of 15 experiments on datasets from the UCT Machine Learning
repository. Plots are of generalization error vs. m (averaged over 1000 random
train/test splits). Dashed line is logistic regression; solid line is naive Bayes,



Logistic regression for discrete

classification

Logistic regression in more general case, where
set of possible Yis {y,,...,yr}

Define a weight vector w, for each vy, i=1,...,R-1

P(Y=y,|X)

P(Y = 1|X) x exp(wio + Zwlin')
1 biggest

P(Y = 2|X) o< exp(woo + sz@X@)

\/
r—1 P(Y=y3|X) PE)YfVZ'f)
P(Y=r|X)=1-) P =j|X) biggest e

g=1



Logistic regression for discrete
classification

* Logistic regression in more general case, where
Yisin the set {y,,...,yg}

for k<R
exp(wgo + i wi X;)
1+ 2551 exp(wjo + X g wyiX;)

P(Y = y|X) =

for k=R (normalization, so no weights for this class)

1
1+ Zfz_ll exp(w;o + X1 q w;; X;)

P(Y = yg|X) =

Features can be discrete or continuous!



Prediction of continuous variables

Billionaire says: Wait, that’s not what | meant!
You say: Chill out, dude.

He says: | want to predict a continuous
variable for continuous inputs: | want to
predict salaries from GPA.

You say: | can regress that...




Linear Regression

Prediction Prediction
Y = wo + Wiy Uy = wo + wixr] + waxs



Ordinary Least Squares (OLS)

1

2
total error = Z (y; — g@)Q = Z (yz — Zwkx,(;’)>
) k
7

sum over data points features

. Error or “residual”
Observation Y

Prediction :/g\




The regression problem

* Precisely, minimize the residual squared error:

2
w* = arg m“ifn Z (yZ — Zwkm,1f>
i k



Regression: matrix notation

2

W — argmv‘i;n Z Vi — Zwkxf — Z (x?w — yi)Q
0 k

)

w* = argmin(Hw —t)! (Hw — t)
W\ /
residual error
One data point t =
T h )
per row 2 = Y S
X3 & Y2 o
H = >§ W = K t=1: rg
o 2
) a YN ) _ér
H_J (r;)r

K features weights measurements



Regression solution: simple matrix math

w* = argmin (Hw —t)! (Hw — t)
W Ne——_—
residual error

solution: w* = (H™H) ' H™t = A~ 'b

—_——
A-1 b
where A = H'H :\ b=H"t —
KxK matrix of Kx1 vector

feature correlations



But, why?

* Billionaire (again) says: Why sum squared error???
* You say: Gaussians, Dr. Gateson, Gaussians...

* Model: prediction is deterministic linear function plus
Gaussian noise:

Yobserved — Z WETE + € € ~ N(O, 0'2)
k

* Learn w using MLE:

2
]. — (Yobserved — 2k WkZTE)

PI‘ X. W.O0 ) — (& 202
(yobserved ’ 9 ) O'\/%



Maximizing log-likelihood

Maximize wrt w:

e 202

1 N N —[t;-3; wihi(x]?
In P(D | w,o) = 1In
j=1

1 \" ZN ~lt; — 30 wihi(x)P
| J (RN
arg max In (a ) + 552

—|t; — wh z:)]?
—argmaxz [ - (])] (note that the

notation here is
slightly different)

Least-squares Linear Regression is MLE for Gaussian noise!!!




