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Example application: Tracking

Observe noisy measurements of
missile location: Y,, Y,, ...

Radar

Where is the missile now? Where will it be in 10 seconds?



Probabilistic approach

e Our measurements of the missile location were
Y, Y, 0 Y,

* Let X, be the true <missile location, velocity> at
time t

* To keep this simple, suppose that everything is
discrete, i.e. X, takes the values 1, ..., k
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Probabilistic approach

* First, we specify the conditional distribution
Pr(X, | X.,):

Ny N . . . From basic physics, we can bound
: »e S the distance that the missile can
:: > ¢ have traveled

* Then, we ép;e'ci.f;/ .PE(Yt | X,=<(10,20), 200 mph
toward the northeast>):

With probability %2, Y, = X, (ignoring the velocity). Otherwise, Y, is a
uniformly chosen grid location



1960’s

Hidden Markov models

* Assume that the joint distribution on X; X,, ..., X, and Y, Y,,
..., Y, factors as follows:

Pr(z1,...Tn,y1,-..,Yn) = Pr(x1) Pr(y; | 1) H Pr(zs | x¢—1) Pr(y: | x¢)
t=2

* To find out where the missile is now, we do marginal

inference:
Pr(xn ‘ Y1y - - 7yn)

* To find the most likely trajectory, we do MAP (maximum a
posteriori) inference:

arngXPr(xl,...,:En ! y17---7?/n)



Inference

Recall, to find out where the missile is now, we do marginal

inference: Pr(x
( n | Y1, 7yn) X, X, X, X,
How does one compute this? Yo Y, Y Y,

Applying rule of conditional probability, we have:

Pr(zn, y1,---,Yn)

PI’(.Tn ‘ yla'”ayn) —

Pr(ys, ..., ¥n)
Naively, would seem to require k™! summations, Is there a
more efficient
Pr(xnayla"‘ayn) — Z Pr(a;l)‘"axnayla"‘ayn) algorithm?
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Marginal inference in HMMs

* Use dynamic programming Pr(A=a)=Y Pr(B =bA=a)

Pr(z,,y1,...,yn) = Z Pr(a;n_l,a:nlyl,..;,yn) . b o
Tp_1 Pr(A=d,B=0b) =Pr(A=a)Pr(B=b| A=ad)

= Z Pr(zn_1,91, - Yn—1) Pr(@n, yn | Tn-1,91,- -, Yn—1)

Tn—1 Conditional independence in HMMs
- Z Pr(xn—la Y1y .- 7yn—1> PI‘(CE'n, Yn | xn—l)

ot Pr(A=a,B=b)=Pr(A=a)Pr(B=0| A=a)
= Z Pr(zn—1,91,- s Yn—1) Pr(@pn | Tn—1) Pr(yn | n, Tpn-1)

Tp—1 Conditional independence in HMMs
= Z Pr(zn-1,91,- ., Yn—1) Pr(zn | 2n-1) Pr(yn | z5)

Tn—1

* For n=1, initialize Pr(zy,y1) = Pr(z;) Pr(y; | 1)
e Total running time is O(nk) — linear time! Easy to do filtering



MAP inference in HMMs

* MAP inference in HMMs can also be solved in linear time!
argmax Pr(zy,...x, | y1,...,yn) = argmax Pr(x1, ... Tn,Y1,---,Yn)

= argmax log Pr(x1,...Tn,Y1,---,Yn)
— argmax log | Pr(e1) Pr(yr | 21)| + > log | Pr(z; | @i 1) Pr(y, | z;)
i=2

* Formulate as a shortest paths problem

Weight for edge (s, x,) is Weight for edge (x, ;, X;) is -log [Pr(xi | z_1) Pr(y; | a:z-)]
Path from's to t gives
the MAP assignment

Called the Viterbi algorithm



Applications of HMMs

Speech recognition

— Predict phonemes from the sounds forming words (i.e., the
actual signals)

Natural language processing

— Predict parts of speech (verb, noun, determiner, etc.) from
the words in a sentence

Computational biology
— Predict intron/exon regions from DNA
— Predict protein structure from DNA (locally)

And many many more!



