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Assignments

Last homework assignment released tonight,
due next Thursday (Dec. 5)

Final project write-up due December 15
10 minute presentations (1 per group)

— Part of your grade
— During final exam period, Dec. 17, 10-11:50am

| need 4 groups to volunteer to give their
presentation on Dec. 12



Dimensionality reduction

* |[nput data may have thousands or millions of
dimensions!
— e.g., text data has ???, images have ???

* Dimensionality reduction: represent data with
fewer dimensions
— easier learning — fewer parameters
— visualization — show high dimensional data in 2D

— discover “intrinsic dimensionality” of data
* high dimensional data that is truly lower dimensional
* noise reduction



Dimension reduction

* Assumption: data (approximately) lies on
a lower dimensional space

* Examples:

(D=2
1d=1

Slide from Yi Zhang




Lower dimensional projections

Rather than picking a subset of the features, we can
obtain new ones by combining existing features x, ... x,

2L = wok) + Zw(k) T

New features are linear comblnatlons of old ones
Reduces dimension when k<n

Let’s consider how to do this in the unsupervised
setting
— just X, butnoY



Which projection is better?
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From notes by Andrew Ng



Reminder: Vector Projections

e Basic definitions:
—A.B=|A||B|cos B
—cos 6 = |adj|/|hyp|

A cos6

 Assume |B|=1 (unit vector)
—A.B=|A|cos 6

— So, dot product is length of
projection!!!



Using a new basis for the data

* Project a point into a (lower dimensional) space:
— point: x = (X4,...,X,)
— select a basis — set of unit (length 1) basis vectors

(ug,...,.u,)
e we consider orthonormal basis:
—u;*u;=1, and u;*u=0 for i=|

— select a center — x, defines offset of space

— best coordinates in lower dimensional space
defined by dot-products: (z,,...,2,), z; = (x-X)*u,

k
X'=X+ ) zu
j=1




Maximize variance of projection

Let x0) be the ith data point minus the mean.

Choose unit-length u to maximize:
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Let ||u|]|=1 and maximize. Using the method of Lagrange
multipliers, can show that the solution is given by the principal
eigenvector of the covariance matrix! (shown on board)



Basic PCA algorithm

Start from m by n data matrix X
Recenter: subtract mean from each row of X

— X, < X=X

Compute covariance matrix:

— X< 1/mX_ X,

Find eigen vectors and values of

Principal components: k eigen vectors with
highest eigen values



PCA example — ==x+3% =y

Data: Projection: Reconstruction:
<

(’] <
’ mean .

° First S

S .

\“: eigenvector S
o o o O N O \'\-\
S
" Second °

eigenvector



Dimensionality reduction with PCA

In high-dimensional problem, data usually lies near a linear subspace, as
noise introduces small variability

Only keep data projections onto principal components with large eigenvalues

Can ignore the components of lesser significance.
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You might lose some information, but if the eigenvalues are small, you don’t lose
h
mue Slide from Aarti Singh



Eigenfaces [Turk, Pentland "91]

Principal components:

* Input images:




Eigenfaces reconstruction

* Each image corresponds to adding together
(weighted versions of) the principal

components:




Scaling up

* Covariance matrix can be really big!
— 2isnbyn
— 10000 features can be common!
— finding eigenvectors is very slow...

e Use singular value decomposition (SVD)
— Finds k eigenvectors
— great implementations available, e.g., Matlab svd



SVD

e Write X=WSV'
— X < data matrix, one row per datapoint

—W < weight matrix, one row per datapoint —
coordinate of X' in eigenspace

—S < singular value matrix, diagonal matrix
* in our setting each entry is eigenvalue A,

— V' < singular vector matrix

* in our setting each row is eigenvector \J



PCA using SVD algorithm

Start from m by n data matrix X
Recenter: subtract mean from each row of X
— X, < X-X

Call SVD algorithm on X_ — ask for k singular
vectors

Principal components: k singular vectors with
highest singular values (rows of V')

— Coefficients: project each point onto the new vectors



