
Support Vector Machines & Kernels
Lecture 6

David Sontag

New York University

Slides adapted from Luke Zettlemoyer and Carlos Guestrin,
and Vibhav Gogate

Dual SVM derivation (1) – the linearly
separable case

Original optimization problem:

Lagrangian:

Rewrite
constraints

One Lagrange multiplier
per example

Our goal now is to solve:

Dual SVM derivation (2) – the linearly
 separable case

Swap min and max

Slater’s condition from convex optimization guarantees that
these two optimization problems are equivalent!

(Primal)

(Dual)

Dual SVM derivation (3) – the linearly
 separable case

Can solve for optimal w, b as function of α:

⇥(x) =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

⇤L

⇤w
= w �

⌥

j

�jyjxj

7

(Dual)

Substituting these values back in (and simplifying), we obtain:

(Dual)

Sums over all training examples dot product scalars

Dual SVM derivation (3) – the linearly
 separable case

Can solve for optimal w, b as function of α:

⇥(x) =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

⇤L

⇤w
= w �

⌥

j

�jyjxj

7

So, in dual formulation we will solve for α directly!
•  w and b are computed from α (if needed)

(Dual)

Substituting these values back in (and simplifying), we obtain:

(Dual)

Dual SVM derivation (3) – the linearly
 separable case

Lagrangian:

αj > 0 for some j implies constraint
is tight. We use this to obtain b:

(1)

(2)

(3)

Classification rule using dual solution

Using dual solution

dot product of feature vectors of
new example with support vectors

Dual for the non-separable case

Primal: Solve for w,b,α:

Dual:

What changed?
•  Added upper bound of C on αi!
•  Intuitive explanation:

•  Without slack, αi ∞ when constraints are violated (points
misclassified)

•  Upper bound of C limits the αi, so misclassifications are allowed

Support vectors

•  Complementary slackness conditions:

•  Support vectors: points xj such that
(includes all j such that , but also additional points
where)

•  Note: the SVM dual solution may not be unique!

↵

⇤
j = 0 ^ yj(~w

⇤ · ~xj + b) 1

Dual SVM interpretation: Sparsity

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -

1

w
.x

 +
 b

 =
 0

Support Vectors:
•  αj≥0

Non-support Vectors:
• αj=0
• moving them will not
change w

Final solution tends to
be sparse

• αj=0 for most j

• don’t need to store these
points to compute w or make
predictions

SVM with kernels

•  Never compute features explicitly!!!
–  Compute dot products in closed form

•  O(n2) time in size of dataset to
compute objective
–  much work on speeding up

Predict with:

[Tommi Jaakkola]

Quadratic kernel

Quadratic kernel

[Cynthia Rudin]

Feature mapping given by:

Common kernels

•  Polynomials of degree exactly d

•  Polynomials of degree up to d

•  Gaussian kernels

•  And many others: very active area of research!
(e.g., structured kernels that use dynamic programming
to evaluate, string kernels, …)

Euclidean distance,
squared

Gaussian kernel

[Cynthia Rudin] [mblondel.org]

Support vectors

Level sets, i.e. w.x=r for some r

Kernel algebra

[Justin Domke]

Q: How would you prove that the “Gaussian kernel” is a valid kernel?
A: Expand the Euclidean norm as follows:

Then, apply (e) from above

To see that this is a kernel, use the
Taylor series expansion of the
exponential, together with repeated
application of (a), (b), and (c):

The feature mapping is
infinite dimensional!

Overfitting?

•  Huge feature space with kernels: should we worry about
overfitting?
–  SVM objective seeks a solution with large margin

•  Theory says that large margin leads to good generalization
(we will see this in a couple of lectures)

–  But everything overfits sometimes!!!

–  Can control by:

•  Setting C

•  Choosing a better Kernel

•  Varying parameters of the Kernel (width of Gaussian, etc.)

