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Dual SVM derivation (1) – the linearly 
separable case 

Original optimization problem: 

Lagrangian: 

Rewrite 
constraints 

One Lagrange multiplier 
per example 

Our goal now is to solve: 



Dual SVM derivation (2) –  the linearly 
 separable case 

Swap min and max 

Slater’s condition from convex optimization guarantees that 
these two optimization problems are equivalent! 

(Primal) 

(Dual) 



Dual SVM derivation (3) –  the linearly 
 separable case 

Can solve for optimal w, b as function of α: 
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(Dual) 

 

Substituting these values back in (and simplifying), we obtain: 

(Dual) 

Sums over all training examples dot product scalars 



Dual SVM derivation (3) –  the linearly 
 separable case 
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So, in dual formulation we will solve for α directly! 
•  w and b are computed from α (if needed) 

(Dual) 

 

Substituting these values back in (and simplifying), we obtain: 

(Dual) 



Dual SVM derivation (3) –  the linearly 
 separable case 

Lagrangian: 

αj > 0 for some j implies constraint 
is tight. We use this to obtain b: 

(1) 

(2) 

(3) 



Classification rule using dual solution 

Using dual solution 

dot product of feature vectors of 
new example with support vectors 



Dual for the non-separable case 

Primal: Solve for w,b,α: 

Dual: 

What changed?  
•  Added upper bound of C on αi! 
•  Intuitive explanation:  

•  Without slack, αi  ∞ when constraints are violated (points 
misclassified) 

•  Upper bound of C limits the αi, so misclassifications are allowed    



Support vectors 

•  Complementary slackness conditions: 

•  Support vectors: points xj such that 
(includes all j such that            , but also additional points 
where                                          ) 

•  Note: the SVM dual solution may not be unique! 

↵
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Dual SVM interpretation: Sparsity 
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Support Vectors: 
•  αj≥0 

Non-support Vectors: 
• αj=0 
• moving them will not 
change w 

Final solution tends to 
be sparse 

• αj=0 for most j 

• don’t need to store these 
points to compute w or make 
predictions  



SVM with kernels 

•  Never compute features explicitly!!! 
–  Compute dot products in closed form 

•  O(n2) time in size of dataset to 
compute objective 
–  much work on speeding up 

Predict with: 



[Tommi Jaakkola] 

Quadratic kernel 



Quadratic kernel 

[Cynthia Rudin] 

Feature mapping given by: 



Common kernels 

•  Polynomials of degree exactly d 

•  Polynomials of degree up to d 

•  Gaussian kernels 

•  And many others: very active area of research! 
(e.g., structured kernels that use dynamic programming 
to evaluate, string kernels, …) 

Euclidean distance, 
squared 



Gaussian kernel 

[Cynthia Rudin] [mblondel.org] 

Support vectors 

Level sets, i.e. w.x=r for some r 



Kernel algebra 

[Justin Domke] 

Q: How would you prove that the “Gaussian kernel” is a valid kernel? 
A: Expand the Euclidean norm as follows: 

Then, apply (e) from above 

To see that this is a kernel, use the 
Taylor series expansion of the 
exponential, together with repeated 
application of (a), (b), and (c): 

The feature mapping is 
infinite dimensional! 



Overfitting? 

•  Huge feature space with kernels: should we worry about 
overfitting? 
–  SVM objective seeks a solution with large margin 

•  Theory says that large margin leads to good generalization 
(we will see this in a couple of lectures) 

–  But everything overfits sometimes!!! 

–  Can control by: 

•  Setting C  

•  Choosing a better Kernel 

•  Varying parameters of the Kernel (width of Gaussian, etc.) 


