Learning theory Lecture 9

David Sontag
New York University

Slides adapted from Carlos Guestrin & Luke Zettlemoyer

Introduction to probability: events

An event is a subset of the outcome space, e.g.

$$\mathbf{E} = \{ \begin{tabular}{c} \b$$

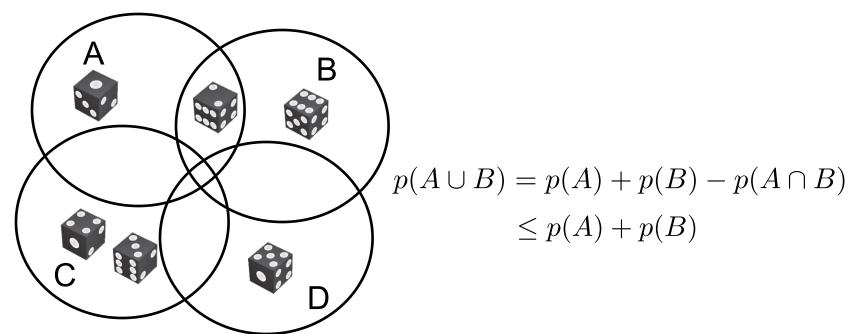
 The probability of an event is given by the sum of the probabilities of the outcomes it contains,

$$p(E) = \sum_{x \in E} p(x)$$
 E.g., p(E) = p(\vec{\pi}) + p(\vec{\pi}) + p(\vec{\pi}) = 1/2, if fair die

Introduction to probability: union bound

P(A or B or C or D or ...)

$$\leq P(A) + P(B) + P(C) + P(D) + ...$$



Q: When is this a tight bound?

A: For disjoint events

(i.e., non-overlapping circles)

Introduction to probability: independence

Two events A and B are independent if

$$p(A \cap B) = p(A)p(B)$$

Suppose our outcome space had two different die:

$$\Omega = \{ \emptyset \emptyset, \emptyset \emptyset, \dots, \emptyset \emptyset \}$$
 2 die tosses

 6^2 = 36 outcomes

and the probability of each outcome is defined as

$$p(p(p)) = a_1 b_1 p(p(p)) = a_1 b_2 \cdots$$

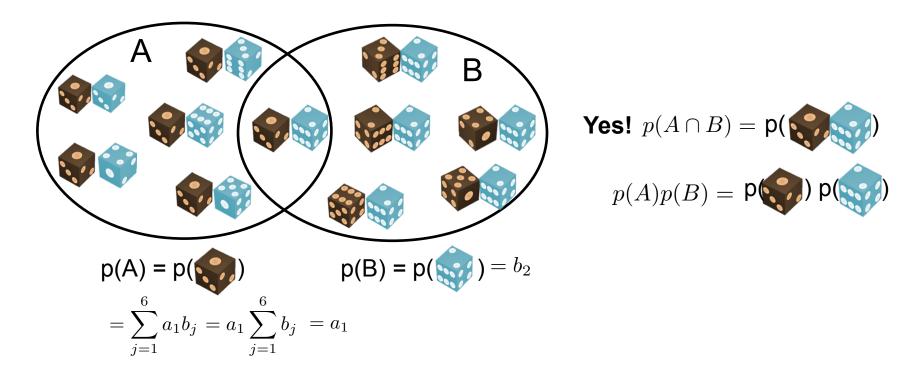
a ₁	a ₂	a ₃	a ₄	a ₅	a ₆
.1	.12	.18	.2	.1	.3
b ₁	b ₂	b ₃	b ₄	b ₅	b ₆
.19	.11	.1	.22	.18	.2

Introduction to probability: independence

Two events A and B are independent if

$$p(A \cap B) = p(A)p(B)$$

Are these events independent?



Introduction to probability: discrete random variables

- A random variable X is a mapping $X : \Omega \to D$
 - D is some set (e.g., the integers)
 - ullet Induces a partition of all outcomes Ω
- For some $x \in D$, we say

$$p(X = x) = p(\{\omega \in \Omega : X(\omega) = x\})$$

"probability that variable X assumes state x"

- Notation: Val(X) = set D of all values assumed by X (will interchangeably call these the "values" or "states" of variable X)
- p(X) is a distribution: $\sum_{x \in Val(X)} p(X = x) = 1$

$$\Omega = \{ \emptyset \emptyset, \emptyset \emptyset, \dots, \emptyset \emptyset \}$$
 2 die tosses

Introduction to probability: discrete random variables

X=x is simply an event, so can apply union bound, etc.

Two random variables **X** and **Y** are **independent** if:

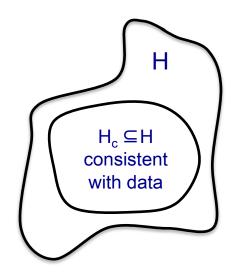
$$p(X = x, Y = y) = p(X = x)p(Y = y) \quad \forall x \in Val(X), y \in Val(Y)$$

The **expectation** of **X** is defined as: $E[X] = \sum_{x \in Val(X)} p(X = x)x$

How big should your validation set be?

- In PS1, you tried many configurations of your algorithms (avg vs. regular perceptron, max # of iterations) and chose the one that had smallest validation error
- Suppose in total you tested | H | = 40 different classifiers on the validation set of m held-out e-mails
- The best classifier obtains 98% accuracy on these m e-mails!!!
- But, what is the true classification accuracy?
- How large does **m** need to be so that we can guarantee that the best configuration (measured on validate) is truly good?

A simple setting...



- Classification
 - m data points
 - Finite number of possible hypothesis (e.g., 40 spam classifiers)
- A learner finds a hypothesis h that is consistent with training data
 - Gets zero error in training: $error_{train}(h) = 0$
 - I.e., assume for now that one of the classifiers gets 100% accuracy on the m e-mails (we'll handle the 98% case afterward)
- What is the probability that h has more than ε **true** error?
 - $error_{true}(h) ≥ ε$

How likely is a **bad** hypothesis to get *m* data points right?

- Hypothesis h that is consistent with validate data
 - got m i.i.d. points right
 - h "bad" if it gets all this data right, but has high true error
 - What is the probability of this happening?
- Probability that h with error_{true}(h) ≥ ε classifies a randomly drawn data point correctly:
 - 1. Pr(h gets data point wrong | error_{true}(h) = ε) = ε E.g., probability of a biased coin coming up tails
 - 2. Pr(h gets data point wrong | error_{true}(h) $\geq \varepsilon$) $\geq \varepsilon$
 - 3. Pr(h gets data point $right \mid error_{true}(h) \ge \varepsilon$) = 1 Pr(h gets data point $wrong \mid error_{true}(h) \ge \varepsilon$) $\le 1 \varepsilon$
- Probability that h with error_{true}(h) $\geq \varepsilon$ gets m iid data points correct:

Pr(h gets m iid data points right | error_{true}(h) $\geq \epsilon$) $\leq (1-\epsilon)^{m} \leq e^{-\epsilon m}$

Are we done?

Pr(h gets m iid data points right | error_{true}(h) $\geq \epsilon$) $\leq e^{-\epsilon m}$

- Says "if h gets m data points correct, then with very high probability (i.e. $1-e^{-\epsilon m}$) it is close to perfect (i.e., will have error $\leq \epsilon$)"
- This only considers one hypothesis!
- Suppose 1 billion classifiers were tried, and each was a random function
- For m small enough, one of the functions will classify all points correctly – but all have very large true error

How likely is learner to pick a bad hypothesis?

Pr(h gets m *iid* data points right | error_{true}(h) $\geq \epsilon$) $\leq e^{-\epsilon m}$

Suppose there are |H_c| hypotheses consistent with the m data points

- How likely is learner to pick a bad one, i.e. with *true* error $\geq \varepsilon$?
- We need a bound that holds for all of them!

$$\begin{split} P(error_{true}(h_1) & \geq \epsilon \text{ OR error}_{true}(h_2) \geq \epsilon \text{ OR } \dots \text{ OR error}_{true}(h_{|H_c|}) \geq \epsilon) \\ & \leq \sum_k P(error_{true}(h_k) \geq \epsilon) & \leftarrow \text{ Union bound} \\ & \leq \sum_k (1 - \epsilon)^m & \leftarrow \text{ bound on individual } h_j s \\ & \leq |H|(1 - \epsilon)^m & \leftarrow |H_c| \leq |H| \\ & \leq |H| e^{-m\epsilon} & \leftarrow (1 - \epsilon) \leq e^{-\epsilon} \text{ for } 0 \leq \epsilon \leq 1 \end{split}$$

Generalization error of finite hypothesis spaces [Haussler '88]

We just proved the following result:

Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\text{error}_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$$

Using a PAC bound

Typically, 2 use cases:

- 1: Pick ε and δ, compute m
- 2: Pick m and δ , compute ϵ

Argument: Since for all h we know that

$$P(\mathsf{error}_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$$

... with probability 1- δ the following holds... (either case 1 or case 2)

Case 2

$$p(\operatorname{error}_{true}(h) \ge \epsilon) \le |H|e^{-m\epsilon} \le \delta$$

Says: we are willing to tolerate a δ probability of having $\geq \epsilon$ error

Case 1 $m \geq \frac{\ln|H| + \ln\frac{1}{\delta}}{\epsilon}$

Log dependence on |H|, OK if exponential size (but not doubly) $\epsilon \geq \frac{\Pi |H| + \Pi \overline{\delta}}{m}$

 ϵ has stronger influence than δ

 ε shrinks at rate O(1/m)

Limitations of Haussler '88 bound

- There may be no consistent hypothesis h (where $error_{train}(h)=0$)
- Size of hypothesis space
 - What if |H| is really big?
 - What if it is continuous?
- First Goal: Can we get a bound for a learner with error_{train}(h) in the data set?

Question: What's the expected error of a hypothesis?

- The probability of a hypothesis incorrectly classifying: $\sum_{(\vec{x},y)} p(\vec{x},y) 1[h(\vec{x}) \neq y]$
- Let's now let Z_i^h be a random variable that takes two values, 1 if h correctly classifies data point i, and 0 otherwise
- The Z variables are **independent** and **identically distributed** (i.i.d.) with

$$\Pr(Z_i^h = 0) = \sum_{(\vec{x}, y)} p(\vec{x}, y) 1[h(\vec{x}) \neq y]$$

- Estimating the true error probability is like estimating the parameter of a coin!
- Chernoff bound: for m i.i.d. coin flips, $X_1,...,X_m$, where $X_i \in \{0,1\}$. For $0 < \varepsilon < 1$:

$$P\left(\theta-\frac{1}{m}\sum_i x_i>\epsilon\right)\leq e^{-2m\epsilon^2}$$

$$E[\frac{1}{m}\sum_{i=1}^m X_i]=\frac{1}{m}\sum_{i=1}^m E[X_i]=\theta$$
 True error Observed fraction of probability points incorrectly classified (by linearity of expectation)

Generalization bound for |H| hypothesis

Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h:

$$\Pr(\operatorname{error}_{true}(h) - \operatorname{error}_{D}(h) > \epsilon) \le |H|e^{-2m\epsilon^{2}}$$

Why? Same reasoning as before. Use the Union bound over individual Chernoff bounds

PAC bound and Bias-Variance tradeoff

for all h, with probability at least 1- δ : $\mathrm{error}_{true}(h) \leq \mathrm{error}_D(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$ "variance"

For large | H |

- low bias (assuming we can find a good h)
- high variance (because bound is looser)

For small | H |

- high bias (is there a good h?)
- low variance (tighter bound)

PAC bound: How much data?

$$\Pr(\operatorname{error}_{true}(h) - \operatorname{error}_{D}(h) > \epsilon) \le |H|e^{-2m\epsilon^{2}}$$

$$\operatorname{error}_{true}(h) \le \operatorname{error}_{D}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

• Given δ,ϵ how big should m be?

$$m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{1}{\delta} \right)$$