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Introduction to probability: events

 Aneventis a subset of the outcome space, e.g.

- TR—
{ 0’ @, @ }  0dd die tosses

* The probability of an event is given by the sum of the probabilities
of the outcomes it contains,

p(E) = Z p(x) E.g.. p(E)= p(@) * p(@) * p(@)

zel = 1/2. if fair die

E

O



Introduction to probability: union bound

* P(AorBorCorDor...)
=<P(A)+P(B) +P(C)+P([D) + ...

Q: When is this a tight bound?  A: For disjoint events

(i.e., non-overlapping circles)



Introduction to probability: independence

 Two events A and B are independent if
p(ANB) = p(A)p(B)

* Suppose our outcome space had two different die:

= {Q@,Q@,Qg, ,@@} 2 die tosses

62 = 36 outcomes

and the probability of each outcome is defined as

D(W) = a4 by p(@@) =a, b,
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Introduction to probability: independence

 Two events A and B are independent if
p(ANB) = p(A)p(B)

* Are these events independent?




Introduction to probability: discrete random
variables

@ A random variable X is a mapping X : Q2 — D

o D is some set (e.g., the integers)
e Induces a partition of all outcomes {2

@ For some x € D, we say
p(X =x) =p({w € Q2 : X(w) = x})

“probability that variable X assumes state x”

@ Notation: Val(X) = set D of all values assumed by X
(will interchangeably call these the “values” or “states” of variable X)

o p(X) is a distribution: >, vy x) P(X = x) =1

Q= {@ ,Qé@‘ ,Q ; ,@ } 2 die tosses



Introduction to probability: discrete random
variables

X=x is simply an event, so can apply union bound, etc.

Two random variables X and Y are independent if:
pX=x,Y=9y)=p(X =x)p(Y =y) Vze Val(X),y € Val(Y)

The expectation of X is defined as: E[X]= > p(X =x)z
x€eVal(X)



How big should your validation set be?

In PS1, you tried many configurations of your algorithms (avg vs.
regular perceptron, max # of iterations) and chose the one that had

smallest validation error

Suppose in total you tested |H|=40 different classifiers on the
validation set of m held-out e-mails

The best classifier obtains 98% accuracy on these m e-mails!!!
But, what is the true classification accuracy?

How large does m need to be so that we can guarantee that the
best configuration (measured on validate) is truly good?



A simple setting...

H, SH

consistent
with data

e Classification
— m data points
— Finite number of possible hypothesis (e.g., 40 spam classifiers)

* Alearner finds a hypothesis h that is consistent with
training data
— Gets zero error in training: error, ,.(h) =0

— l.e., assume for now that one of the classifiers gets 100%
accuracy on the m e-mails (we’ll handle the 98% case afterward)

* What is the probability that h has more than ¢ true error?

— error,,,(h) 2 €



How likely is a bad hypothesis to get
m data points right?

Hypothesis h that is consistent with validate data
— got mi.i.d. points right
— h “bad” if it gets all this data right, but has high true error
— What is the probability of this happening?

Probability that h with error,, .(h) = € classifies a randomly drawn data
point correctly:

1. Pr(h gets data point wrong | error ((h) =€) = ¢ E.g., probability of a biased coin coming up tails
2. Pr(h gets data point wrong | error,,.(h) 2 e) 2 ¢

3. Pr(h gets data point right | error,(h) =2 €) = 1 - Pr(h gets data point wrong | error,..(h) 2 €)

<1-¢
Probability that h with error,, .(h) > € gets miid data points correct:

Pr(h gets m jid data points right | error, .(h) 2 €) = (1-¢)™ <e*m

E.g., probability of m biased coins coming up heads



Are we done?
Pr(h gets m jid data points right | error,.(h) 2 ) < e®*m

Says “if h gets m data points correct, then with very high
probablllty (i.e. 1-e*™M) it is close to perfect (i.e., will have
error<e)’

This only considers one hypothesis!

Suppose 1 billion classifiers were tried, and each was a
random function

For m small enough, one of the functions will classify all
points correctly — but all have very large true error



How likely is learner to pick a bad hypothesis?

Pr(h gets m jid data points right | error,, .(h) 2 €) < e*m

Suppose there are |H_| hypotheses consistent with the m data points

— How likely is learner to pick a bad one, i.e. with true error > €?
— We need a bound that holds for all of them!

P(errory,.(h4) = ¢ OR errory,.(h,) 2 ¢ OR ... OR errory,(hy, ) 2 €)

<> . P(error, (h,) = ¢) < Union bound
< D (1-g)m < bound on individual h;s
< |H|(1-¢)m < |Hel = [H|

< |H| e™me & (1-¢) < e for 0<e<1



Generalization error of finite hypothesis spaces
[Haussler '88]

We just proved the following result:

Theorem: Hypothesis space H finite, dataset D
with mi.i.d. samples, 0 < € <1 :for any
learned hypothesis h that is consistent on the
training data:

P(erroryye(h) >¢€) < |Hle ™



Using 2 PAC bound Argument: Since for all h we know that
P(errorgrye(h) > €) < |H|e ™€

Typically, 2 use cases: ... with probability 1-0 the following
— 1: Pick € and §, compute m holds... (either case 1 or case 2)

— 2: Pick m and 9, compute ¢
Says: we are willing to

—me tolerate a & probability of
p(errortrue(h) > 6) < |I_I|6 < 0 } having 2 ¢ error

e =6 =.01,|H| =40 In (|H|e™™) <In§
Need m > 830 |n|H|_m€§|n5
Case/ \E)ase 2
In|H| + In In|H|+ In
n|H|+In+ n|H|+In5
m > € >
€ o m
Log dependence on |H], € has stronger \
OK if exponential size (but influence than & ¢ shrinks at rate O(1/m)

not doubly)



Limitations of Haussler ‘88 bound

There may be no consistent hypothesis h (where error,,,;,(h)=0)
Size of hypothesis space

— What if |H| is really big?

— What if it is continuous?

First Goal: Can we get a bound for a learner with error, . (h) in the

data set?



Question: What's the expected error of a
hypothesis?

The probability of a hypothesis incorrectly classifying: Y p(& y)1[A(Z) # y]

(Z,y)

Let’s now let Z! be a random variable that takes two values, 1 if h correctly
classifies data point i, and 0 otherwise

The Z variables are independent and identically distributed (i.i.d.) with

Pr(Zl =0) =Y p(&y)1[h(Z) # y|

(Z,y)
Estimating the true error probability is like estimating the parameter of a coin!

Chernoff bound: for m i.i.d. coin flips, X;,...,X,, where X, € {0,1}. For O<e<1:

1
P (Q—in > e) < g—2me
m <
Z..

B> X = — S Bl =

True error Observed fraction of
probability points incorrectly classified

(by linearity of expectation)



Generalization bound for |H| hypothesis

Theorem: Hypothesis space H finite, dataset D
with mi.i.d. samples, 0 < e < 1: for any learned
hypothesis h:

Pr(errory . (h) — errorp(h) > €) < |H\e_2m62

Why? Same reasoning as before. Use the Union
bound over individual Chernoff bounds



PAC bound and Bias-Variance tradeoff

for all h, with probability at least 1-6:

In|H|+1In
erToTsrye(h) < errorp(h) + H d
\ ' |\ '2m I

“bias” “variance”

* Forlarge |H]|
— low bias (assuming we can find a good h)
— high variance (because bound is looser)

* Forsmall |H]
— high bias (is there a good h?)
— low variance (tighter bound)



PAC bound: How much data?

Pr(erroryye(h) —errorp(h) > ¢) < |H\e_2m62

In|H|+ In 3

2m

errorsye(h) < errorp(h) + \/

* Given 0,e how big should m be?

> 1 (In|H|—|—In 1)
m —_— —_—
— €2 )

€




