
Machine Learning Class Notes 9-26-13

Prof. David Sontag

1 Kernel methods & optimization

One example of a kernel that is frequently used in practice and which allows for
highly non-linear discriminant functions is the Gaussian kernel,

exp

(
−‖~x− ~y‖2

2σ2

)

For the Gaussian kernel, k(~x, ~x) = 1 for any vector ~x, and k(~x, ~y) ≈ 0 if x is very
different from y. Thus, a kernel function can be interpreted as a similarity func-
tion. However, not just any similarity function is a valid kernel. In particular,
recall that (by definition) k(~x, ~y) is a valid kernel if and only if ∃φ : X → Rd
s.t. k(~x, ~y) = φ(~x) · φ(~y). One consequence of this is that kernel functions must
be symmetric, since φ(~x) · φ(~y) = φ(~y) · φ(~x).

Today’s lecture will explore these requirements of kernel functions in more
depth, culmunating with Mercer’s theorem. Together, these requirements pro-
vide a mathematical foundation for kernel methods, ensuring both that there is
a sensible feature vector representation for every data point and that the sup-
port vector machine (SVM) objective has a unique global optimum and is easy
to optimize.

1.1 Background from linear algebra

A matrix M ∈ Rd×Rd is said to be positive semi-definite if ∀z ∈ Rd, zTMz ≥
0. For example, suppose M = I. Then,

zT Iz =

d∑
i=1

d∑
j=1

zizjIij =

d∑
i=1

z2,

which is always ≥ 0. Thus, the identify matrix is positive semi-definite. Next
we review several concepts from linear algebra, and then use these to give an
alternative definition of positive semi-definite (PSD) matrices.

Suppose we find a vector ~v and a value λ such that M~v = λ~v. We call ~v
an eigenvector of the matrix M , and λ an eigenvalue. A matrix M can be
shown to be PSD if and only if M has all non-negative eigenvalues. We will
now show one of the directions (⇐). To see this, first write M = V ΛV T , where
Λ is a matrix with the eigenvalues along the diagonal (zero off diagonal) and V
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is the matrix of eigenvectors:1

M = V


λ1 ... 0 0
0 λ2 0 0
0 0 ... 0
0 0 0 λd

V T
Next, we split Λ in two,

M =

V

√
λ1 ... 0 0
0

√
λ2 0 0

0 0 ... 0
0 0 0

√
λd





√
λ1 ... 0 0
0

√
λ2 0 0

0 0 ... 0
0 0 0

√
λd

V T
 = UUT .

Letting v = zTU , since vvT = v · v ≥ 0 we have that (zTU)(UT z) = zTMz ≥ 0,
showing that M is positive semi-definite (we used the fact that the eigenvalues
were non-negative when taking their square root).

1.2 Mercer’s Theorem

For a training set S = {~xi} and a function k(~u,~v), the kernel matrix (also
called the Gram matrix) KS is the matrix of dimension |S|×|S| where (KS)ij =
k(~xi, ~xj).

Theorem 1 (Mercer’s theorem). k(~u,~v) is a valid kernel if and only if the
corresponding kernel matrix is PSD for all training sets S = {~xi}.

Proof. (⇒) Since k(~u,~v) is a valid kernel, it has a corresponding feature map
φ such that k(~u,~v) = φ(~u) · φ(~v). Thus, the kernel matrix Ks has entries
(KS)ij = φ(~xi) · φ(~xj). Let V be the matrix

[
φ(x1) ... φ(xn)

]
, where we

treat φ(xi) as a column vector. Then, we have KS = V TV . However, this
shows that KS must be positive semi-definite, because for any vector z ∈ R|S|,
(zTV T )(V z) ≥ 0.

(⇐) Let S be the set of all possible data points (we will assume that it is
finite). Since the corresponding kernel matrix KS is positive semi-definite, it has
non-negative eigenvalues and can be factored as KS = UUT . Let φ(xi) = ui,
where ui is the i’th row of U . This gives the feature mapping for xi such that
k(xi, xj) = ui · uj .

Mercer’s theorem guarantees for us that the kernel matrix is positive semi-
definite. As we show in the next section, this will guarantee that the SVM dual
objective is concave, which means that it is easy to optimize.

1This proof assumes that M is symmetric, which kernel matrices are.
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Not convex: Convex:

X = {�x ∈ R2 : A�x ≤ b}
Set specified by linear inequalities:

Figure 1: Illustration of a non-convex and two convex sets in R2.

1.3 Convexity

A set X ⊆ Rd is a convex set if for any ~x, ~y ∈ X and 0 ≤ α ≤ 1,

α~x+ (1− α)~y ∈ X
Informally, if for any two points ~x, ~y that are in the set every point on the
line connecting ~x and ~y is also included in the set, then the set is convex. See
Figure 1 for examples of non-convex and convex sets.

A function f : X → R is convex for a convex set X if ∀~x, ~y ∈ X and
0 ≤ α ≤ 1,

f(α~x+ (1− α)~y) ≤ αf(~x) + (1− α)f(~y) (1)

Informally, a function is convex if the line between any two points on the curve
always upper bounds the function. We call a function strictly convex if the
inequality in Eq. 1 is a strict inequality. See See Figure 2 for examples of non-
convex and convex functions. A function f(x) is concave is −f(x) is convex.
Importantly, it can be shown that strictly convex functions always have a unique
minima.

For a function f(x) defined over the real line, one can show that f(x) is

convex if and only if d2

dx2 f ≥ 0 ∀x. Just as before, strict convexity occurs when
the inequality is strict. For example, consider f(x) = x2. The first derivative of

f(x) is given by d
dxf = 2x and its second derivative by d2

dx2 f = 2. Since this is
always strictly greater than 0, we have proven that f(x) = x2 is strictly convex.
As a second example, consider f(x) = log(x). The first derivative is d

dxf = 1
x ,

and its second derivative is given by d2

dx2 f = − 1
x2 . Since this is negative for all

x > 0, we have proven that log(x) is a concave function over R+.

Not convex: Convex:

x

f(x)

x x

f(x)f(x) = x2

Figure 2: Illustration of a non-convex and two convex functions over X = R.
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This matters because optimization for convex functions is easy. In partic-
ular, one can show that nearly any reasonable optimization method, such as
gradient descent (where one starts at arbitrary point, moves a little bit in the
direction opposite to the gradient, and then repeats), is guaranteed to reach a
global optimum of the function. Note that whereas the minimization of convex
functions is easy, likewise, the maximization of concave functions is easy.

Finally, to generalize this second definition of convex functions to higher
dimensions (i.e., X = Rd), we introduce the notion of the Hessian matrix of
a function f ,

∇2f(~x) =


∂2f
∂x2

1
· · · ∂2f

∂x1∂xd

...
...

∂2f
∂xd∂x1

· · · ∂2f
∂x2

d


which is the matrix of dimension d× d with entries (∇2f)ij equal to the partial
derivative of the function with respect to xi and then with respect to xj , denoted
∂2f

∂xi∂xj
. Note that since the order of the partial derivatives does not matter, i.e.

∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

, the Hessian matrix is symmetric.

We are finally ready for our second definition of convex functions in higher
dimension. A function f : X → R is convex for a convex set X ⊆ Rd if and
only if its Hessian matrix ∇2f(~x) is positive semi-definite for all ~x ∈ X .

1.4 The dual SVM objective is concave

Recall the dual of the support vector machine (SVM) objective,

f(~α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi, xj) (2)

The first partial derivative is given by

∂f

∂αs
= 1−

∑
i 6=s

αiyiysk(xi, xs)− αsk(xs, xs)

The second partial derivative is given by

∂2f

∂αt∂αs
= −ytysk(xt, xs)

Denote the Hessian matrix as ∇2f . To show that the dual SVM objective is

concave, we must show that ~αT∇2f~α =
∑n
i=1

∑n
j=1 αiαj

∂2f
∂αi∂αj

≤ 0 for all ~α,

which can be equivalently written as

n∑
i=1

n∑
j=1

(αiyi)(αjyj)k(xi, xj) ≥ 0. (3)
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Coordinate descent:

f(x, y) = 10

f(x, y) = 8

Figure 3: Illustration of coordinate descent on the function f(x, y). Shown here
are the level sets of the function. The numbers indicate the first point, the
second point, etc., until the optimal solution is found.

However, since k(~u,~v) is a valid kernel, Mercer’s theorem guarantees for us that
KS , the kernel matrix for the n data points, is positive semi-definite. As a
result, we have that

~zTKS~z =

n∑
i=1

n∑
j=1

zizjk(xi, xj) ≥ 0 (4)

for all vectors ~z ∈ Rn. Given any ~α, let ~z be given by zi = αiyi for i = 1, . . . , n.
Using this, Eq. 4 implies Eq. 3.

There are many approaches for minimizing f(~α). One of the simplest such
methods is called the sequential minimal optimization (SMO) algorithm, and
is based on the concept of block coordinate descent. Coordinate descent is
illustrated in Fig. 3 for a function defined on R2. An arbitrary starting point is
chosen. Then, in each step, one coordinate (or, in general, a set of coordinates,
called a block) is chosen and the function is minimized as much as possible with
respect to that coordinate (keeping all other variables fixed to their current
values).

The larger the blocks, the faster the convergence to the optimum solution.
The blocks are typically chosen to be as large as possible such that minimizing
the function with respect to these coordinates can be performed in closed form.
For the dual SVM, because of the constraint

∑
i yiαi = 0, the smallest block size

that can be chosen is 2. The algorithm proceeds by choosing in each iteration
αi and αj , then minimizing the function as much as possible with respect to
these two variables.
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