
CSCI-UA.0480-007 Problem Set 2 1

Introduction to Machine Learning, Spring 2016

Problem Set 2: Support vector machines
Due: Monday, February 15, 2016 at 10pm (uploaded to NYU Classes.)

Your submission should include a PDF file called “solutions.pdf” with your answers
to the below questions (including plots), and all of the code that you write.

Important: See problem set policy on the course web site.

1. Consider a (hard margin) support vector machine and the following training data from two
classes:

+1 : (2, 2) (4, 4) (4, 0)

−1 : (0, 0) (2, 0) (0, 2)

(a) Plot these six training points, and construct by inspection the weight vector for the
optimal hyperplane. In your solution, specify the hyperplane in terms of ~w and b
such that w1x1 +w2x2 + b = 0. Calculate what the margin is (i.e., 2γ, where γ is the
distance from the hyperplane to its closest data point), showing all of your work.

(b) What are the support vectors? Explain why.

2. Show that, irrespective of the dimensionality of the data space, a data set consisting of
just two data points (call them ~x1 and ~x2), one from each class, is sufficient to determine
the maximum-margin hyperplane. Fully explain your answer, including giving an explicit
formula for the solution to the hard margin SVM (i.e., ~w) as a function of ~x1 and ~x2.

3. Instructions. You may use the programming language of your choice (we recommend
Python, and using matplotlib for plotting). However, you are not permitted to use or
reference any machine learning code or packages not written by yourself.

In this question, you will implement the Pegasos algorithm [1] to optimize the SVM ob-
jective using stochastic sub-gradient descent and revisit the spam data. To be consistent
with the paper, this question uses the following form of the SVM objective: λ

2 ‖w‖
2 +

1
m

∑m
i=1 max{0, 1 − yi(w · xi)}. This can be seen to be equivalent to the optimization

problem given in class and lab, 1
2‖w‖

2 + C
∑m
i=1 max{0, 1− yi(w · xi)}, when C = 1/mλ

(after which they only differ by a multiplicative constant).

Initialize: Choose w1 = 0, t = 0.
1. For iter = 1, 2, · · · , 20
2. For j = 1, 2, · · · , |data|
3. t = t+ 1; ηt = 1

tλ
5. If yj(wt · xj) < 1
6. wt+1 = (1− ηtλ)wt + ηtyjxj
7. Else
8. wt+1 = (1− ηtλ)wt

8. Output: wt+1

CSCI-UA.0480-007 Problem Set 2 2

We use the identical setting as in the problem set 1. Split the data in spam train.txt into
a training and validate set, putting the last 1000 emails into the validation set. Transform
all of the data into feature vectors. Build a vocabulary list using only the 4000 e-mail
training set by finding all words that occur across the training set. Ignore all words that
appear in fewer than X = 30 e-mails of the 4000 e-mail training set. For each email,
transform it into a feature vector ~x where the ith entry, xi, is 1 if the ith word in the
vocabulary occurs in the email, and 0 otherwise.

Note: To keep your algorithm simple, we will not use an offset term b when optimizing the
SVM primal objective using Pegasos.

(a) Implement the function pegasos svm train(data, lambda). The function should
return w, the final classification vector. For simplicity, the stopping criterion is set so
that the total number of passes over the training data is 20. After each pass through
the data, evaluate the SVM objective f(wt) = λ

2 ‖wt‖2+ 1
m

∑m
i=1 max{0, 1−yi(wt·xi)}

and store its value (m = |data|). Plot f(wt) as a function of iteration (i.e. for
t = |data|, . . . , 20|data|), and submit the plot for λ = 2−5.

(b) Implement the function pegasos svm test(data, w).

(c) Run your learning algorithm for various values of the regularization constant, λ =
2−9, 2−8, · · · , 21. Plot the average training error, average hinge loss of the training
samples (i.e. 1

m

∑m
i=1 max{0, 1−yi(w·xi)}), and average validation error as a function

of log2 λ. You should expect that the hinge loss upper-bounds the training error.
What is the minimum of your validation error? For the classifier that has the smallest
validate error: What is the test error? How many training samples are support
vectors? How did you find them? Compare your test error with your result from
problem set 1.

Note: Using a smaller value of X such as 0 (i.e., not filtering the vocabulary) would give
even better results (the SVM’s regularization prevents overfitting). If you try this, we
recommend you use sparse matrices (e.g., with Python’s scipy.sparse) as the feature
vectors will be large but sparse and this will improve efficiency.

4. The multi-class SVM generalizes the binary SVM to multi-class classification. This involves
introducing a weight vector ~w(k) and b(k) for each class k = 1, . . . ,K (where K is the
number of classes). Learning solves the following optimization problem, where there is still
only one slack variable ξj for each data point, but now there are K − 1 constraints per
data point:

min
{~w(k),b(k)}

K∑
k=1

||~w(k)||22 + C
∑
j

ξj

subject to

~w(yj) · ~xj + b(yj) ≥ ~w(k) · ~xj + b(k) + 1− ξj ∀j and k 6= yj

ξj ≥ 0 ∀j.

Prediction for a new data point ~x is performed using the rule

ŷ ← arg max
k

~w(k) · ~x+ b(k).

This problem compares the binary prediction rule sign(~w·~x+b) to the multi-class prediction
rule in the case that K = 2, and shows how to reduce between the two of them.

CSCI-UA.0480-007 Problem Set 2 3

(a) Demonstrate ~w and b as a function of ~w(1), b(1), ~w(2) and b(2) such that the predictions
made for all data points ~x using the new binary prediction rule are the same as what
would have been made using the multi-class prediction rule with ~w(1), b(1), ~w(2).

(b) Next you should show the converse. Given ~w and b, demonstrate ~w(1), b(1), ~w(2) and
b(2) (as a function of ~w and b) such that the predictions made for all data points
~x using the multi-class prediction rule are the same as what would have been made
using the binary prediction rule with ~w and b.

As always, you must show all of your work to obtain full credit.

References

[1] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal estimated
sub-gradient solver for SVM. Mathematical Programming, 127(1):3–30, 2011.

