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Introduction to Machine Learning, Spring 2016

Problem Set 3: Kernel methods
Due: Wednesday, February 24, 2016 at 10pm (upload to NYU Classes.)

Important: See problem set policy on the course web site.

Instructions. You may use the programming language of your choice (we strongly recommend
using Python). However, you are not permitted to use or reference any machine learning code
or packages not written by yourself, except for question 2(c)-(f). Your answers to the below,
plots, and all code that you write for this assignment should be uploaded to NYU Classes.

1. Kernels

(a) For any two documents x and z, define k(x, z) to equal the number of unique words
that occur in both x and z (i.e., the size of the intersection of the sets of words in the
two documents). Is this function a kernel? Justify your answer. (Hint: k(x, z) is a
kernel if there exists φ(x) such that k(x, z) = φ(x)Tφ(z)).

(b) Assuming that ~x = [x1, x2], ~z = [z1, z2] (i.e., both vectors are two-dimensional) and
β > 0, show that the following is a kernel:

kβ(~x, ~z) = (1 + β~x · ~z)2 − 1

Do so by demonstrating a feature mapping Φ(~x) such that kβ(~x, ~z) = Φ(~x) · Φ(~z).

(c) One way to construct kernels is to build them from simpler ones. Assuming k1(x, z)
and k2(x, z) are kernels, then one can show that so are these:

i. (scaling) f(x)f(z)k1(x, z) for any function f(x) ∈ R,

ii. (sum) k(x, z) = k1(x, z) + k2(x, z),

iii. (product) k(x, z) = k1(x, z)k2(x, z).

Using the above rules and the fact that k(x, z) = xT z is a kernel, show that the
following is also a kernel: (

1 +

(
x

||x||2

)T (
z

||z||2

))3

.

2. The MNIST dataset is a database of handwritten digits. This problem will apply SVMs
to automatically classify digits; the US postal service uses a similar optical character
recognition (OCR) of zip codes to automatically route letters to their destination. The
original dataset can be downloaded at http://yann.lecun.com/exdb/mnist/. For this
problem, we randomly chose a subset of the original dataset. We have provided you with
two data files, mnist train.txt, mnist test.txt. The training set contains 2000 digits,
and the test set contains 1000 digits. Each line represents an image of size 28 × 28 by a
vector of length 784, with each feature specifying a grayscale pixel value. The first column
contains the labels of the digits, 0–9, the next 28 columns respesent the first row of the
image, and so on. We also provide two scipts written in MATLAB/Octave and Python,
show img.m, show img.py to show a single image; using these will help you have a better
understanding of what the data looks like and how it is represented.

http://yann.lecun.com/exdb/mnist/
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Your linear classifier will obtain less than 15% test error, and using a Gaussian kernel you
will obtain less than 7% test error! Had you used more training data, SVM with Gaussian
kernel can get down to 1.4% test error (degree 4 polynomial obtains 1.1% test error). With
further fine-tuning (e.g., augmenting the training set by adding deformed versions of the
existing training images), a SVM-based approach can obtain 0.56% test error [2]. The
state-of-the-art, which uses a convolutional neural network, obtains 0.23% test error [1].

(a) Read in mnist train.txt, mnist test.txt and transform them into feature vectors.
Normalize the feature vectors so that each feature is in the range [-1, 1]. Since in
this dataset each feature has minimum value 0 and maximum value 255, you can do
this normalization by transforming each column ~v to 2~v/255− 1. The normalization
step can be crucial when you incorporate higher-order features. It also helps prevent
numerical difficulties while solving the SVM optimization problem.

(b) Implement multi-class prediction using one-versus-all classification. Train 10 binary
classifiers using the Pegasos algorithm from the previous question. For each classifier,
you relabel one of the labels to 1, and the other 9 labels to -1. Following learning, you
will have 10 distinct weight vectors. To predict the label of an example x, compute
the dot product of x with each weight vector, giving you 10 scores, and predict the
label with the maximum score.

(c) Instead of holding out a specific portion of your training data as a validation set, there
is another approach to estimate the test error called k-fold cross-validation. Cross-
validation is particularly useful when you have a small amount of training data. Cross-
validation divides the training data into k parts of equal size. Then, for i = 1, . . . , k,
we fit a model using all of the data except for the k’th part, and use the remaining
part to compute the validation error. Finally, we report the averaged validation error.

Use Scikit-learn’s k-fold cross-validation1 with k = 5, and find a model having the
smallest cross-validation error from λ = 2−5, 2−4, · · · , 21. Plot the cross-validation
error vs. λ. What is the best λ? For this value of λ, re-train the classifier now using
all of the training data. What is the test error?

(d) We now explore the use of non-linear kernels within Support Vector Machines. We will
make use of a Scikit-Learn’s SVM classifier (SVC)2, which provides a nice interface to
a powerful library called libSVM. This library implements the SMO algorithm, which
is an alternative optimization algorithm for the SVM objective with kernels from what
we saw in class [3, 4]. However, SVC by default trains a one-vs-one classifier, so use
Scikit-Learn’s OneVsRestClassifier3 to train your classifier. Try the default setting
of the SVC, which uses the Gaussian kernel with γ = 1/num features, and C = 1.
Make sure that each feature is scaled to [−1, 1] as in problem (b) which could also be
done by using Scikit-Learn’s MinMaxScaler. Note that in the library, the Gaussian

kernel is of the form K(~u,~v) = e−γ‖~u−~v‖
2

(equivalent to what we showed in class

1http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.cross_val_score.

html#sklearn.cross_validation.cross_val_score
2http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
3http://scikit-learn.org/stable/modules/multiclass.html#one-vs-the-rest

http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.cross_val_score.html#sklearn.cross_validation.cross_val_score
http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.cross_val_score.html#sklearn.cross_validation.cross_val_score
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/multiclass.html#one-vs-the-rest
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when γ = 1/2σ2) and the optimization problem is of the form

min
w,b,ξ

1

2
‖w‖2 + C

m∑
j=1

ξj

subject to yj(w · xj + b) ≥ 1− ξj ,
ξj ≥ 0.

This can be seen to be equivalent to the SVM optimization problem solved by Pegasos
when C = 1/mλ. Train on the full training set. What is the test error?

(e) Rather than using the default settings, we can choose the two parameters to be tuned
(C and γ) using cross-validation. Report the 10-fold cross-validation error when γ
and C are at their default settings.

(f) Finally, try different γ and C values to find a model with small cross-validation error.
What were the best values that you found? What is the cross-validation error? What
is the test error for this setting?
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