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Hypotheses: decision trees f: x>y

Each internal node
tests an attribute x,

Cylinders
One branch for
each possible
: 3 4 5 6 8
attribute value x;=v - / \ \ ~
. good Maker bad  bad Horsepower
Each leaf assigns a
class y /,\ ZON
- america  asia europe low med high
To classify input x: 4 | . y | \\
traverse the tree bad good good bad good bad

from root to leaf,
output the labeled y

Human interpretable!



Hypothesis space

mpg cylinders displacement |horsepower weight acceleration |/modelyear maker

() HOW many pOSS|b|e Ezgd 4 low low low high ;ggi asia

6 medium medium medium | medium america
bad 4 medium medium medium |low 75to78  europe
h Oth eses? bad 8 high high high low 70to74  america
yp . bad 6 medium medium medium | medium 70to74  america

bad 4 low medium low medium 70to74  asia

bad 4 low medium low low 70to74  asia
. bad 8 high high high low 75to78  america

* What funct b e E—————
al tunctions can pe
? bad | 8 high high high low 70t74  america
re p rese n e H good 8 high medium high high 79t083  america
bad 8 high high high low 75to78  america
good 4/low low low low 79t083  america
bad 6 medium medium medium  high 75to78  america
good 4/ medium low low low 79t083  america
good 4/low low medium  high 79t083  america
bad 8 high high high low 70to74  america
good 4/low medium low medium 75to78  europe
bad 5/medium medium medium |medium 75to78  europe
Cylinders
3 4 5 6 8
/ Z ' \ >
good Maker bad  bad Horsepower
america asia europe low med high
e | \ 7 I \

bad good good bad good bad



What functions can be represented?

. . A B AxorB

e Decision trees can represent .

any function of the input .

attributes! F

. (Figure from Stuart Russell)

* For Boolean functions, path

to leaf gives truth table row

Cylinders

e Could require exponentially 3 A 8

/ y 1 N >,
Mmany n
d y Odes good Maker bad  bad Horsepower
america asia europe low med high
7 I N\ 7 | \
bad good good bad good bad

cyl=3 v (cyl=4 A (maker=asia v maker=europe)) v ...



Learning simplest decision tree is NP-hard

* Learning the simplest (smallest) decision tree is
an NP-complete problem [Hyafil & Rivest '76]

e Resort to a greedy heuristic:
— Start from empty decision tree
— Split on next best attribute (feature)

— Recurse



Key idea: Greedily learn trees using

recursion

mpg values: bad good
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pchance = 0.001

cylinders = 3
0 0

cylinders = 4

4 17

cylinders = 5

10

cylinders = 6

8 0

cylinders = 8

9 1

Records

in which

cylinders
=4

Predict bad Predict good Predict bad Predict bad Predict bad
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Recursive Step

mpg values: bad good

root

22 18

pchance = 0.001

cylinders = 3 || cylinders = 4 || cylinders = 5 | cylinders = 6 || cylinders = 8

00 4 17 10 8 0 9 1

Predict bad Predict good Predict bad Predict bad Predict bad

\

Build tree from Build tree from
These records.. These records.. These records.. These records..

: ! Records in
Records in which cyllnders
Records in

Build tree from Build tree from

WhICh cyllnders

which cylinders

‘ Record_s n ‘ WhICh cyllnders
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Second level of tree

mpg values: bad good

root
22 18
pchance = 0.001

|

cylinders = 3 | cylinders = 4 cylinders =5 || cylinders =6 || cylinders = 8

00 4 17 1 0 g8 0 9 1

Predict bad | pchance =0.135 | Predict bad  Predict bad |pchance = 0.085

maker = america || maker = asia | maker = europe || horsepower = low | horsepower = medium || horsepower = high

0 10 2 5 2 2 00 0 1 9 0

Predict good 'redict good  Predict bad Predict bad Predict good Predict bad

Recursively build a tree from the seven
records in which there are four cylinders
and the maker was based in Asia

(Similar recursion in
the other cases)



mpg values: bad good

root
22 18

pchance = 0.001

A full tree
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Splitting: choosing a good attribute

Would we prefer to split on X, or X,?

Pe
X
N

<

X, X
f 2
t/\ t/\f

4 3
0 1

Y=t:
Y=f:

Y=t:1 Y=t: Y=t 2
Y=f:3 Y=f: Y=f- 2

|dea: use counts at leaves to define
probability distributions, so we can
measure uncertainty!

m|m|m|m|A|d[d|d

|4 |Tm|A4 M |4 ||




Measuring uncertainty

* Good split if we are more certain about

classification after split

— Deterministic good (all true or all false)
— Uniform distribution bad
— What about distributions in between?

P(Y=A) = 1/2

P(Y=B) = 1/4

P(Y=C) = 1/8

P(Y=D) = 1/8

P(Y=A) = 1/4

P(Y=B) = 1/4

P(Y=C) = 1/4

P(Y=D) = 1/4




Entropy

Entropy H(Y) of a random variable Y

k

H(Y)=-) P =y;)logx P(Y = y;)
i=1

Entropy of a coin flip

More uncertainty, more entropy!

Information Theory interpretation.
H(Y) is the expected number of bits
needed to encode a randomly
drawn value of Y (under most
efficient code)

lllllllllllllllllll

vvvvvvvvvvvvvvvvvvv

Probability of heads



High, Low Entropy

* “High Entropy”
— Y is from a uniform like distribution
— Flat histogram
— Values sampled from it are less predictable

* “Low Entropy”

— Y is from a varied (peaks and valleys)
distribution

— Histogram has many lows and highs

— Values sampled from it are more predictable

(Slide from Vibhav Gogate)



Entropy of a coin flip

Entropy Example

Entropy

k

H(Y)z_ZP(YzyZ)|092P(Y=yZ) e e e
i: 1 babilit.y of heads
P(Y=t) = 5/6
X, | X, | Y
P(Y=f) = 1/6

H(Y) = - 5/6 log, 5/6 - 1/6 log, 1/6
=0.65

m|im|A|4[d|H
M| |m|<[m|H




Conditional Entropy

Conditional Entropy H(Y |X) of a random variable Y conditioned on a
random variable X

v k
HY |X)=—-) P(X=uz;)) PY=y | X=2)logo P(Y =vy; | X = ;)
j=1 i=1

Example: X M X LY
P t/1\f T | T
T|F
P(X,=t) = 4/6 Y=t:4  y=t: 1 i

P(X,=f) = 2/6 Y=f:0 y=f. 1

T|F
H(Y|X,) = - 4/6 (1 log, 1 + 0 log, 0) T
- 2/6 (1/2 log, 1/2 + 1/2 log, 1/2) FF

= 2/6



Information gain

* Decrease in entropy (uncertainty) after splitting

IG(X)=H) - H(Y | X)

Pe
X

In our running example:

IG(X4) = H(Y) = H(Y|X)
= 0.65-0.33

IG(X,) > 0 = we prefer the spilit!

m|im|A|4[d|H
M| |m|<[m|H




Learning decision trees

e Start from empty decision tree

* Split on next best attribute (feature)

— Use, for example, information gain to select
attribute:

arg max IG(X;) = argmax H(Y) — H(Y | X;)
1 1

* Recurse



When to stop?

mpg values: bad good

root

22 18

pchance = 0.001

| T

cylinders = 3 || cylinders = 4 || cylinders = 5 | cylinders = 6 | cylinders = 8

0 0 4 17 1 0 8 0 9 1

Predict bad Predict good Predict bad Predict bad Predict bad

First split looks good! But, when do we stop?



mpg values: bad good
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Base Case
Two

mpg values: bad good
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Base Cases: An idea

e Base Case One: If all records in current data
subset have the same output then don’t recurse

e Base Case Two: If all records have exactly the
same set of input attributes then don’t recurse

Proposed Base Case 3:
If all attributes have small

information gain then don'’t
recurse

° *This is not a good idea



The problem with proposed case 3

@)
y =aXOR b 0
1

- 0-=0
O--=-0

The information gains:

Information gains using the training set (4 records)

yvalues: 0 1

Input Value Distribution Info Gain
a o [N o

1
b o N o

1




If we omit proposed case 3:

The resulting decision tree:

y= a XOR b y values: 0 1
a b Y root
O O O 5 5
? (1) 1 pchance = 1.000
1.1 O — i 1\
11 11
chance = 0.414 || pchance = 0.414
Instead, perform p/ \ p RN
pruning after building a  [v=0] [6=1] [6=0] [b=1
tree 1 0 0 1 0 1 1 0
Predict 0 Predict 1 Predict 1 Predict O




Accuracy

Decision trees will overfit

0.9 1 1 1 1 1 1 1 1 1

0.85

0.8

0.75

0.7

0.65

0.6 On training data —— g
On test data ---—

0.55 =

0.5 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 30 90 100

Size of tree (number of nodes)



Decision trees will overfit

e Standard decision trees have no learning bias

— Training set error is always zero!

 (If there is no label noise)

— Lots of variance

— Must introduce some bias towards simpler trees

 Many strategies for picking simpler trees
— Fixed depth
— Minimum number of samples per leaf

e Random forests



Real-Valued inputs

What should we do if some of the inputs are real-valued?

Infinite
number of
possible split
values!!!

mpg

good
bad
bad
bad
bad
bad
bad
bad

good
bad
good
bad

DO P>000 0 &

Ol &~ O
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350
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131
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30
110
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5
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J5
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/3
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2643
2600
4100
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2373
2228

3570

2625

4425
2464
2830
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12.8
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16.5
16.5
14

12.8

18.6

10
15.5
15.9

cylinders |displacemen horsepower weight acceleration modelyear maker

/7 asia

/0 america
/7 europe
/3 america
/4 america
/3 asia

/1 asia

/8 america

82 america
/0 america
/6 europe
/8 europe



“One branch for each numeric value”
idea:

mpg values:

bad good

=

root
22 18

pchance = 0.222

e

modelyear = 70
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Predict bad

Predict bad

Predict bad

Predict bad

Predict good

Predict bad

Predict bad

Predict good

Predict bad

Predict bad

Predict bad

Predict good

Predict good

Hopeless: hypothesis with such a high

branching factor will shatter any dataset
and overfit




Threshold splits

Binary tree: split on
attribute X at value t
— One branch: X<t

— Other branch: X > t

Requires small change

« Allow repeated splits on same
variable along a path

Year

/" \\
<78 >78
Z AN
Year good
/" \\
<70 >70
/ \
bad good



The set of possible thresholds

* Binary tree, split on attribute X
— One branch: X<t
— Other branch: X >t

e Search through possible values of t

— Seems hard!!!

* But only a finite number of t's are important:
-- 9 00-00--0--00---0000--- X

t1 19
— Sort data according to X into {x,,...,X.,}
— Consider split points of the form x. + (x;,, — x.)/2
— Morever, only splits between examples of different classes matter!

-- 9 00-00--0--00----0000--- X

tl tQ (Figures from Stuart Russell)



Picking the best threshold

Suppose X is real valued with threshold t

Want IG(Y | X:t), the information gain for Y when
testing if X is greater than or less than t
Define:
o H(Y|X:t)= p(X<t)H(Y|X <t)+p(X>=t) H(Y|X >=t)
« IG(Y|X:t) = H(Y) - H(Y|X:t)
¢ IG*(Y|X) = max, IG(Y|X:t)

Use: IG*(Y|X) for continuous variables



What you need to know about decision trees

Decision trees are one of the most popular ML tools
— Easy to understand, implement, and use

— Computationally cheap (to solve heuristically)
Information gain to select attributes (ID3, C4.5,...)

Presented for classification, can be used for regression and
density estimation too

Decision trees will overfit!!!
— Must use tricks to find “simple trees”, e.g.,
* Fixed depth/Early stopping

* Pruning

— Or, use ensembles of different trees (random forests)



Ensemble learning

Slides adapted from Navneet Goyal, Tan, Steinbach,
Kumar, Vibhav Gogate



Ensemble methods

Machine learning competition with a $1 million prize
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Bias/Variance Tradeoff

Hastie, Tibshirani, Friedman “Elements of Statistical Learning” 2001



Reduce Variance Without Increasing Bias

* Averaging reduces variance:

— Var(x (when predictions
Var(X) = I\; ) are independent)

Average models to reduce model variance

One problem:
only one training set
where do multiple models come from?




Bagging: Bootstrap Aggregation

Leo Breiman (1994)
Take repeated bootstrap samples from training set D
Bootstrap sampling: Given set D containing N training

examples, create D’ by drawing N examples at random
with replacement from D.

Bagging:

— Create k bootstrap samples D, ... D,.

— Train distinct classifier on each D..

— Classify new instance by majority vote / average.



General Idea

Original
D Training data

!

Step 1: * * *
Create Multiple D, D, ®"""" D, 4
Data Sets

<4

|

+— U | &

19

Step 2:
Build Multiple C C
Classifiers i_1

4

Step 3:
Combine
Classifiers




Example of Bagging

Sampling with replacement
Training Data

Data ID -
Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

Build classifier on each bootstrap sample

Each data point has probability (1 — 1/n)" of being
selected as test data

Training data = 1- (1 — 1/n)" of the original data



Bagging Example

1.0

0.5

0.0

-0.5

-1.0

x1



deC|S|on tree learning algorithm; very similar to ID3

CART demsmn boundary

o
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100 bagged trees

Cppe—

o
-—

0.5

-1.0

-1.0 -0.5 0.0 0.5

shades of blue/red indicate strength of vote for particular classification

1.0




Random Forests

 Ensemble method specifically designed for decision
tree classifiers

* Introduce two sources of randomness: “Bagging
11 . 77
and Random input vectors

— Bagging method: each tree is grown using a bootstrap
sample of training data

— Random vector method: At each node, best split is chosen
from a random sample of m attributes instead of all
attributes



Random Forests

Original
Training data

Step 2:
Use random
vector to
build multiple
decision trees

Step 3:
Combine
decision trees

. Step 1:
Randomize} Create random
vectors

Figure 5.40. Random forests.




Random Forests Algorithm

1. Forb=1 to B:

(a) Draw a|bootstrap sample|Z* of size N from the training data.

(b) Grow a random-forest tree 1}, to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;, 1s reached.

1. Select|m variables at random| from the p variables.

ii. Pick the best variable/split-point among the m.

111. Split the node into two daughter nodes.

2. Output the ensemble of trees {7} }.
To make a prediction at a new point z:
wecion:. £fB(r) — LN .
Regression: fi(x) = 5> ,_, Ty(x).

Classification: Let éb(;zr) be the class prediction of the bth random-forest
tree. Then CE(x) = majority vote {Cy,(x)}P.



