Introduction to Bayesian methods Lecture 14

David Sontag New York University

Slides adapted from Luke Zettlemoyer, Carlos Guestrin, Dan Klein, and Vibhav Gogate

Bayesian learning

- Bayesian learning uses **probability** to *model* data and *quantify uncertainty* of predictions
 - Facilitates incorporation of prior knowledge
 - Gives optimal predictions
 - Allows for decision-theoretic reasoning

Your first consulting job

- A billionaire from the suburbs of Manhattan asks you a question:
 - He says: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
 - You say: Please flip it a few times:

- You say: The probability is:
 - P(heads) = 3/5
- He says: Why???
- You say: Because...

Outline of lectures

• Review of probability

(After midterm)

Maximum likelihood estimation

2 examples of Bayesian classifiers:

- Naïve Bayes
- Logistic regression

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - D = How long will it take to drive to work?
 - L = Where am I?
- We denote random variables with capital letters
- Random variables have domains
 - R in {true, false} (sometimes write as $\{+r, \neg r\}$)
 - D in [0, ∞)
 - L in possible locations, maybe $\{(0,0), (0,1), \ldots\}$

Probability Distributions

• Discrete random variables have distributions

- A discrete distribution is a TABLE of probabilities of values
- The probability of a state (lower case) is a single number

$$P(W = rain) = 0.1 \qquad P(rain) = 0.1$$

• Must have:

$$\forall x P(x) \ge 0$$
 $\sum_{x} P(x) = 1$

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

$$P(x_1, x_2, \ldots x_n)$$

– How many assignments if n variables with domain sizes d?

- Must obey: $P(x_1, x_2, \dots x_n) \geq 0$

$$\sum_{x_1, x_2, \dots, x_n} P(x_1, x_2, \dots, x_n) = 1$$

TWPhotsun0.4hotrain0.1coldsun0.2coldrain0.3

- For all but the smallest distributions, impractical to write out or estimate
 - Instead, we make additional assumptions about the distribution

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

1 (1, 1)				
Т	W	Р		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		
cold	rain	0.3		

D(T W)

$$P(W = r | T = c) = ???$$

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

Joint Distribution

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

The Product Rule

· Sometimes have conditional distributions but want the joint

$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad \longleftarrow \qquad P(x,y) = P(x|y)P(y)$$

• Example:

W)

P(D, W)

P(W)		
W	Ρ	
sun	0.8	
rain	0.2	

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

D	W	Р
wet	sun	0.08
dry	sun	0.72
wet	rain	0.14
dry	rain	0.06

Bayes' Rule

• Two ways to factor a joint distribution over two variables:

P(x,y) = P(x|y)P(y) = P(y|x)P(x)

• Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Let's us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many practical systems (e.g. ASR, MT)
- In the running for most important ML equation!