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The Naive Bayes Classifier

* Given:
— Prior P(Y) °

— n conditionally independent
features X given the class Y

— For each X, we have
likelihood P(X.|Y) Q @ @

e Decision rule:
y* — hNB(X) — Jard manP(y)P(.CE]_, ey I | y)
= arg myaxP(y)HP(afily)
i

If certain assumption holds, NB is optimal classifier!
(they typically don't)



What has to be learned?

P(Y) P(F31 =on|Y) P(Fs55=onlY)
1|01 1 | 0.01 v 1 [0.05
2 101 2 10.05 2 |0.01
3 |0.1 3 10.05 3 10.90
4 101 / 4 10.30 4 0.80
5 [0.1 5 | 0.80 5 | 0.90
6 |0.1 6 | 0.90 6 | 0.90
7 0.1 7 10.05 7 10.25
8 |0.1 8 | 0.60 8 | 0.85
9 [0.1 9 | 0.50 9 | 0.60
0 |01 0 | 0.80 0 | 0.80




MLE for the parameters of NB

e Given dataset

— Count(A=a,B=b) +— number of examples where A=a and
B=b

* MLE for discrete NB, simply:

— Prior:

Count(Y =y)
Dy Count(Y =)

PY =y) =

— Observation distribution:

P(X; = 2|y = y) = Count(X; =x,Y = y)

> Count(X; =2/, Y =vy)



What about if there is missing data?

* One of the key strengths of Bayesian approaches is that
they can naturally handle missing data
. Suppose don’t have value for some attribute X;

« applicant’s credit history unknown
« some medical test not performed on patient
« how to compute P(X,=x; ... X=? ... X;=X, | ¥)

. Easy with Naive Bayes

] d
« ignore attribute in instance P(xl "'Z(_i”'deY) —H?jP(xily)
where its value is missing s

. compute likelihood based on observed attributes
« Nno need to “fill in” or explicitly model missing values
. based on conditional independence between attributes

[Slide from Victor Lavrenko and Nigel Goddard]



What about if there is missing data?

« Ex: three coin tosses: Event = {X,=H, X,=?, X;=T}

« event = head, unknown (either head or tail), tail

- event ={H,HT}+ {HTT}

>
+ P(event) = P(H,H,T) + P(H,T,T) X =H -<\~

* General case: X; has missing value

P(x,|y)-tP(x;ly):--P

P(x,..

.ij.. X,

ZL[P (Xlg X4y

y)=

X =H -

f )
>>X3=T
X =T}

2

Z P(x,y)-

(x;]y)1-

(x4ly)

P(x,4y)

=P(x1|y)---[ZxJP(ley)]'mP(dey)

=P(X1|J')'“m“‘P(Xd|}’)

[Slide from Victor Lavrenko and Nigel Goddard]



Naive Bayes = Linear Classifier

® Theorem:assume that x; € {0,1}for all i € [1, N].
Then, the Naive Bayes classifier is defined by

X — sgn(w - X + b),

[Slide from Mehyrar Mohri]



Outline of lectures

* Review of probability
e Maximum likelihood estimation

2 examples of Bayesian classifiers:
* Nalve Bayes
* Logistic regression

[Next several slides adapted from:
Vibhav Gogate, Luke Zettlemoyer, Carlos Guestrin, and Dan Weld]



Logistic Regression

Learn P(Y|X) directly!

0 Assume a particular functional form

# Linear classifier? On one side we say P(Y=1|X)=1, and on
the other P(Y=1|X)=0

# But, this is not differentiable (hard to learn)... doesn’t
allow for label noise...

0.0. ) : P(Y+= i*)iz']
RY=1)=0 | )




Logistic Regression

Logistic function (Sigmoid):

Learn P(Y|X) directly!

- Assume a particular 1
functional form 1+e’”

Sigmoid applied to a linear
function of the data:

-6 -4 -2 0 2 4
Z
P(Y = 1|X) = :
I +exp(wo + LiL; wiX;) Features can be
p(y = ojx) = X200+ iy wiXi discrete or



Logistic Function in n Dimensions

1

POV = 11X) = 1+ exp(wg + 71 w; X;)

Sigmoid applied to a linear function of the data:

0.8 -
0.6 -
04 -
0.2 -

Features can be discrete or continuous!



Logistic Regression: decision boundary

! exp(wo + X', wiX;)

P(Y =1|X) =

n vy PY =0X)=
1 +exp(wo+ Y5 wiX;) ( X) 1 +exp(wo+ Y7 wiX;)

* Prediction: Output the Y with
highest P(Y|X)
— For binary Y, output Y=0 if

P(Y = 0|X)
P(Y = 1|X)

1 <

n
1 <exp(wo+ Z wiX;)
i=1

n

0<wo+ Z w;iX;
i=1

A Linear Classifier!




Likelihood vs. Conditional Likelihood

Generative (Naive Bayes) maximizes Data likelihood

N
INP(D|w) = Y InP(x?,y | w)
j=1
N . . N :
= > InP |x),w)+ > InP(x)|w)
j=1 j=1

Discriminative (Logistic Regr.) maximizes Conditional Data Likelihood

N
In P(Dy | Dx,w) = > InP(y’ | x/,w)
=1

Focuses only on learning P(Y|X) - all that matters for classification



Maximizing Conditional Log Likelihood

I(w) =

= Zyj(wo-l-i
J N i

N
J

[P 1%, w)

0 or 1!

P(Y =0|X,W) =

P(Y =1|X,W) =

1+ exp(wo + >; w; X;)
exp(wo + >°; wi X;)

1+ exp(wo + >; w; X;)

wzaz‘g) —In(1 4 exp(wg + wazxg))

Bad news: no closed-form solution to maximize /(w)

Good news: /(w) is concave function of w—

No local maxima

Concave functions easy to optimize



Optimizing concave function —
Gradient ascent

e Conditional likelihood for Logistic Regression is concave —

ol(w) ol(w)

>t

Gradient: Vwl(w) = [ K

,_,/ ‘
| Learning rate, n>0
- Update rule:
P Aw = nVwl(w)

WD o ® 4y ol(w)

8’(1)2'

a’UJn




Maximize Conditional Log Likelihood: Gradient ascent

exp(wo + >°; w; X;)
1+ exp(wg + >; w; X;)

P(Y =1|X,W) =

I(w) = Yy (wo+ Y wir]) — In(L + ezp(wo + Y wia))
J ¢ )

8—’wi = Z lﬁw,y (UJO + Z:w'zxz) 5”w,-|n 1 —I—exp(wo + ;wzxz)

J

_ Z [ijj B 2! exp(wo + 32, wiz?) ]
(2

1+ exp(wo + >, w@x‘Z)

_ ij [yj ~explwo + ) wiz?) ]

1+ exp(wo + 3, wiz?)




Gradient Ascent for LR

Gradient ascent algorithm: (learning rate n > 0)

do:
wi T — w40 Y~ P(Y =1 x,w)]
J

For i=1 to n: (iterate over features)

w,§t+1) - wi(t) + nzxg[yj —P(YI=1|xI,w)]
J

until “change” < ¢ \

Loop over training examples
(could also do stochastic GD)



That’s all MLE. How about MAP?
p(w|Y,X) o< P(Y|X,w)p(w)

e One common approach is to define priors on w

— Normal distribution, zero mean, identity covariance
— “Pushes” parameters towards zero 1 —w?

p(w) = HKJ\/E e 22

* Regularization

— Helps avoid very large weights and overfitting

e MAP estimate: N

* — J | xJ
w" = arg maxin p(w) -H1 P(y’ | x/,w)
]:




MAP as Regularization

N 1

w* = arg maxIn |p(w) H P | xI,w)| p(w) = H T

1=1 )

* Adds log p(w) to objective:

Inp(w)oc—gz:w,&-2 dInp(w) —

811]7;

—)\wi

— Quadratic penalty: drives weights towards zero
— Adds a negative linear term to the gradients

Quadratic penalty on weights, just like with SVMs!







Naive Bayes vs. Logistic Regression

Learning: h:X— Y X — features
Y — target classes

Generative Discriminative
* Assume functional form for  Assume functional form for
— P(X]Y) assume cond indep — P(Y|X) no assumptions
— P(Y)
— Est. params from train data — Est params from training data

e Gaussian NB for cont. features ¢ Handles discrete & cont features
e Bayes rule to calc. P(Y|X=x):

— P(Y | X) o« P(X | Y) P(Y)
* Indirect computation e Directly calculate P(Y|X=x)

— Can generate a sample of the data — Can’t generate data sample
— Can easily handle missing data



Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

e Generative vs. Discriminative classifiers

Asymptotic comparison
(# training examples =2 infinity)
— when model correct

* NB, Linear Discriminant Analysis (with class independent
variances), and Logistic Regression produce identical
classifiers

— when model incorrect

e LR is less biased — does not assume conditional
independence

—therefore LR expected to outperform NB



Naive Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

 Generative vs. Discriminative classifiers
* Non-asymptotic analysis
— convergence rate of parameter estimates,
(n = # of attributes in X)
* Size of training data to get close to infinite data solution

* Naive Bayes needs O(log n) samples
* Logistic Regression needs O(n) samples

— Naive Bayes converges more quickly to its (perhaps
less helpful) asymptotic estimates
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Figure 1: Results of 15 experiments on datasets from the UCT Machine Learning
repository. Plots are of generalization error vs. m (averaged over 1000 random
train/test splits). Dashed line is logistic regression; solid line is naive Bayes,



Logistic regression for discrete

classification

Logistic regression in more general case, where
set of possible Yis {y,,...,yr}

Define a weight vector w, for each y,, i=1,...,R

P(Y =1|X) x exp(wig + Z w1 X;) P(Y=y,|X)
i biggest

P(Y =2|X) o exp(woo + szz‘Xz')
() A .

P(Y=y5|X) \ Y2l X)
., ; biggest Biggest
Also called “soft-max” loss



