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The	Naïve	Bayes	Classifier	
•  Given:	

–  Prior	P(Y)	
–  n	condiBonally	independent	
features	X	given	the	class	Y	

–  For	each	Xi,	we	have	
likelihood	P(Xi|Y)	

•  Decision	rule:	

If certain assumption holds, NB is optimal classifier! 
(they typically don’t) 

Y 

X1 Xn X2 



What has to be learned? 

1 0.1 
2 0.1 
3 0.1 
4 0.1 
5 0.1 
6 0.1 
7 0.1 
8 0.1 
9 0.1 
0 0.1 

1 0.01 
2 0.05 
3 0.05 
4 0.30 
5 0.80 
6 0.90 
7 0.05 
8 0.60 
9 0.50 
0 0.80 

1 0.05 
2 0.01 
3 0.90 
4 0.80 
5 0.90 
6 0.90 
7 0.25 
8 0.85 
9 0.60 
0 0.80 



MLE	for	the	parameters	of	NB	
•  Given	dataset	

–  Count(A=a,B=b)	Ã	number	of	examples	where	A=a	and	
B=b	

•  MLE	for	discrete	NB,	simply:	
–  Prior:	

–  ObservaBon	distribuBon:		
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What	about	if	there	is	missing	data?	
•  One	of	the	key	strengths	of	Bayesian	approaches	is	that	

they	can	naturally	handle	missing	data	
Missing data 

  Suppose don’t have value for some attribute Xi 

  applicant’s credit history unknown 
  some medical test not performed on patient 
  how to compute P(X1=x1 … Xj=? … Xd=xd | y) 

  Easy with Naïve Bayes 
  ignore attribute in instance 

where its value is missing 
  compute likelihood based on observed attributes 
  no need to “fill in” or explicitly model missing values 
  based on conditional independence between attributes 

Copyright © Victor Lavrenko, 2013 

Missing data (2) 

•  Ex: three coin tosses: Event = {X1=H, X2=?, X3=T} 
•  event = head, unknown (either head or tail), tail  
•  event = {H,H,T} + {H,T,T}  
•  P(event) = P(H,H,T) + P(H,T,T) 

•  General case: Xj has missing value 

Copyright © Victor Lavrenko, 2013 

Summary 
  Naïve Bayes classifier 

-  explicitly handles class priors 
-  “normalizes” across observations: outliers comparable 
-  assumption: all dependence is “explained” by class label 

  Continuous example 
-  unable to handle correlated data 

  Discrete example 
-  fooled by repetitions 
-  must deal with zero-frequency problem 

-  Pros:  
-  handles missing data 
-  good computational complexity  
-  incremental updates 

Copyright © Victor Lavrenko, 2013 

Computational complexity 

•  One of the fastest learning methods 
•  O(nd+cd) training time complexity 

•  c … number of classes  
•  n … number of instances  
•  d … number of dimensions (attributes) 
•  both learning and prediction 
•  no hidden constants (number of iterations, etc.) 
•  testing: O(ndc) 

•  O(dc) space complexity  
•  only decision trees are more compact 

Copyright © Victor Lavrenko, 2013 

[Slide from Victor Lavrenko and Nigel Goddard] 
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pageMehryar Mohri - Introduction to Machine Learning

Naive Bayes = Linear Classifier

Theorem: assume that                for all              . 
Then, the Naive Bayes classifier is defined by

Proof: observe that for any              ,

20

xi � {0, 1} i � [1, N ]
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Outline	of	lectures	

•  Review	of	probability	
•  Maximum	likelihood	esBmaBon	

2	examples	of	Bayesian	classifiers:	

•  Naïve	Bayes	
•  Logis)c	regression	

[Next several slides adapted from: 
 Vibhav Gogate, Luke Zettlemoyer, Carlos Guestrin, and Dan Weld] 



LogisBc	Regression	

!  Learn P(Y|X) directly! 
" Assume a particular functional form 
✬  Linear classifier? On one side we say P(Y=1|X)=1, and on 

the other P(Y=1|X)=0 
✬ But, this is not differentiable (hard to learn)… doesn’t 

allow for label noise... 

P(Y=1)=0 

P(Y=1)=1 



LogisBc	Regression	
Logistic function (Sigmoid): 

•  Learn P(Y|X) directly! 
•  Assume a particular 

functional form 
•  Sigmoid applied to a linear 

function of the data: 

Features can be 
discrete or 
continuous! 

Copyright
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where the superscript j refers to the jth training example, and where �(Y = yk) is
1 if Y = yk and 0 otherwise. Note the role of � here is to select only those training
examples for which Y = yk.

The maximum likelihood estimator for ⇥2
ik is

⇥̂2
ik =

1
⇤ j �(Y j = yk) ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (14)

This maximum likelihood estimator is biased, so the minimum variance unbi-
ased estimator (MVUE) is sometimes used instead. It is

⇥̂2
ik =

1
(⇤ j �(Y j = yk))�1 ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (15)

3 Logistic Regression
Logistic Regression is an approach to learning functions of the form f : X ⇤Y , or
P(Y |X) in the case where Y is discrete-valued, and X = ⌅X1 . . .Xn⇧ is any vector
containing discrete or continuous variables. In this section we will primarily con-
sider the case where Y is a boolean variable, in order to simplify notation. In the
final subsection we extend our treatment to the case where Y takes on any finite
number of discrete values.

Logistic Regression assumes a parametric form for the distribution P(Y |X),
then directly estimates its parameters from the training data. The parametric
model assumed by Logistic Regression in the case where Y is boolean is:

P(Y = 1|X) =
1

1+ exp(w0 +⇤n
i=1 wiXi)

(16)

and
P(Y = 0|X) =

exp(w0 +⇤n
i=1 wiXi)

1+ exp(w0 +⇤n
i=1 wiXi)

(17)

Notice that equation (17) follows directly from equation (16), because the sum of
these two probabilities must equal 1.

One highly convenient property of this form for P(Y |X) is that it leads to a
simple linear expression for classification. To classify any given X we generally
want to assign the value yk that maximizes P(Y = yk|X). Put another way, we
assign the label Y = 0 if the following condition holds:

1 <
P(Y = 0|X)
P(Y = 1|X)

substituting from equations (16) and (17), this becomes

1 < exp(w0 +
n

⇤
i=1

wiXi)
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z

1

1 + e�z



LogisBc	FuncBon	in	n	Dimensions	

-2 0 2 4 6-4-2 0 2 4 6 8 10 0 0.2 0.4 0.6 0.8 1x1x2

Sigmoid applied to a linear function of the data: 

Features can be discrete or continuous! 



LogisBc	Regression:	decision	boundary		

A Linear Classifier! 

•  Prediction: Output the Y with 
highest P(Y|X) 
–  For binary Y, output Y=0 if 
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where the superscript j refers to the jth training example, and where �(Y = yk) is
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Logistic Regression is an approach to learning functions of the form f : X ⇤Y , or
P(Y |X) in the case where Y is discrete-valued, and X = ⌅X1 . . .Xn⇧ is any vector
containing discrete or continuous variables. In this section we will primarily con-
sider the case where Y is a boolean variable, in order to simplify notation. In the
final subsection we extend our treatment to the case where Y takes on any finite
number of discrete values.

Logistic Regression assumes a parametric form for the distribution P(Y |X),
then directly estimates its parameters from the training data. The parametric
model assumed by Logistic Regression in the case where Y is boolean is:

P(Y = 1|X) =
1
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i=1 wiXi)

(16)

and
P(Y = 0|X) =

exp(w0 +⇤n
i=1 wiXi)

1+ exp(w0 +⇤n
i=1 wiXi)

(17)

Notice that equation (17) follows directly from equation (16), because the sum of
these two probabilities must equal 1.

One highly convenient property of this form for P(Y |X) is that it leads to a
simple linear expression for classification. To classify any given X we generally
want to assign the value yk that maximizes P(Y = yk|X). Put another way, we
assign the label Y = 0 if the following condition holds:
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P(Y = 0|X)
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substituting from equations (16) and (17), this becomes
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3 Logistic Regression
Logistic Regression is an approach to learning functions of the form f : X ⇤Y , or
P(Y |X) in the case where Y is discrete-valued, and X = ⌅X1 . . .Xn⇧ is any vector
containing discrete or continuous variables. In this section we will primarily con-
sider the case where Y is a boolean variable, in order to simplify notation. In the
final subsection we extend our treatment to the case where Y takes on any finite
number of discrete values.

Logistic Regression assumes a parametric form for the distribution P(Y |X),
then directly estimates its parameters from the training data. The parametric
model assumed by Logistic Regression in the case where Y is boolean is:

P(Y = 1|X) =
1
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and
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Notice that equation (17) follows directly from equation (16), because the sum of
these two probabilities must equal 1.

One highly convenient property of this form for P(Y |X) is that it leads to a
simple linear expression for classification. To classify any given X we generally
want to assign the value yk that maximizes P(Y = yk|X). Put another way, we
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⇤
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Y = 1/(1 + exp(−X))

Figure 1: Form of the logistic function. In Logistic Regression, P(Y |X) is as-
sumed to follow this form.

and taking the natural log of both sides we have a linear classification rule that
assigns label Y = 0 if X satisfies

0 < w0 +
n

⇥
i=1

wiXi (18)

and assigns Y = 1 otherwise.
Interestingly, the parametric form of P(Y |X) used by Logistic Regression is

precisely the form implied by the assumptions of a Gaussian Naive Bayes classi-
fier. Therefore, we can view Logistic Regression as a closely related alternative to
GNB, though the two can produce different results in many cases.

3.1 Form of P(Y |X) for Gaussian Naive Bayes Classifier
Here we derive the form of P(Y |X) entailed by the assumptions of a Gaussian
Naive Bayes (GNB) classifier, showing that it is precisely the form used by Logis-
tic Regression and summarized in equations (16) and (17). In particular, consider
a GNB based on the following modeling assumptions:

• Y is boolean, governed by a Bernoulli distribution, with parameter � =
P(Y = 1)

• X = ⇤X1 . . .Xn⌅, where each Xi is a continuous random variable

w
.X

+w
0 

= 
0 
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where the superscript j refers to the jth training example, and where �(Y = yk) is
1 if Y = yk and 0 otherwise. Note the role of � here is to select only those training
examples for which Y = yk.

The maximum likelihood estimator for ⇥2
ik is

⇥̂2
ik =

1
⇤ j �(Y j = yk) ⇤

j
(X j

i � µ̂ik)2�(Y j = yk) (14)

This maximum likelihood estimator is biased, so the minimum variance unbi-
ased estimator (MVUE) is sometimes used instead. It is
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3 Logistic Regression
Logistic Regression is an approach to learning functions of the form f : X ⇤Y , or
P(Y |X) in the case where Y is discrete-valued, and X = ⌅X1 . . .Xn⇧ is any vector
containing discrete or continuous variables. In this section we will primarily con-
sider the case where Y is a boolean variable, in order to simplify notation. In the
final subsection we extend our treatment to the case where Y takes on any finite
number of discrete values.

Logistic Regression assumes a parametric form for the distribution P(Y |X),
then directly estimates its parameters from the training data. The parametric
model assumed by Logistic Regression in the case where Y is boolean is:

P(Y = 1|X) =
1

1+ exp(w0 +⇤n
i=1 wiXi)

(16)

and
P(Y = 0|X) =

exp(w0 +⇤n
i=1 wiXi)

1+ exp(w0 +⇤n
i=1 wiXi)

(17)

Notice that equation (17) follows directly from equation (16), because the sum of
these two probabilities must equal 1.

One highly convenient property of this form for P(Y |X) is that it leads to a
simple linear expression for classification. To classify any given X we generally
want to assign the value yk that maximizes P(Y = yk|X). Put another way, we
assign the label Y = 0 if the following condition holds:

1 <
P(Y = 0|X)
P(Y = 1|X)

substituting from equations (16) and (17), this becomes

1 < exp(w0 +
n

⇤
i=1

wiXi)
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P(Y |X) in the case where Y is discrete-valued, and X = ⌅X1 . . .Xn⇧ is any vector
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Logistic Regression assumes a parametric form for the distribution P(Y |X),
then directly estimates its parameters from the training data. The parametric
model assumed by Logistic Regression in the case where Y is boolean is:
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want to assign the value yk that maximizes P(Y = yk|X). Put another way, we
assign the label Y = 0 if the following condition holds:

1 <
P(Y = 0|X)
P(Y = 1|X)

substituting from equations (16) and (17), this becomes

1 < exp(w0 +
n

⇤
i=1

wiXi)



GeneraBve	(Naïve	Bayes)	maximizes	Data	likelihood	

DiscriminaBve	(LogisBc	Regr.)	maximizes	Condi)onal	Data	Likelihood	

Focuses	only	on	learning	P(Y|X)	-	all	that	maZers	for	classificaBon			

Likelihood	vs.	CondiBonal	Likelihood	



Maximizing	CondiBonal	Log	Likelihood	

Bad news: no closed-form solution to maximize l(w) 

Good news: l(w) is concave function of w!  

 No local maxima 
 Concave functions easy to optimize 

0 or 1! 



OpBmizing	concave	funcBon	–	
Gradient	ascent		

•  CondiBonal	likelihood	for	LogisBc	Regression	is	concave	!		

Gradient: 

Update rule: 
Learning rate, η>0 



Maximize	CondiBonal	Log	Likelihood:	Gradient	ascent	
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Gradient	Ascent	for	LR	

Gradient ascent algorithm: (learning rate η > 0)  

do:	

	For	i=1	to	n:	(iterate	over	features)	

unBl	“change”	<	ε	
Loop over training examples 
(could also do stochastic GD) 



That’s	all	MLE.		How	about	MAP?	

•  One	common	approach	is	to	define	priors	on	w	
–  Normal	distribuBon,	zero	mean,	idenBty	covariance	
–  “Pushes”	parameters	towards	zero	

•  Regulariza*on	
–  Helps	avoid	very	large	weights	and	overfibng	

•  MAP	esBmate:	



MAP	as	RegularizaBon	

Quadratic penalty on weights, just like with SVMs! 

•  Adds	log	p(w)	to	objecBve:	

–  QuadraBc	penalty:	drives	weights	towards	zero	
–  Adds	a	negaBve	linear	term	to	the	gradients	
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Naïve	Bayes				vs.			Logis)c	Regression	

Genera)ve		
•  Assume	funcBonal	form	for		

–  P(X|Y)		assume	cond	indep		
–  P(Y)	
–  Est.	params	from	train	data	

•  Gaussian	NB	for	cont.	features	
•  Bayes	rule	to	calc.	P(Y|X=	x):	

–  P(Y	|	X)	∝	P(X	|	Y)	P(Y)	
•  Indirect	computaBon		

–  Can	generate	a	sample	of	the	data	
–  Can	easily	handle	missing	data	

Discrimina)ve	
•  Assume	funcBonal	form	for		

–  P(Y|X)			no	assump)ons	

–  Est	params	from	training	data	
•  Handles	discrete	&	cont	features	

•  Directly	calculate	P(Y|X=x)	
–  Can’t	generate	data	sample	

Learning:	h:X	! Y	 					X	–	features	
	 	 	 	 					Y	–	target	classes	



	Naïve	Bayes	vs.	LogisBc	Regression	

•  GeneraBve	vs.	DiscriminaBve	classifiers	
•  	AsymptoBc	comparison		

(#	training	examples	#	infinity)	
–  	when	model	correct	

•  NB,	Linear	Discriminant	Analysis	(with	class	independent	
variances),	and	LogisBc	Regression	produce	idenBcal	
classifiers	

–  	when	model	incorrect	
•  	LR	is	less	biased	–	does	not	assume	condiBonal	
independence	

– therefore	LR	expected	to	outperform	NB	

[Ng & Jordan, 2002] 



Naïve	Bayes	vs.	LogisBc	Regression	

•  GeneraBve	vs.	DiscriminaBve	classifiers	
•  Non-asymptoBc	analysis	

–  	convergence	rate	of	parameter	esBmates,		
			(n	=	#	of	aJributes	in	X)	
•  Size	of	training	data	to	get	close	to	infinite	data	soluBon	
•  Naïve	Bayes	needs	O(log	n)	samples	
•  LogisBc	Regression	needs	O(n)	samples	

– Naïve	Bayes	converges	more	quickly	to	its	(perhaps	
less	helpful)	asymptoBc	esBmates	

[Ng & Jordan, 2002] 
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Naïve bayes 
Logistic Regression 



LogisBc	regression	for	discrete	
classificaBon	

LogisBc	regression	in	more	general	case,	where		
set	of	possible	Y	is {y1,…,yR}	
•  Define	a	weight	vector	wi	for	each	yi, i=1,…,R 

•  Also	called	“sol-max”	loss	

P(Y=y1|X) 
biggest 

P(Y=y2|X) 
biggest 

P(Y=y3|X) 
biggest 
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