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Geometry of linear separators 
(see blackboard) 

A plane can be specified as the set of all points given by: 

Barber, Section A.1.1-4 

Vector from origin to a point in the plane 
Two non-parallel directions in the plane 

Alternatively, it can be specified as: 

Normal vector 
(we will call this w) 

Only need to specify this dot product, 
a scalar (we will call this the offset, b) 



Linear Separators 

!  If training data is linearly separable, perceptron is 
guaranteed to find some linear separator 

!  Which of these is optimal?  



!  SVMs (Vapnik, 1990’s) choose the linear separator with the 
largest margin 

•  Good according to intuition, theory, practice 

•  SVM became famous when, using images as input, it gave 
accuracy comparable to neural-network with hand-designed 
features in a handwriting recognition task 

Support Vector Machine (SVM) 

V. Vapnik 

Robust to 
outliers! 



1. Use optimization to find solution (i.e. a hyperplane) 
with few errors 

2. Seek large margin separator to improve 
generalization 

3. Use kernel trick to make large feature 
spaces computationally efficient 

Support vector machines: 3 key ideas 
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Finding a perfect classifier (when one exists) 
using linear programming 

for yt = +1, 

and for yt = -1, 

For every data point (xt, yt), enforce the 
constraint 

Equivalently, we want to satisfy all of the 
linear constraints 

This linear program can be efficiently 
solved using algorithms such as simplex, 
interior point, or ellipsoid 



Finding a perfect classifier (when one exists) 
using linear programming 

Example of 2-dimensional 
linear programming  
(feasibility) problem: 

For SVMs, each data point 
gives one inequality: 

What happens if the data set is not linearly separable? 

Weight space 



•  Try to find weights that violate as few 
constraints as possible? 

•  Formalize this using the 0-1 loss: 

•  Unfortunately, minimizing 0-1 loss is 
NP-hard in the worst-case 
–  Non-starter. We need another 

approach. 

#(mistakes) 

Minimizing number of errors (0-1 loss) 

where 



Key idea #1: Allow for slack 

For each data point: 
• If functional margin ≥ 1, don’t care 
• If functional margin < 1, pay linear penalty 
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Σj ξj 

- ξj ξj≥0 

“slack variables” 

We now have a linear program again, 
and can efficiently find its optimum 

, ξ 



Key idea #1: Allow for slack 
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Σj ξj 

- ξj ξj≥0 

“slack variables” 

, ξ 

What is the optimal value ξj
* as a function 

of w* and b*? 

If  then ξj =  0 

If  then ξj =  

Sometimes written as 

ξ2 

ξ1 

ξ3 

ξ4 



Equivalent hinge loss formulation 

Σj ξj 
- ξj ξj≥0 

Substituting into the objective, we get: 

, ξ 

This is empirical risk minimization, 
using the hinge loss 

The hinge loss is defined as  



Hinge loss vs. 0/1 loss 

1 0 

1 

Hinge loss upper bounds 0/1 loss! 

It is the tightest convex upper bound on the 0/1 loss  

Hinge loss: 

0-1 Loss: 



Key idea #2: seek large margin 


