Support vector machines (SVMs)
Lecture 3

David Sontag
New York University

Slides adapted from Luke Zettlemoyer, Vibhav Gogate,
and Carlos Guestrin



Geometry of linear separators
(see blackboard)

A plane can be specified as the set of all points given by:

p=a+su+ttv, (s,t) € R.

/

Vector from origin to a point in the plane S
Two non-parallel directions in the plane

Alternatively, it can be specified as:

(p—a) n=0&p-n=a-n

Normal vector /

(we will call this w)

Only need to specify this dot product,
a scalar (we will call this the offset, b)

Barber, Section A.1.1-4



Linear Separators

= |f training data is linearly separable, perceptron is
guaranteed to find some linear separator

= Which of these is optimal?




Support Vector Machine (SVM)

= SVMs (Vapnik, 1990’s) choose the linear separator with the
largest margin

Robust to
outliers!

77} ./ /)

V Vaphik

« (Good according to intuition, theory, practice

« SVM became famous when, using images as input, it gave
accuracy comparable to neural-network with hand-designed
features in a handwriting recognition task



Support vector machines: 3 key ideas

1. Use optimization to find solution (i.e. a hyperplane)
with few errors

2.Seek large margin separator to improve
generalization

3. Use kernel trick to make large feature
spaces computationally efficient




Finding a perfect classifier (when one exists)
using linear programming

For every data point (x,, V,), enforce the
constraint

~
+ o
1] 7}

Q o) _IQI,
o H o+ fory,=+1, w-xz; +b>1
3 3 ;

andfory,=-1, w-x;+b0< —1

== Equivalently, we want to satisfy all of the
linear constraints

S — This linear program can be efficiently

solved using algorithms such as simplex,
interior point, or ellipsoid



Finding a perfect classifier (when one exists)
using linear programming

it

20

Weight space

_ _ y= -x + 200 x =150
Example of 2-dimensional

linear programming
(feasibility) problem:

y = 120
For SVMs, each data point
gives one inequality:
yr (w -z +b) > 1
26})\ ;

What happens if the data set is not linearly separable?



Minimizing number of errors (0-1 loss)

« Try to find weights that violate as few
constraints as possible?

minimizeW’b #(mistakes)

* - (W.Xj -4 b) y; > 1 i
':II]:' - =]
+ - p o=
= _ « Formalize this using the 0-1 loss:
& b = I‘?vi,ilzgo’l(yj’ w - Ty + b)

J
where (o 1(y,9) = 1]y # sign(y)|

« Unfortunately, minimizing 0-1 loss is
NP-hard in the worst-case

— Non-starter. We need another
approach.



Key idea #1: Allow for slack

miniMizey 5. % §

(W.Xj -+ b) Y > 1- éj , V7 &>0
¢

“slack variables”

We now have a linear program again,
and can efficiently find its optimum

For each data point:
oIf functional margin =2 1, don’t care
oIf functional margin < 1, pay linear penalty



Key idea #1: Allow for slack

miniMizey 5. % §

(W.Xj -+ b) Y > 1- éj , Vg &0
¢

“slack variables”

What is the optimal value &~ as a function
of w* and b*?

If (w-z;+b)y; >1,theng= 0

If (w-z;+b)y; <1,theng= 1—(w-z; +b)y;

Sometimes written as ‘1,

(1—(w-xj+b)yj>+ € ¢ =max(0,1— (w-x; +0)y;)



Equivalent hinge loss formulation

MiNIMIZey . % &
(W.Xj -+ b) Y > 1] - éj , Vg &0

Substituting &; = max (0,1 — (w - x; +b)y;) into the objective, we get:

min

w,b =

J

max (0,1 — (w - x; —I—b)yj>

The hinge loss is defined as /pipge(y,y) = max (O, 1— @y)

mmZEhmge Yi, W+ x; +b)

This is empirical risk minimization,
using the hinge loss



Hinge loss vs. 0/1 loss

Hinge loss:
ghinge (y7 Q) — Inax (07 1 — gy)

0-1 Loss:—
fo,l(ya ?)) — 1[y #* Sign(@)}

yy

Hinge loss upper bounds 0/1 loss!

mmm) |t is the tightest convex upper bound on the 0/1 loss



Key idea #2: seek large margin




