
Support vector machines (SVMs)
Lecture 3

David Sontag
New York University

Slides adapted from Luke Zettlemoyer, Vibhav Gogate,
and Carlos Guestrin

Geometry of linear separators
(see blackboard)

A plane can be specified as the set of all points given by:

Barber, Section A.1.1-4

Vector from origin to a point in the plane
Two non-parallel directions in the plane

Alternatively, it can be specified as:

Normal vector
(we will call this w)

Only need to specify this dot product,
a scalar (we will call this the offset, b)

Linear Separators

!  If training data is linearly separable, perceptron is
guaranteed to find some linear separator

!  Which of these is optimal?

!  SVMs (Vapnik, 1990’s) choose the linear separator with the
largest margin

•  Good according to intuition, theory, practice

•  SVM became famous when, using images as input, it gave
accuracy comparable to neural-network with hand-designed
features in a handwriting recognition task

Support Vector Machine (SVM)

V. Vapnik

Robust to
outliers!

1. Use optimization to find solution (i.e. a hyperplane)
with few errors

2. Seek large margin separator to improve
generalization

3. Use kernel trick to make large feature
spaces computationally efficient

Support vector machines: 3 key ideas

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -1

w
.x

 +
 b

 =
 0

Finding a perfect classifier (when one exists)
using linear programming

for yt = +1,

and for yt = -1,

For every data point (xt, yt), enforce the
constraint

Equivalently, we want to satisfy all of the
linear constraints

This linear program can be efficiently
solved using algorithms such as simplex,
interior point, or ellipsoid

Finding a perfect classifier (when one exists)
using linear programming

Example of 2-dimensional
linear programming
(feasibility) problem:

For SVMs, each data point
gives one inequality:

What happens if the data set is not linearly separable?

Weight space

•  Try to find weights that violate as few
constraints as possible?

•  Formalize this using the 0-1 loss:

•  Unfortunately, minimizing 0-1 loss is
NP-hard in the worst-case
–  Non-starter. We need another

approach.

#(mistakes)

Minimizing number of errors (0-1 loss)

where

Key idea #1: Allow for slack

For each data point:
• If functional margin ≥ 1, don’t care
• If functional margin < 1, pay linear penalty

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -1

w
.x

 +
 b

 =
 0

ξ2

ξ1

ξ3

ξ4

Σj ξj

- ξj ξj≥0

“slack variables”

We now have a linear program again,
and can efficiently find its optimum

, ξ

Key idea #1: Allow for slack

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -1

w
.x

 +
 b

 =
 0

Σj ξj

- ξj ξj≥0

“slack variables”

, ξ

What is the optimal value ξj
* as a function

of w* and b*?

If then ξj = 0

If then ξj =

Sometimes written as

ξ2

ξ1

ξ3

ξ4

Equivalent hinge loss formulation

Σj ξj
- ξj ξj≥0

Substituting into the objective, we get:

, ξ

This is empirical risk minimization,
using the hinge loss

The hinge loss is defined as

Hinge loss vs. 0/1 loss

1 0

1

Hinge loss upper bounds 0/1 loss!

It is the tightest convex upper bound on the 0/1 loss

Hinge loss:

0-1 Loss:

Key idea #2: seek large margin

