L1 regularization & Intro to learning theory Lecture 8

David Sontag
New York University

Feature Selection

Setting: Lots of possible features, many of which are irrelevant

Example:

When studying depression in teens, a researcher distributes a questionnaire of 250 different questions, many of them related or irrelevant.

Goal: Find a *small set* of questions that can be used to quickly determine whether or not a teen is depressed.

Feature Selection

Setting: Lots of possible features, many of which are irrelevant

Example:

When studying depression in teens, a researcher distributes a questionnaire of 250 different questions, many of them related or irrelevant.

Goal: Find a *small set* of questions that can be used to quickly determine whether or not a teen is depressed.

Mathematically:

$$\min_{w} \ell(w \cdot x, y) + \lambda(\text{non-zero elements in } w)$$

Feature Selection

Setting: Lots of possible features, many of which are irrelevant

Example:

When studying depression in teens, a researcher distributes a questionnaire of 250 different questions, many of them related or irrelevant.

Goal: Find a *small set* of questions that can be used to quickly determine whether or not a teen is depressed.

Mathematically:

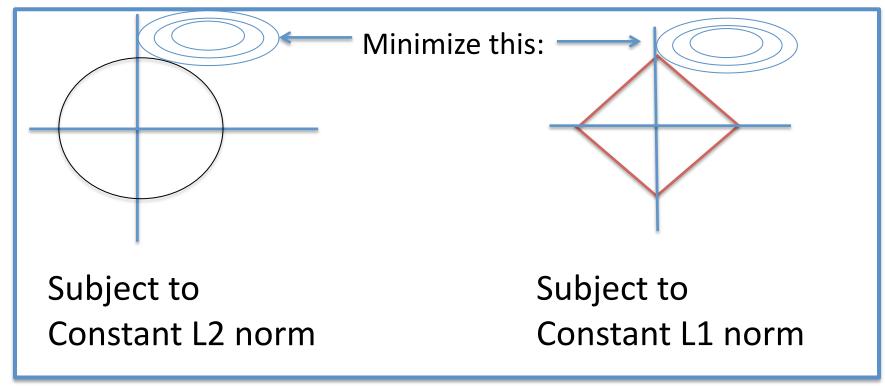
$$\min_{w} \ell(w \cdot x, y) + \lambda (\text{non-zero elements in } w)$$

 Penalizing the L1 norm of the weight vector leads to sparse (read: many 0's) solutions for w.

$$\min_{w} \ell(w \cdot x, y) + \lambda |w|$$

Why?

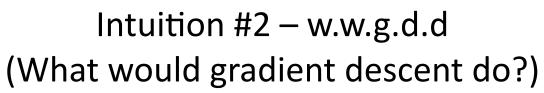
 Penalizing the L1 norm of the weight vector leads to sparse (read: many 0's) solutions for w.



 Penalizing the L1 norm of the weight vector leads to sparse (read: many 0's) solutions for w.

Intuition #2 – w.w.g.d.d (What would gradient descent do?)
$$\frac{d}{dw_i}\lambda||w||_2=\pm\lambda w_i \qquad \qquad \frac{d}{dw_i}\lambda|w|=\pm\lambda$$

 Penalizing the L1 norm of the weight vector leads to sparse (read: many 0's) solutions for w.



$$\frac{d}{dw_i}\lambda||w||_2 = \pm \lambda w_i \qquad \frac{d}{dw_i}\lambda|w| = \pm \lambda$$

The push towards 0 gets weaker as wi gets smaller Always
pushes
elements of
wi towards 0

Example: Early Detection of Type 2 Diabetes

- Global prevalence will go from 171 million in 2000 to 366 million in 2030
- 25% of people in the US with diabetes are undiagnosed
- Leads to complications of cardiovascular, cerebrovascular, renal, and vision systems
- Early lifestyle changes shown to prevent or delay the onset of the disease better than Metformin

Traditional risk assessment

- Use small number of risk factors (e.g. ~20)
- Easy to ask/measure in the office
- Simple model: can calculate scores by hand

TYPE 2 DIABETES RISK ASSESSMENT FORM

Circle the right alternative and add up your points.

Under 45 years 0 p. 45-54 years 55-64 years

Over 64 years

2. Body-mass index

(See reverse of form)

Lower than 25kg/m²

25-30 kg/m²

Higher than 30 kg/m²

3. Waist circumference measured below the ribs (usually at the level of the navel)

MEN Less than 94cm

WOMEN Less than 80cm 80-88cm

94-102cm

More than 102cm

More than 88cm

4. Do you usually have daily at least 30 minutes of physical activity at work and/or during leisure time (including normal daily activity)?

0 p. Yes 2 p.

5. How often do you eat vegetables, fruit'or berries?

0 p. Every day Not every day

6. Have you ever taken anti-hypertensive medication regularly?

No

7. Have you ever been found to have high blood glucose (e.g. in a health examination, during an illness, during pregnancy)?

0 p.

5 p. Yes

8. Have any of the members of your immediate family or other relatives been diagnosed with diabetes (type 1 or type 2)?

0 p.

Higher

Yes: grandparent, aunt, uncle or first cousin (but no own parent, brother, sister or child)

Yes: parent, brother, sister or own child

Total risk score

The risk of developing type 2 diabetes within 10 years is

Lower than 7 Low: estimated 1 in 100

will develop disease 7-11 Slightly elevated: estimated 1 in 25

will develop disease 12-14 Moderate: estimated 1 in 6

will develop disease 15-20 High: estimated 1 in 3

will develop disease Very high:

than 20 estimated 1 in 2 will develop disease

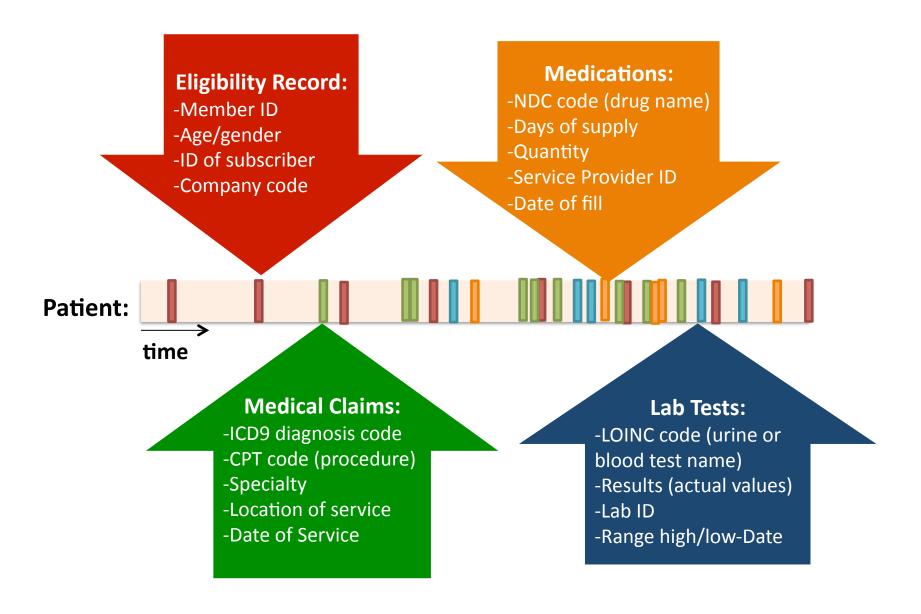
Please turn over

Population-Level Risk Stratification

- Key idea: Use automatically collected administrative, utilization, and clinical data
- Machine learning will find surrogates for risk factors that would otherwise be missing
- Enables risk stratification at the population level
 millions of patients

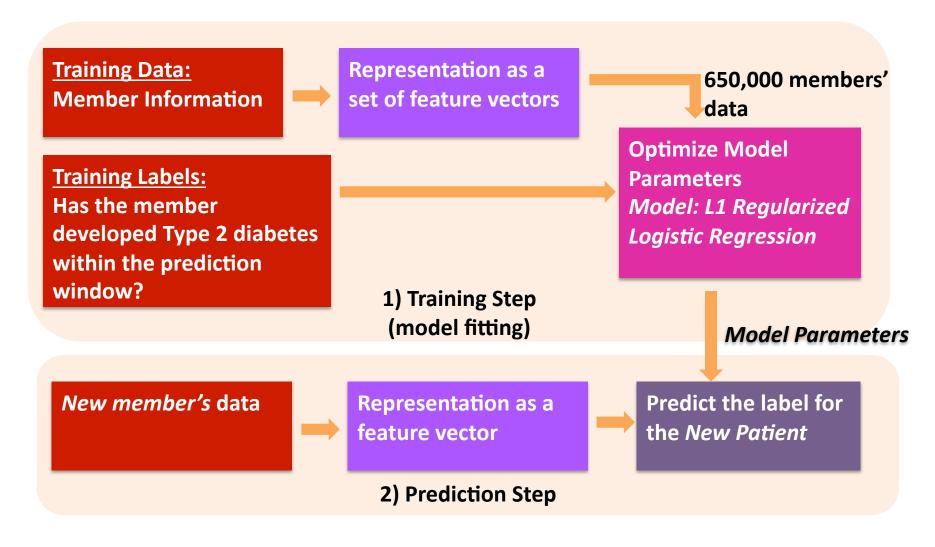
[N. Razavian, S. Blecker, A.M. Schmidt, A. Smith-McLallen, S. Nigam, D. Sontag. Population-Level Prediction of Type 2 Diabetes using Claims Data and Analysis of Risk Factors. *Big Data*, Jan. 2016.]

Administrative & Clinical Data

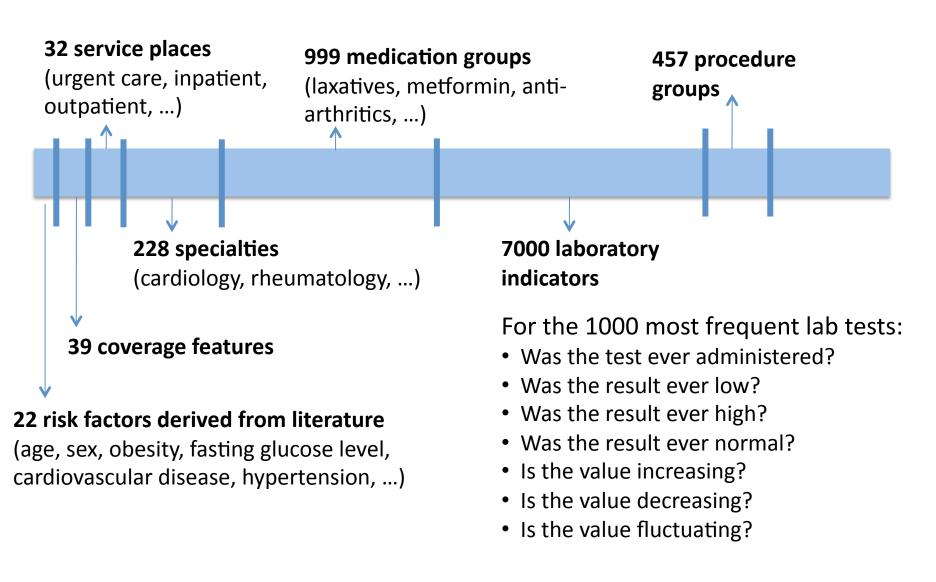


Machine Learning

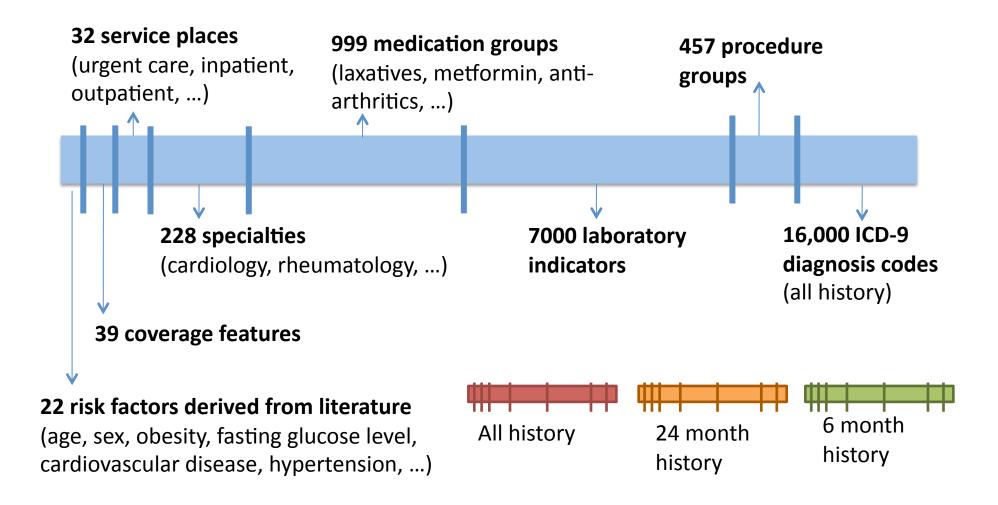
Task: predict the probability of a member developing diabetes



Features



Features



Total features per patient: 42,000

What are the discovered risk factors?

Feature Name

Impaired Fasting Glucose (790.21)

Abnormal Glucose NEC (790.29)

Hypertension (401)

Obstructive Sleep Apnea (327.23)

Obesity (278)

Abnormal Blood Chemistry (790.6)

Hyperlipidemia (272.4)

Shortness Of Breath (786.05)

Esophageal Reflux (530.81)

Acute Bronchitis (466.0)

Actinic Keratosis (702.0)

Positive weights

Additional risk factors identfied:

Impaired oral glucose tolerance, Chronic liver disease, Pituitary dwarfism, Hypersomnia with sleep apnea, Joint replaced knee, Liver disorder, Iron deficiency anemia, Mitral valve disorder...

Diagnostic groups

Procedure Group

Lab Test

Medication Group

Service Place

What are the discovered risk factors?

Feature Name

Hemoglobin A1c / Hemoglobin. Total - High

Positive weights

Glucose - High

Hemoglobin A1c / Hemoglobin. Total - Request For Test

Cholesterol.In HDL - Low

Cholesterol.Total / Cholesterol.In HDL - Hi
Cholesterol.In VLDL - Request For Test
Carbon Dioxide - Request For Test
Glomerular Filtration Rate/1.73 Sq. M. P
Black - Request For Test

Additional risk factors identfied:

Potassium (low), Erythrocyte mean corpuscular hemoglobin concentration (fluctuating), Erythrocyte distribution width (high), Alanine aminotransferase (high), Cholesterol.in LDL (increasing), Creatinine (decreasing), Albumin/Globulin (increasing)...

Diagnostic groups

Procedure Group

Lab Test

Medication Group

Service Place

What are the discovered risk factors?

Routine Chest Xray Medication Group: Anti-arthritics Service Place: Emergency Room - Hospital Routine Medical Exam (V700) Routine Gynecological Examination (V7231) Routine Child Health Exam (V202) Very positive Very positive

~700 risk factors selected for model

Diagnostic groups

Procedure Group

Lab Test

Medication Group

Service Place

Using patient data through Dec. 31, 2008, who will be newly diagnosed with Type 2 diabetes in the following years?

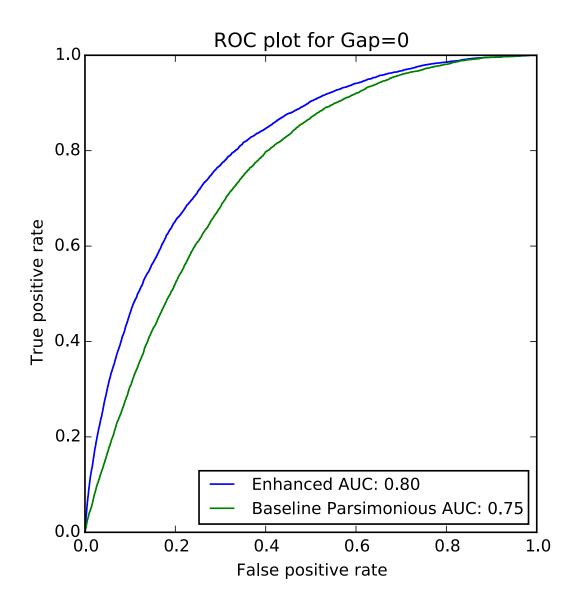
	Model	AUC	
2009-2011 (incident diabetes)	Literature features only	0.75	
	Overall Model	0.8	
2011-2013 (future	Literature features only	0.72	
diabetics)	Overall Model	0.76	

Area under the ROC curve (AUC) =

Randomly choosing two members, one who *did* get diabetes and one who *did not*, can we predict which is which?

← Highest risk population

2 years lead time for this population



Using patient data through Dec. 31, 2008, who will be newly diagnosed with Type 2 diabetes in the following years?

2009-201
(incident
diabetes)

2011-2013 (future diabetics)

Model	AUC	Top 1000 predictions			
		Sensitivity	Specificity	PPV	
Literature features only	0.75	0.014	0.996	0.1	
Overall Model	0.8	0.033	0.997	0.24	
Literature features only	0.72	0.013	0.995	0.04	
Overall Model	0.76	0.023	0.995	0.07	

Sensitivity = TP/P

"true positive rate" or "recall"

Specificity = TN/N

"true negative rate"

PPV = TP/(TP+FP)

"positive predictive value"

Using patient data through Dec. 31, 2008, who will be newly diagnosed with Type 2 diabetes in the following years?

	Model	AUC	Top 1000 predictions		Top 10000 predictions			
			Sensitivity	Specificity	PPV	Sensitivity	Specificity	PPV
009-2011 incident	Literature features only	0.75	0.014	0.996	0.1	0.114	0.967	0.08
iabetes)	Overall Model	0.8	0.033	0.997	0.24	0.212	0.969	0.14
2011-2013 future	Literature features only	0.72	0.013	0.995	0.04	0.116	0.957	0.03
liabetics)	Overall Model	0.76	0.023	0.995	0.07	0.179	0.958	0.05

20 (ir di

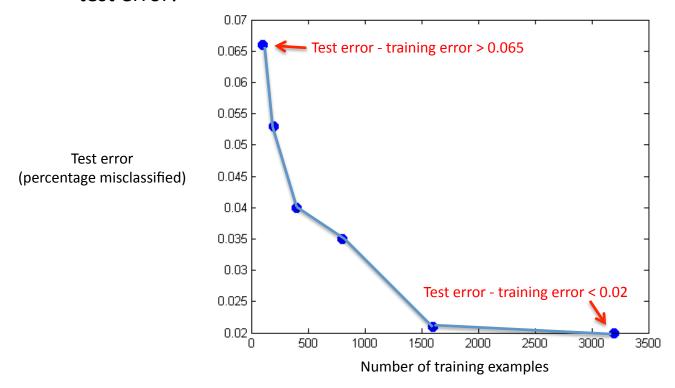
20

What's next...

- We gave several machine learning algorithms:
 - Perceptron
 - Linear support vector machine (SVM)
 - SVM with kernels, e.g. polynomial or Gaussian
- How do we guarantee that the learned classifier will perform well on test data?
- How much training data do we need?

Example: Perceptron applied to spam classification

- In your homework 1, you trained a spam classifier using perceptron
 - The training error was always zero
 - With few data points, there is a big gap between training error and test error!



How much training data do you need?

- Depends on what hypothesis class the learning algorithm considers
- For example, consider a memorization-based learning algorithm
 - Input: training data $S = \{ (x_i, y_i) \}$
 - Output: function $f(\mathbf{x})$ which, if there exists $(\mathbf{x}_i, \mathbf{y}_i)$ in S such that $\mathbf{x} = \mathbf{x}_i$, predicts \mathbf{y}_i , and otherwise predicts the majority label
 - This learning algorithm will always obtain zero training error
 - But, it will take a *huge* amount of training data to obtain small test error (i.e., its generalization performance is horrible)
- Linear classifiers are powerful precisely because of their simplicity
 - Generalization is easy to guarantee

Roadmap of next lectures

1. Generalization of finite hypothesis spaces

2. VC-dimension

Will show that linear classifiers need to see approximately d training points,
 where d is the dimension of the feature vectors

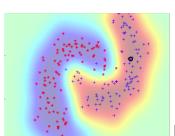
Test error (percentage

misclassified)

Explains the good performance we obtained using perceptron!!!!
 (we had a few thousand features)

3. Margin based generalization

 Applies to infinite dimensional feature vectors (e.g., Gaussian kernel)



[Figure from Cynthia Rudin]

