
Probabilistic Graphical Models:
Lagrangian Relaxation Algorithms
for Natural Language Processing

Alexander M. Rush

(based on joint work with Michael Collins,
Tommi Jaakkola, Terry Koo, David Sontag)

Uncertainty in language

natural language is notoriusly ambiguous, even in toy sentences

United flies some large jet

problem becomes very difficult in real-world sentences

Lin made the first start of his surprising N.B.A.

career Monday just as the Knicks lost Amar’e

Stoudemire and Carmelo Anthony, turning the roster

upside down and setting the scene for another strange

and wondrous evening at Madison Square Garden.

NLP challenges

Lin made the first start of his surprising N.B.A.

career Monday just as the Knicks lost Amar’e

Stoudemire and Carmelo Anthony, turning the roster

upside down and setting the scene for another strange

and wondrous evening at Madison Square Garden.

• who lost Stoudemire?

• what is turning the roster upside down?

• are “strange and wonderous” paired?

• what about “down and setting”?

NLP applications

This lecture

1. introduce models for natural language processing in the
context of decoding in graphical models

2. describe research in Lagrangian relaxation methods for
inference in natural language problems.

Decoding in NLP

focus: decoding as a combinatorial optimization problem

y∗ = arg max
y∈Y

f (y)

where f is a scoring function and Y is a set of structures

also known as the MAP problem

f (y ; x) = p(y |x)

Algorithms for exact decoding
coming lectures will explore algorithms for decoding

y∗ = arg max
y∈Y

f (y)

for some problems, simple combinatorial algorithms are exact

• dynamic programming - e.g. tree-structured MRF’s

• min cut - for certain types of weight structures

• minimum spanning tree - certain NLP problems

can depend on structure of the graphical model

Tagging

United flies some large jet

United1 flies2 some3 large4 jet5

N V D A N

Parsing

United flies some large jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

United flies some large jet

*0 United1 flies2 some3 large4 jet5

Decoding complexity

issue: simple combinatorial algorithms do not scale to richer
models

y∗ = arg max
y∈Y

f (y)

need decoding algorithms for complex natural language tasks

motivation:

• richer model structure often leads to improved accuracy

• exact decoding for complex models tends to be intractable

Phrase-based translation

das muss unsere sorge gleichermaßen sein

das muss unsere sorge gleichermaßen sein

this must our concernalso be

Word alignment

the ugly dog has red fur

le chien laid a fourrure rouge

Decoding tasks
high complexity

• combined parsing and part-of-speech tagging (Rush et al.,
2010)

• “loopy” HMM part-of-speech tagging

• syntactic machine translation (Rush and Collins, 2011)

NP-Hard

• symmetric HMM alignment (DeNero and Macherey, 2011)

• phrase-based translation (Chang and Collins, 2011)

• higher-order non-projective dependency parsing (Koo et al.,
2010)

in practice:

• approximate decoding methods (coarse-to-fine, beam search,
cube pruning, gibbs sampling, belief propagation)

• approximate models (mean field, variational models)

Motivation

cannot hope to find exact algorithms (particularly when NP-Hard)

aim: develop decoding algorithms with formal guarantees

method:

• derive fast algorithms that provide certificates of optimality

• show that for practical instances, these algorithms often yield
exact solutions

• provide strategies for improving solutions or finding
approximate solutions when no certificate is found

Lagrangian relaxation helps us develop algorithms of this form

Lagrangian relaxation
a general technique for constructing decoding algorithms

solve complicated models

y∗ = arg max
y

f (y)

by decomposing into smaller problems.

upshot: can utilize a toolbox of combinatorial algorithms.

• dynamic programming

• minimum spanning tree

• shortest path

• min cut

• ...

Lagrangian relaxation algorithms

Simple - uses basic combinatorial algorithms

Efficient - faster than solving exact decoding problems

Strong guarantees

• gives a certificate of optimality when exact

• direct connections to linear programming relaxations

Outline

1. background on exact NLP decoding

2. worked algorithm for combined parsing and tagging

3. important theorems and formal derivation

4. more examples from parsing and alignment

1. Background: Part-of-speech tagging

United flies some large jet

United1 flies2 some3 large4 jet5

N V D A N

Graphical model formulation

given:

• a sentence of length n and a tag set T

• one variable for each word, takes values in T

• edge potentials θ(i − 1, i , t ′, t) for all i ∈ n, t, t ′ ∈ T

example:

United1 flies2 some3 large4 jet5

T = {A,D,N,V }

note: for probabilistic HMM θ(i − 1, i , t ′, t) = log(p(wi |t)p(t|t ′))

Decoding problem

let Y = T n be the set of assignments to the variables

decoding problem: arg max
y∈Y

f (y)

f (y) =
n∑

i=2

θ(i − 1, i , y(i − 1), y(i))

example:

United1 flies2 some3 large4 jet5

N V D A N

Combinatorial solution: Viterbi algorithm

Set c(i , t) = −∞ for all i 6= 1, t ∈ T

Set c(1, t) = 0 for all t ∈ T

For i = 2 to n

For t = 1 to T

c(i , t)← max
t′∈T

c(i − 1, t ′) + θ(i − 1, i , t ′, t)

Return max
t′∈T

c(n, t ′)

Note: run time O(n|T |2), can greatly reduce |T | in practice

special case of the belief propagation (next week)

Example run

POS Tag Best Path

A

D

N

V

United1 flies2 some3 large4 jet5

Example run

POS Tag Best Path

A 0

D 0

N 0

V 0

United1 flies2 some3 large4 jet5

Example run

POS Tag Best Path

A 0 1

D 0 1

N 0 2

V 0 2

United1 flies2 some3 large4 jet5

Example run

POS Tag Best Path

A 0 1 2

D 0 1 3

N 0 2 2

V 0 2 2

United1 flies2 some3 large4 jet5

Example run

POS Tag Best Path

A 0 1 2 4 4

D 0 1 3 3 4

N 0 2 2 3 6

V 0 2 2 3 5

United1 flies2 some3 large4 jet5

Example run

POS Tag Best Path

A 0 1 2 4 4

D 0 1 3 3 4

N 0 2 2 3 6

V 0 2 2 3 5

N V D A N

United1 flies2 some3 large4 jet5

Parsing

United flies some large jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

Parse decoding
parsing has potentials:

• θ(A→ B C) for each internal rules

• θ(A→ w) for pre-terminal (bottom) rules

not easily represented as a graphical model

• complicated independence structure
S

VP

NP

N

jet

A

large

D

some

V

flies

NP

N

United

luckily, similar decoding algorithms to Viterbi

• CKY algorithm for context-free parsing - O(G 3n3)

• Eisner algorithm for dependency parsing - O(n3)

2. Worked example

aim: walk through a Lagrangian relaxation algorithm for combined
parsing and part-of-speech tagging

• introduce formal notation for parsing and tagging

• give assumptions necessary for decoding

• step through a run of the Lagrangian relaxation algorithm

Combined parsing and part-of-speech tagging

S

VP

NP

N

jet

A

large

D

some

V

flies

NP

N

United

goal: find parse tree that optimizes

score(S → NP VP) + score(VP → V NP) +

...+ score(N→ V) + score(N→ United) + ...

Constituency parsing
notation:

• Y is set of constituency parses for input
• y ∈ Y is a valid parse
• f (y) scores a parse tree

goal:
arg max

y∈Y
f (y)

example: a context-free grammar for constituency parsing

S

VP

NP

N

jet

A

large

D

some

V

flies

NP

N

United

Part-of-speech tagging
notation:

• Z is set of tag sequences for input

• z ∈ Z is a valid tag sequence

• g(z) scores of a tag sequence

goal:
arg max

z∈Z
g(z)

example: an HMM for part-of speech tagging

United1 flies2 some3 large4 jet5

N V D A N

Identifying tags
notation: identify the tag labels selected by each model

• y(i , t) = 1 when parse y selects tag t at position i

• z(i , t) = 1 when tag sequence z selects tag t at position i

example: a parse and tagging with y(4,A) = 1 and z(4,A) = 1

S

VP

NP

N

jet

A

large

D

some

V

flies

NP

N

United

y

United1 flies2 some3 large4 jet5

N V D A N

z

Combined optimization

goal:
arg max

y∈Y,z∈Z
f (y) + g(z)

such that for all i = 1 . . . n, t ∈ T ,

y(i , t) = z(i , t)

i.e. find the best parse and tagging pair that agree on tag labels

equivalent formulation:

arg max
y∈Y

f (y) + g(l(y))

where l : Y → Z extracts the tag sequence from a parse tree

Exact method: Dynamic programming intersection
can solve by solving the product of the two models

example:

• parsing model is a context-free grammar

• tagging model is a first-order HMM

• can solve as CFG and finite-state automata intersection

replace VP → V NP
with VPN,V → VN,V NPV,N

S

VP

NP

N

jet

A

large

D

some

V

flies

NP

N

United

Intersected parsing and tagging complexity

let G be the number of grammar non-terminals

parsing CFG require O(G 3n3) time with rules VP → V NP

S

VPN,N

NPV ,N

NA,N

jet

A

large

DV ,D

some

VN,V

flies

NP∗,N

N

United

with intersection O(G 3n3|T |3) with rules VPN,V → VN,V NPV,N

becomes O(G 3n3|T |6) time for second-order HMM

Tagging assumption
assumption: optimization with u can be solved efficiently

arg max
z∈Z

g(z)−
∑

i ,t

u(i , t)z(i , t)

example: HMM with scores with edge potentials θ

g(z) =
n∑

i=2

θ(i − 1, i , z(i − 1), z(i))

where

arg maxz∈Z g(z)−
∑

i ,t

u(i , t)z(i , t) =

arg maxz∈Z
n∑

i=2

(θ(i − 1, i , z(i − 1), z(i))− u(i , z(i)))− u(1, z(1))

(Modified) Viterbi algorithm

Set c(i , t) = −∞ for all i 6= 1, t ∈ T

Set c(1, t) = u(1, t) for all t ∈ T

For i = 2 to n

For t = 1 to T

c(i , t)← max
t′∈T

c(i − 1, t ′) + θ(i − 1, i , t ′, t)− u(i , t)

Return max
t′∈T

c(n, t ′)

Note: same algorithm as before with modified potentials

Parsing assumption
assumption: optimization with u can be solved efficiently

arg max
y∈Y

f (y) +
∑

i ,t

u(i , t)y(i , t)

example: CFG with rule scoring function θ

f (y) =
∑

X→Y Z∈y
θ(X → Y Z) +

∑

(i ,X)∈y
θ(X → wi)

where

arg maxy∈Y f (y) +
∑

i ,t

u(i , t)y(i , t) =

arg maxy∈Y
∑

X→Y Z∈y
θ(X → Y Z) +

∑

(i ,X)∈y
(θ(X → wi) + u(i ,X))

Lagrangian relaxation algorithm

Set u(1)(i , t) = 0 for all i , t ∈ T

For k = 1 to K

y (k) ← arg max
y∈Y

f (y) +
∑

i ,t

u(k)(i , t)y(i , t) [Parsing]

z(k) ← arg max
z∈Z

g(z)−
∑

i ,t

u(k)(i , t)z(i , t) [Tagging]

If y (k)(i , t) = z(k)(i , t) for all i , t Return (y (k), z(k))

Else u(k+1)(i , t)← u(k)(i , t)− αk(y (k)(i , t)− z(k)(i , t))

CKY Parsing

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,t

u(i , t)y(i , t))

Viterbi Decoding

United1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑

i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,t

u(i , t)y(i , t))

Viterbi Decoding

United1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑

i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,t

u(i , t)y(i , t))

Viterbi Decoding

United1 flies2 some3 large4 jet5

N V D A N

N V D A NA N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑

i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,t

u(i , t)y(i , t))

Viterbi Decoding

United1 flies2 some3 large4 jet5

N V D A N

N V D A N

A N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑

i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,t

u(i , t)y(i , t))

Viterbi Decoding

United1 flies2 some3 large4 jet5

N V D A N

N V D A N

A N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑

i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,t

u(i , t)y(i , t))

Viterbi Decoding

United1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑

i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,t

u(i , t)y(i , t))

Viterbi Decoding

United1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑

i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,t

u(i , t)y(i , t))

Viterbi Decoding

United1 flies2 some3 large4 jet5

N V D A NN V D A N

A N D A N

A N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑

i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,t

u(i , t)y(i , t))

Viterbi Decoding

United1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A N

A N D A N

N V D A N

z∗ = arg max
z∈Z

(g(z)−
∑

i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,t

u(i , t)y(i , t))

Viterbi Decoding

United1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑

i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,t

u(i , t)y(i , t))

Viterbi Decoding

United1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A NN V D A N

z∗ = arg max
z∈Z

(g(z)−
∑

i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,t

u(i , t)y(i , t))

Viterbi Decoding

United1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A N

N V D A N

z∗ = arg max
z∈Z

(g(z)−
∑

i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

CKY Parsing

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,t

u(i , t)y(i , t))

Viterbi Decoding

United1 flies2 some3 large4 jet5

N V D A NN V D A NA N D A NA N D A N

N V D A N

z∗ = arg max
z∈Z

(g(z)−
∑

i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V) 1

u(5,V) -1

u(5,N) 1

Iteration 2

u(5,V) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)Key

f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i

Main theorem

theorem: if at any iteration, for all i , t ∈ T

y (k)(i , t) = z(k)(i , t)

then (y (k), z(k)) is the global optimum

proof: focus of the next section

Convergence

 0

 20

 40

 60

 80

 100

<=1
<=2

<=3
<=4

<=10
<=20

<=50

%
 e

xa
m

pl
es

 c
on

ve
rg

ed

number of iterations

2. Formal properties

aim: formal derivation of the algorithm given in the previous
section

• derive Lagrangian dual

• prove three properties

I upper bound

I convergence

I optimality

• describe subgradient method

Lagrangian
goal:

arg max
y∈Y,z∈Z

f (y) + g(z) such that y(i , t) = z(i , t)

Lagrangian:

L(u, y , z) = f (y) + g(z) +
∑

i ,t

u(i , t) (y(i , t)− z(i , t))

redistribute terms

L(u, y , z) =

f (y) +

∑

i ,t

u(i , t)y(i , t)

 +

g(z)−

∑

i ,t

u(i , t)z(i , t)

Lagrangian dual

Lagrangian:

L(u, y , z) =

f (y) +

∑

i ,t

u(i , t)y(i , t)

 +

g(z)−

∑

i ,t

u(i , t)z(i , t)

Lagrangian dual:

L(u) = max
y∈Y,z∈Z

L(u, y , z)

= max
y∈Y

f (y) +

∑

i ,t

u(i , t)y(i , t)

 +

max
z∈Z

g(z)−

∑

i ,t

u(i , t)z(i , t)

Theorem 1. Upper bound

define:

• y∗, z∗ is the optimal combined parsing and tagging solution
with y∗(i , t) = z∗(i , t) for all i , t

theorem: for any value of u

L(u) ≥ f (y∗) + g(z∗)

L(u) provides an upper bound on the score of the optimal solution

note: upper bound may be useful as input to branch and bound or
A* search

Theorem 1. Upper bound (proof)

theorem: for any value of u, L(u) ≥ f (y∗) + g(z∗)

proof:

L(u) = max
y∈Y,z∈Z

L(u, y , z) (1)

≥ max
y∈Y,z∈Z:y=z

L(u, y , z) (2)

= max
y∈Y,z∈Z:y=z

f (y) + g(z) (3)

= f (y∗) + g(z∗) (4)

Formal algorithm (reminder)

Set u(1)(i , t) = 0 for all i , t ∈ T

For k = 1 to K

y (k) ← arg max
y∈Y

f (y) +
∑

i ,t

u(k)(i , t)y(i , t) [Parsing]

z(k) ← arg max
z∈Z

g(z)−
∑

i ,t

u(k)(i , t)z(i , t) [Tagging]

If y (k)(i , t) = z(k)(i , t) for all i , t Return (y (k), z(k))

Else u(k+1)(i , t)← u(k)(i , t)− αk(y (k)(i , t)− z(k)(i , t))

Theorem 2. Convergence
notation:

• u(k+1)(i , t)← u(k)(i , t) + αk(y (k)(i , t)− z(k)(i , t)) is update

• u(k) is the penalty vector at iteration k

• αk > 0 is the update rate at iteration k

theorem: for any sequence α1, α2, α3, . . . such that

lim
t→∞

αt = 0 and
∞∑

t=1

αt =∞,

we have
lim
t→∞

L(ut) = min
u

L(u)

i.e. the algorithm converges to the tightest possible upper bound

proof: by subgradient convergence (next section)

Dual solutions

define:

• for any value of u

yu = arg max
y∈Y

f (y) +

∑

i ,t

u(i , t)y(i , t)

and

zu = arg max
z∈Z

g(z)−

∑

i ,t

u(i , t)z(i , t)

• yu and zu are the dual solutions for a given u

Theorem 3. Optimality

theorem: if there exists u such that

yu(i , t) = zu(i , t)

for all i , t then

f (yu) + g(zu) = f (y∗) + g(z∗)

i.e. if the dual solutions agree, we have an optimal solution

(yu, zu)

Theorem 3. Optimality (proof)

theorem: if u such that yu(i , t) = zu(i , t) for all i , t then

f (yu) + g(zu) = f (y∗) + g(z∗)

proof: by the definitions of yu and zu

L(u) = f (yu) + g(zu) +
∑

i ,t

u(i , t)(yu(i , t)− zu(i , t))

= f (yu) + g(zu)

since L(u) ≥ f (y∗) + g(z∗) for all values of u

f (yu) + g(zu) ≥ f (y∗) + g(z∗)

but y∗ and z∗ are optimal

f (yu) + g(zu) ≤ f (y∗) + g(z∗)

Dual optimization

Lagrangian dual:

L(u) = max
y∈Y,z∈Z

L(u, y , z)

= max
y∈Y

f (y) +

∑

i ,t

u(i , t)y(i , t)

 +

max
z∈Z

g(z)−

∑

i ,t

u(i , t)z(i , t)

goal: dual problem is to find the tightest upper bound

min
u

L(u)

Dual subgradient

L(u) = max
y∈Y

f (y) +

∑

i,t

u(i , t)y(i , t)

 + max

z∈Z

g(z)−

∑

i,t

u(i , t)z(i , t)

properties:
• L(u) is convex in u (no local minima)
• L(u) is not differentiable (because of max operator)

handle non-differentiability by using subgradient descent

define: a subgradient of L(u) at u is a vector gu such that for all v

L(v) ≥ L(u) + gu · (v − u)

Subgradient algorithm

L(u) = max
y∈Y

f (y) +

∑

i,t

u(i , t)y(i , t)

 + max

z∈Z

g(z)−

∑

i,j

u(i , t)z(i , t)

recall, yu and zu are the argmax’s of the two terms

subgradient:

gu(i , t) = yu(i , t)− zu(i , t)

subgradient descent: move along the subgradient

u′(i , t) = u(i , t)− α (yu(i , t)− zu(i , t))

guaranteed to find a minimum with conditions given earlier for α

4. More examples

aim: demonstrate similar algorithms that can be applied to other
decoding applications

• context-free parsing combined with dependency parsing

• combined translation alignment

Combined constituency and dependency parsing
(Rush et al., 2010)

setup: assume separate models trained for constituency and
dependency parsing

problem: find constituency parse that maximizes the sum of the
two models

example:

• combine lexicalized CFG with second-order dependency parser

Lexicalized constituency parsing
notation:

• Y is set of lexicalized constituency parses for input
• y ∈ Y is a valid parse
• f (y) scores a parse tree

goal:
arg max

y∈Y
f (y)

example: a lexicalized context-free grammar

S(flies)

VP(flies)

NP(jet)

N

jet

A

large

D

some

V

flies

NP(United)

N

United

Dependency parsing

define:

• Z is set of dependency parses for input

• z ∈ Z is a valid dependency parse

• g(z) scores a dependency parse

example:

*0 United1 flies2 some3 large4 jet5

Identifying dependencies
notation: identify the dependencies selected by each model

• y(i , j) = 1 when word i modifies of word j in constituency
parse y

• z(i , j) = 1 when word i modifies of word j in dependency
parse z

example: a constituency and dependency parse with y(3, 5) = 1
and z(3, 5) = 1

S(flies)

VP(flies)

NP(jet)

N

jet

A

large

D

some

V

flies

NP(United)

N

United

y

*0 United1 flies2 some3 large4 jet5

z

Combined optimization

goal:
arg max

y∈Y,z∈Z
f (y) + g(z)

such that for all i = 1 . . . n, j = 0 . . . n,

y(i , j) = z(i , j)

CKY Parsing

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 United1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑

i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 United1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑

i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 United1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑

i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 United1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑

i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 United1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑

i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 United1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑

i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 United1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑

i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 United1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑

i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

CKY Parsing

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

D

some

NP(jet)

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

S(flies)

NP

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y∗ = arg max
y∈Y

(f (y) +
∑

i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 United1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑

i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j

Convergence

 0

 20

 40

 60

 80

 100

<=1
<=2

<=3
<=4

<=10
<=20

<=50

%
 e

xa
m

pl
es

 c
on

ve
rg

ed

number of iterations

Integrated Constituency and Dependency Parsing: Accuracy

 87

 88

 89

 90

 91

 92
Collins

Dep
Dual

F1 Score

I Collins (1997) Model 1

I Fixed, First-best Dependencies from Koo (2008)

I Dual Decomposition

Corpus-level tagging

setup: given a corpus of sentences and a trained sentence-level
tagging model

problem: find best tagging for each sentence, while at the same
time enforcing inter-sentence soft constraints

example:

• test-time decoding with a trigram tagger

• constraint that each word type prefer a single POS tag

Corpus-level tagging

English is my first language

He studies language arts now

Language makes us human beings

N

Sentence-level decoding
notation:

• Yi is set of tag sequences for input sentence i
• Y = Y1× . . .×Ym is set of tag sequences for the input corpus
• Y ∈ Y is a valid tag sequence for the corpus
• F (Y) =

∑

i

f (Yi) is the score for tagging the whole corpus

goal:
arg max

Y∈Y
F (Y)

example: decode each sentence with a trigram tagger

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Inter-sentence constraints
notation:

• Z is set of possible assignments of tags to word types

• z ∈ Z is a valid tag assignment

• g(z) is a scoring function for assignments to word types

example: an MRF model that encourages words of the same type
to choose the same tag

z1

language

N

language

N

language

N

N

z2

language

N

language

A

language

N

N

g(z1) > g(z2)

Identifying word tags
notation: identify the tag labels selected by each model

• Ys(i , t) = 1 when the tagger for sentence s at position i
selects tag t

• z(s, i , t) = 1 when the constraint assigns at sentence s
position i the tag t

example: a parse and tagging with Y1(5,N) = 1 and
z(1, 5,N) = 1

English is my first language

He studies language arts now

Y

language language language

z

Combined optimization

goal:
arg max

Y∈Y,z∈Z
F (Y) + g(z)

such that for all s = 1 . . .m, i = 1 . . . n, t ∈ T ,

Ys(i , t) = z(s, i , t)

Tagging

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

N

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

MRF

language

A

language

A

language

A

A

language

A

language

A

language

A

A

language

N

language

N

language

N

N

language

N

language

N

language

N

N

language

N

language

N

language

N

N

Penalties
u(s, i , t) = 0 for all s,i ,t

Iteration 1

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

Iteration 2

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

u(2, 3,N) 1

u(2, 3,A) -1

Key

F (Y) ⇐ Tagging model g(z) ⇐ MRF
Y ⇐ Sentence-level tagging Z ⇐ Inter-sentence constraints
Ys(i , t) = 1 if sentence s has tag t at position i

Tagging

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

N

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

MRF

language

A

language

A

language

A

A

language

A

language

A

language

A

A

language

N

language

N

language

N

N

language

N

language

N

language

N

N

language

N

language

N

language

N

N

Penalties
u(s, i , t) = 0 for all s,i ,t

Iteration 1

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

Iteration 2

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

u(2, 3,N) 1

u(2, 3,A) -1

Key

F (Y) ⇐ Tagging model g(z) ⇐ MRF
Y ⇐ Sentence-level tagging Z ⇐ Inter-sentence constraints
Ys(i , t) = 1 if sentence s has tag t at position i

Tagging

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

N

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

MRF

language

A

language

A

language

A

A

language

A

language

A

language

A

A

language

N

language

N

language

N

N

language

N

language

N

language

N

N

language

N

language

N

language

N

N

Penalties
u(s, i , t) = 0 for all s,i ,t

Iteration 1

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

Iteration 2

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

u(2, 3,N) 1

u(2, 3,A) -1

Key

F (Y) ⇐ Tagging model g(z) ⇐ MRF
Y ⇐ Sentence-level tagging Z ⇐ Inter-sentence constraints
Ys(i , t) = 1 if sentence s has tag t at position i

Tagging

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

N

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

MRF

language

A

language

A

language

A

A

language

A

language

A

language

A

A

language

N

language

N

language

N

N

language

N

language

N

language

N

N

language

N

language

N

language

N

N

Penalties
u(s, i , t) = 0 for all s,i ,t

Iteration 1

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

Iteration 2

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

u(2, 3,N) 1

u(2, 3,A) -1

Key

F (Y) ⇐ Tagging model g(z) ⇐ MRF
Y ⇐ Sentence-level tagging Z ⇐ Inter-sentence constraints
Ys(i , t) = 1 if sentence s has tag t at position i

Tagging

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

N

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

MRF

language

A

language

A

language

A

A

language

A

language

A

language

A

A

language

N

language

N

language

N

N

language

N

language

N

language

N

N

language

N

language

N

language

N

N

Penalties
u(s, i , t) = 0 for all s,i ,t

Iteration 1

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

Iteration 2

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

u(2, 3,N) 1

u(2, 3,A) -1

Key

F (Y) ⇐ Tagging model g(z) ⇐ MRF
Y ⇐ Sentence-level tagging Z ⇐ Inter-sentence constraints
Ys(i , t) = 1 if sentence s has tag t at position i

Tagging

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

N

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

MRF

language

A

language

A

language

A

A

language

A

language

A

language

A

A

language

N

language

N

language

N

N

language

N

language

N

language

N

N

language

N

language

N

language

N

N

Penalties
u(s, i , t) = 0 for all s,i ,t

Iteration 1

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

Iteration 2

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

u(2, 3,N) 1

u(2, 3,A) -1

Key

F (Y) ⇐ Tagging model g(z) ⇐ MRF
Y ⇐ Sentence-level tagging Z ⇐ Inter-sentence constraints
Ys(i , t) = 1 if sentence s has tag t at position i

Tagging

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

N

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

MRF

language

A

language

A

language

A

A

language

A

language

A

language

A

A

language

N

language

N

language

N

N

language

N

language

N

language

N

N

language

N

language

N

language

N

N

Penalties
u(s, i , t) = 0 for all s,i ,t

Iteration 1

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

Iteration 2

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

u(2, 3,N) 1

u(2, 3,A) -1

Key

F (Y) ⇐ Tagging model g(z) ⇐ MRF
Y ⇐ Sentence-level tagging Z ⇐ Inter-sentence constraints
Ys(i , t) = 1 if sentence s has tag t at position i

Tagging

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

N

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

MRF

language

A

language

A

language

A

A

language

A

language

A

language

A

A

language

N

language

N

language

N

N

language

N

language

N

language

N

N

language

N

language

N

language

N

N

Penalties
u(s, i , t) = 0 for all s,i ,t

Iteration 1

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

Iteration 2

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

u(2, 3,N) 1

u(2, 3,A) -1

Key

F (Y) ⇐ Tagging model g(z) ⇐ MRF
Y ⇐ Sentence-level tagging Z ⇐ Inter-sentence constraints
Ys(i , t) = 1 if sentence s has tag t at position i

Tagging

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

N

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

MRF

language

A

language

A

language

A

A

language

A

language

A

language

A

A

language

N

language

N

language

N

N

language

N

language

N

language

N

N

language

N

language

N

language

N

N

Penalties
u(s, i , t) = 0 for all s,i ,t

Iteration 1

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

Iteration 2

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

u(2, 3,N) 1

u(2, 3,A) -1

Key

F (Y) ⇐ Tagging model g(z) ⇐ MRF
Y ⇐ Sentence-level tagging Z ⇐ Inter-sentence constraints
Ys(i , t) = 1 if sentence s has tag t at position i

Tagging

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

N

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

MRF

language

A

language

A

language

A

A

language

A

language

A

language

A

A

language

N

language

N

language

N

N

language

N

language

N

language

N

N

language

N

language

N

language

N

N

Penalties
u(s, i , t) = 0 for all s,i ,t

Iteration 1

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

Iteration 2

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

u(2, 3,N) 1

u(2, 3,A) -1

Key

F (Y) ⇐ Tagging model g(z) ⇐ MRF
Y ⇐ Sentence-level tagging Z ⇐ Inter-sentence constraints
Ys(i , t) = 1 if sentence s has tag t at position i

Tagging

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

N

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

MRF

language

A

language

A

language

A

A

language

A

language

A

language

A

A

language

N

language

N

language

N

N

language

N

language

N

language

N

N

language

N

language

N

language

N

N

Penalties
u(s, i , t) = 0 for all s,i ,t

Iteration 1

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

Iteration 2

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

u(2, 3,N) 1

u(2, 3,A) -1

Key

F (Y) ⇐ Tagging model g(z) ⇐ MRF
Y ⇐ Sentence-level tagging Z ⇐ Inter-sentence constraints
Ys(i , t) = 1 if sentence s has tag t at position i

Tagging

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

A

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

English

N

is

V

my

P

first

A

language

N

He

P

studies

V

language

N

arts

N

now

R

Language

N

makes

V

us

P

human

N

beings

N

MRF

language

A

language

A

language

A

A

language

A

language

A

language

A

A

language

N

language

N

language

N

N

language

N

language

N

language

N

N

language

N

language

N

language

N

N

Penalties
u(s, i , t) = 0 for all s,i ,t

Iteration 1

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

Iteration 2

u(1, 5,N) -1

u(1, 5,A) 1

u(3, 1,N) -1

u(3, 1,A) 1

u(2, 3,N) 1

u(2, 3,A) -1

Key

F (Y) ⇐ Tagging model g(z) ⇐ MRF
Y ⇐ Sentence-level tagging Z ⇐ Inter-sentence constraints
Ys(i , t) = 1 if sentence s has tag t at position i

Combined alignment (DeNero and Macherey, 2011)

setup: assume separate models trained for English-to-French and
French-to-English alignment

problem: find an alignment that maximizes the score of both
models

example:

• HMM models for both directional alignments (assume correct
alignment is one-to-one for simplicity)

Alignment

the ugly dog has red fur

le chien laid a fourrure rouge

Graphical model formulation

given:

• French sentence of length n and English sentence of length m

• one variable for each English word, takes values in {1, . . . , n}

• edge potentials θ(i − 1, i , f ′, f) for all i ∈ n, f , f ′ ∈ {1, . . . , n}

example:

The1 ugly2 dog3 has4 red5 fur6

English-to-French alignment
define:

• Y is set of all possible English-to-French alignments
• y ∈ Y is a valid alignment
• f (y) scores of the alignment

example: HMM alignment

The1 ugly2 dog3 has4 red5 fur6

Le1 laid3 chien2 a4 rouge6 fourrure5

French-to-English alignment
define:

• Z is set of all possible French-to-English alignments
• z ∈ Z is a valid alignment
• g(z) scores of an alignment

example: HMM alignment

Le1 chien2 laid3 a4 fourrure5 rouge6

The1 ugly2 dog3 has4 fur6 red5

Identifying word alignments
notation: identify the tag labels selected by each model

• y(i , j) = 1 when e-to-f alignment y selects French word i to
align with English word j

• z(i , j) = 1 when f-to-e alignment z selects French word i to
align with English word j

example: two HMM alignment models with y(6, 5) = 1 and
z(6, 5) = 1

Combined optimization

goal:
arg max

y∈Y,z∈Z
f (y) + g(z)

such that for all i = 1 . . . n, j = 1 . . . n,

y(i , j) = z(i , j)

English-to-French

y∗ = argmax
y∈Y

(f (y) +
∑

i,j

u(i , j)y(i , j))

French-to-English

z∗ = argmax
z∈Z

(g(z)−
∑

i,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(3, 2) -1

u(2, 2) 1

u(2, 3) -1

u(3, 3) 1

Key

f (y) ⇐ HMM Alignment g(z) ⇐ HMM Alignment
Y ⇐ English-to-French model Z ⇐ French-to-English model
y(i , j) = 1 if French word i aligns to English word j

English-to-French

y∗ = argmax
y∈Y

(f (y) +
∑

i,j

u(i , j)y(i , j))

French-to-English

z∗ = argmax
z∈Z

(g(z)−
∑

i,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(3, 2) -1

u(2, 2) 1

u(2, 3) -1

u(3, 3) 1

Key

f (y) ⇐ HMM Alignment g(z) ⇐ HMM Alignment
Y ⇐ English-to-French model Z ⇐ French-to-English model
y(i , j) = 1 if French word i aligns to English word j

English-to-French

y∗ = argmax
y∈Y

(f (y) +
∑

i,j

u(i , j)y(i , j))

French-to-English

z∗ = argmax
z∈Z

(g(z)−
∑

i,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(3, 2) -1

u(2, 2) 1

u(2, 3) -1

u(3, 3) 1

Key

f (y) ⇐ HMM Alignment g(z) ⇐ HMM Alignment
Y ⇐ English-to-French model Z ⇐ French-to-English model
y(i , j) = 1 if French word i aligns to English word j

English-to-French

y∗ = argmax
y∈Y

(f (y) +
∑

i,j

u(i , j)y(i , j))

French-to-English

z∗ = argmax
z∈Z

(g(z)−
∑

i,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(3, 2) -1

u(2, 2) 1

u(2, 3) -1

u(3, 3) 1

Key

f (y) ⇐ HMM Alignment g(z) ⇐ HMM Alignment
Y ⇐ English-to-French model Z ⇐ French-to-English model
y(i , j) = 1 if French word i aligns to English word j

English-to-French

y∗ = argmax
y∈Y

(f (y) +
∑

i,j

u(i , j)y(i , j))

French-to-English

z∗ = argmax
z∈Z

(g(z)−
∑

i,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(3, 2) -1

u(2, 2) 1

u(2, 3) -1

u(3, 3) 1

Key

f (y) ⇐ HMM Alignment g(z) ⇐ HMM Alignment
Y ⇐ English-to-French model Z ⇐ French-to-English model
y(i , j) = 1 if French word i aligns to English word j

English-to-French

y∗ = argmax
y∈Y

(f (y) +
∑

i,j

u(i , j)y(i , j))

French-to-English

z∗ = argmax
z∈Z

(g(z)−
∑

i,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j
Iteration 1

u(3, 2) -1

u(2, 2) 1

u(2, 3) -1

u(3, 3) 1

Key

f (y) ⇐ HMM Alignment g(z) ⇐ HMM Alignment
Y ⇐ English-to-French model Z ⇐ French-to-English model
y(i , j) = 1 if French word i aligns to English word j

English-to-French

y∗ = argmax
y∈Y

(f (y) +
∑

i,j

u(i , j)y(i , j))

French-to-English

z∗ = argmax
z∈Z

(g(z)−
∑

i,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j
Iteration 1

u(3, 2) -1

u(2, 2) 1

u(2, 3) -1

u(3, 3) 1

Key

f (y) ⇐ HMM Alignment g(z) ⇐ HMM Alignment
Y ⇐ English-to-French model Z ⇐ French-to-English model
y(i , j) = 1 if French word i aligns to English word j

English-to-French

y∗ = argmax
y∈Y

(f (y) +
∑

i,j

u(i , j)y(i , j))

French-to-English

z∗ = argmax
z∈Z

(g(z)−
∑

i,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j
Iteration 1

u(3, 2) -1

u(2, 2) 1

u(2, 3) -1

u(3, 3) 1

Key

f (y) ⇐ HMM Alignment g(z) ⇐ HMM Alignment
Y ⇐ English-to-French model Z ⇐ French-to-English model
y(i , j) = 1 if French word i aligns to English word j

English-to-French

y∗ = argmax
y∈Y

(f (y) +
∑

i,j

u(i , j)y(i , j))

French-to-English

z∗ = argmax
z∈Z

(g(z)−
∑

i,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j
Iteration 1

u(3, 2) -1

u(2, 2) 1

u(2, 3) -1

u(3, 3) 1

Key

f (y) ⇐ HMM Alignment g(z) ⇐ HMM Alignment
Y ⇐ English-to-French model Z ⇐ French-to-English model
y(i , j) = 1 if French word i aligns to English word j

English-to-French

y∗ = argmax
y∈Y

(f (y) +
∑

i,j

u(i , j)y(i , j))

French-to-English

z∗ = argmax
z∈Z

(g(z)−
∑

i,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j
Iteration 1

u(3, 2) -1

u(2, 2) 1

u(2, 3) -1

u(3, 3) 1

Key

f (y) ⇐ HMM Alignment g(z) ⇐ HMM Alignment
Y ⇐ English-to-French model Z ⇐ French-to-English model
y(i , j) = 1 if French word i aligns to English word j

MAP problem in Markov random fields

given: binary variables x1 . . . xn

goal: MAP problem

arg max
x1...xn

∑

(i ,j)∈E
fi ,j(xi , xj)

where each fi ,j(xi , xj) is a local potential for variables xi , xj

Dual decomposition for MRFs (Komodakis et al., 2010)

+

goal:

arg max
x1...xn

∑

(i ,j)∈E
fi ,j(xi , xj)

equivalent formulation:

arg max
x1...xn,y1...yn

∑

(i ,j)∈T1

f ′i ,j(xi , xj) +
∑

(i ,j)∈T2

f ′i ,j(yi , yj)

such that for i = 1 . . . n,
xi = yi

Lagrangian:

L(u, x , y) =
∑

(i ,j)∈T1

f ′i ,j(xi , xj) +
∑

(i ,j)∈T2

f ′i ,j(yi , yj) +
∑

i

ui (xi − yi)

4. Practical issues

aim: overview of practical dual decomposition techniques

• tracking the progress of the algorithm

• choice of update rate αk

• lazy update of dual solutions

• extracting solutions if algorithm does not converge

Optimization tracking

at each stage of the algorithm there are several useful values

track:

• y (k), z(k) are current dual solutions

• L(u(k)) is the current dual value

• y (k), l(y (k)) is a potential primal feasible solution

• f (y (k)) + g(l(y (k))) is the potential primal value

Tracking example

-19

-18

-17

-16

-15

-14

-13

 0 10 20 30 40 50 60

V
al

ue

Round

Current Primal
Current Dual

example run from syntactic machine translation (later in talk)

• current primal
f (y (k)) + g(l(y (k)))

• current dual
L(u(k))

Optimization progress

useful signals:

• L(u(k))− L(u(k−1)) is the dual change (may be positive)

• min
k

L(u(k)) is the best dual value (tightest upper bound)

• max
k

f (y (k)) + g(l(y (k))) is the best primal value

the optimal value must be between the best dual and primal values

Progress example

-19

-18

-17

-16

-15

-14

-13

 0 10 20 30 40 50 60

V
al

ue

Round

Best Primal
Best Dual

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60

V
al

ue

Round

Gap

best primal

max
k

f (y (k)) + g(l(y (k)))

best dual

min
k

L(u(k))

gap

min
k

L(uk) −

max
k

f (y (k)) + g(l(y (k))

Update rate

choice of αk has important practical consequences

• αk too high causes dual value to fluctuate

• αk too low means slow progress

-16

-15.5

-15

-14.5

-14

-13.5

-13

 0 5 10 15 20 25 30 35 40

V
al

ue

Round

0.01
0.005

0.0005

Update rate

practical: find a rate that is robust to varying inputs

• αk = c (constant rate) can be very fast, but hard to find
constant that works for all problems

• αk =
c

k
(decreasing rate) often cuts rate too aggressively,

lowers value even when making progress
• rate based on dual progress

I αk =
c

t + 1
where t < k is number of iterations where dual

value increased
I robust in practice, reduces rate when dual value is fluctuating

Lazy decoding

idea: don’t recompute y (k) or z(k) from scratch each iteration

lazy decoding: if subgradient u(k) is sparse, then y (k) may be
very easy to compute from y (k−1)

use:

• helpful if y or z factor naturally into independent components

• can be important for fast decompositions

Lazy decoding example

recall corpus-level tagging
example

at this iteration, only
sentence 2 receives a
weight update

with lazy decoding

Y
(k)
1 ← Y

(k−1)
1

Y
(k)
3 ← Y

(k−1)
3

Lazy decoding results

lazy decoding is critical for the efficiency of some applications

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000

%
 o

f H
ea

d
A

ut
om

at
a

R
ec

om
pu

te
d

Iterations of Dual Decomposition

% recomputed, g+s
% recomputed, sib

recomputation statistics for non-projective dependency parsing

Approximate solution

upon agreement the solution is exact, but this may not occur

otherwise, there is an easy way to find an approximate solution

choose: the structure y (k
′) where

k ′ = arg max
k

f (y (k)) + g(l(y (k)))

is the iteration with the best primal score

guarantee: the solution yk
′

is non-optimal by at most

(min
k

L(uk))− (f (y (k
′)) + g(l(y (k

′))))

there are other methods to estimate solutions, for instance by
averaging solutions (see ?)

Choosing best solution

-30

-25

-20

-15

-10

-5

 0

 0 10 20 30 40 50 60 70

V
al

ue

Round

Best Primal

Current Primal
Current Dual

non-exact example from syntactic translation

best approximate primal solution occurs at iteration 63

Early stopping results

early stopping results for constituency and dependency parsing

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

P
er

ce
nt

ag
e

Maximum Number of Dual Decomposition Iterations

f score
% certificates

% match K=50

Early stopping results

early stopping results for non-projective dependency parsing

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000

P
er

ce
nt

ag
e

Maximum Number of Dual Decomposition Iterations

% validation UAS
% certificates

% match K=5000

Phrase-Based Translation

define:

I source-language sentence words x1, . . . , xN
I phrase translation p = (s, e, t)

I translation derivation y = p1, . . . , pL

example:

x1 x2 x3 x4 x5 x6

p1 p2 p3 p4

das muss unsere sorge gleichermaßen sein

y = {(1, 2, this must), (5, 5, also), (6, 6, be), (3, 4, our concern)}

Phrase-Based Translation

define:

I source-language sentence words x1, . . . , xN
I phrase translation p = (s, e, t)

I translation derivation y = p1, . . . , pL

example:

x1 x2 x3 x4 x5 x6

p1

das muss unsere sorge gleichermaßen sein

this must

y = {(1, 2, this must), (5, 5, also), (6, 6, be), (3, 4, our concern)}

Phrase-Based Translation

define:

I source-language sentence words x1, . . . , xN
I phrase translation p = (s, e, t)

I translation derivation y = p1, . . . , pL

example:

x1 x2 x3 x4 x5 x6

p1 p2

das muss unsere sorge gleichermaßen sein

this must also

y = {(1, 2, this must), (5, 5, also), (6, 6, be), (3, 4, our concern)}

Phrase-Based Translation

define:

I source-language sentence words x1, . . . , xN
I phrase translation p = (s, e, t)

I translation derivation y = p1, . . . , pL

example:

x1 x2 x3 x4 x5 x6

p1 p2 p3

das muss unsere sorge gleichermaßen sein

this must also be

y = {(1, 2, this must), (5, 5, also), (6, 6, be), (3, 4, our concern)}

Phrase-Based Translation

define:

I source-language sentence words x1, . . . , xN
I phrase translation p = (s, e, t)

I translation derivation y = p1, . . . , pL

example:

x1 x2 x3 x4 x5 x6

p1 p2 p3 p4

das muss unsere sorge gleichermaßen sein

this must our concernalso be

y = {(1, 2, this must), (5, 5, also), (6, 6, be), (3, 4, our concern)}

Phrase-Based Translation

define:

I source-language sentence words x1, . . . , xN
I phrase translation p = (s, e, t)

I translation derivation y = p1, . . . , pL

example:

x1 x2 x3 x4 x5 x6

p1 p2 p3 p4

das muss unsere sorge gleichermaßen sein

this must our concernalso be

y = {(1, 2, this must), (5, 5, also), (6, 6, be), (3, 4, our concern)}

Phrase-Based Translation

define:

I source-language sentence words x1, . . . , xN
I phrase translation p = (s, e, t)

I translation derivation y = p1, . . . , pL

example:

x1 x2 x3 x4 x5 x6

p1 p2 p3 p4

das muss unsere sorge gleichermaßen sein

this must our concernalso be

y = {(1, 2, this must), (5, 5, also), (6, 6, be), (3, 4, our concern)}

Scoring Derivations

derivation:

y = {(1, 2, this must), (5, 5, also), (6, 6, be), (3, 4, our concern)}
x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

this must our concernalso be

2

objective:

f (y) = h(e(y)) +
L∑

k=1

g(pk) +
L−1∑

k=1

η|t(pk) + 1− s(pk+1)|

I language model score h

I phrase translation score g

I distortion penalty η

Scoring Derivations

derivation:

y = {(1, 2, this must), (5, 5, also), (6, 6, be), (3, 4, our concern)}
x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

this must our concernalso be

2

objective:

f (y) = h(e(y)) +
L∑

k=1

g(pk) +
L−1∑

k=1

η|t(pk) + 1− s(pk+1)|

I language model score h

I phrase translation score g

I distortion penalty η

Scoring Derivations

derivation:

y = {(1, 2, this must), (5, 5, also), (6, 6, be), (3, 4, our concern)}
x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

this must our concernalso be

2

objective:

f (y) = h(e(y)) +
L∑

k=1

g(pk) +
L−1∑

k=1

η|t(pk) + 1− s(pk+1)|

I language model score h

I phrase translation score g

I distortion penalty η

Scoring Derivations

derivation:

y = {(1, 2, this must), (5, 5, also), (6, 6, be), (3, 4, our concern)}
x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

this must our concernalso be

22

objective:

f (y) = h(e(y)) +
L∑

k=1

g(pk) +
L−1∑

k=1

η|t(pk) + 1− s(pk+1)|

I language model score h

I phrase translation score g

I distortion penalty η

Relaxed Problem

Y ′: only requires the total number of words translated to be N

Y ′ ={y :
N∑

i=1

y(i) = N and the distortion limit d is satisfied}

example:

y(i) 0 1 2 2 0 1
sum−−−→ 6

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

our concern our concernmust be

(3, 4, our concern)(2, 2,must)(6, 6, be)(3, 4, our concern)

Relaxed Problem

Y ′: only requires the total number of words translated to be N

Y ′ ={y :
N∑

i=1

y(i) = N and the distortion limit d is satisfied}

example:

y(i) 0 1 2 2 0 1
sum−−−→ 6

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

our concern our concernmust be

(3, 4, our concern)(2, 2,must)(6, 6, be)(3, 4, our concern)

Relaxed Problem

Y ′: only requires the total number of words translated to be N

Y ′ ={y :
N∑

i=1

y(i) = N and the distortion limit d is satisfied}

example:

y(i) 0 1 2 2 0 1
sum−−−→ 6

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

our concern our concernmust be

(3, 4, our concern)(2, 2,must)(6, 6, be)(3, 4, our concern)

Relaxed Problem

Y ′: only requires the total number of words translated to be N

Y ′ ={y :
N∑

i=1

y(i) = N and the distortion limit d is satisfied}

example:

y(i) 0 1 2 2 0 1
sum−−−→ 6

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

our concern our concernmust be

(3, 4, our concern)(2, 2,must)(6, 6, be)(3, 4, our concern)

Lagrangian Relaxation Method

original:
arg max

y∈Y
f (y)

︸ ︷︷ ︸
exact DP is NP-hard

Y = {y : y(i) = 1 ∀i = 1 . . .N} 1 1 . . . 1

rewrite:

arg max
y∈Y ′

f (y)

︸ ︷︷ ︸
can be solved efficiently by DP

such that y(i) = 1 ∀i = 1 . . .N︸ ︷︷ ︸
using Lagrangian relaxation

Y ′ = {y :
∑N

i=1 y(i) = N} 2 0 . . . 1︸ ︷︷ ︸
sum to N

Lagrangian Relaxation Method

original:
arg max

y∈Y
f (y)

︸ ︷︷ ︸
exact DP is NP-hard

Y = {y : y(i) = 1 ∀i = 1 . . .N} 1 1 . . . 1

rewrite:

arg max
y∈Y ′

f (y)

︸ ︷︷ ︸
can be solved efficiently by DP

such that y(i) = 1 ∀i = 1 . . .N︸ ︷︷ ︸
using Lagrangian relaxation

Y ′ = {y :
∑N

i=1 y(i) = N} 2 0 . . . 1︸ ︷︷ ︸
sum to N

Lagrangian Relaxation Method

original:
arg max

y∈Y
f (y)

︸ ︷︷ ︸
exact DP is NP-hard

Y = {y : y(i) = 1 ∀i = 1 . . .N} 1 1 . . . 1

rewrite:

arg max
y∈Y ′

f (y)

︸ ︷︷ ︸
can be solved efficiently by DP

such that y(i) = 1 ∀i = 1 . . .N︸ ︷︷ ︸
using Lagrangian relaxation

Y ′ = {y :
∑N

i=1 y(i) = N} 2 0 . . . 1︸ ︷︷ ︸
sum to N

Lagrangian Relaxation Method

original:
arg max

y∈Y
f (y)

︸ ︷︷ ︸
exact DP is NP-hard

Y = {y : y(i) = 1 ∀i = 1 . . .N} 1 1 . . . 1

rewrite:

arg max
y∈Y ′

f (y)

︸ ︷︷ ︸
can be solved efficiently by DP

such that y(i) = 1 ∀i = 1 . . .N︸ ︷︷ ︸
using Lagrangian relaxation

Y ′ = {y :
∑N

i=1 y(i) = N} 2 0 . . . 1︸ ︷︷ ︸
sum to N

Lagrangian Relaxation Method

original:
arg max

y∈Y
f (y)

︸ ︷︷ ︸
exact DP is NP-hard

Y = {y : y(i) = 1 ∀i = 1 . . .N} 1 1 . . . 1

rewrite:

arg max
y∈Y ′

f (y)

︸ ︷︷ ︸
can be solved efficiently by DP

such that y(i) = 1 ∀i = 1 . . .N︸ ︷︷ ︸
using Lagrangian relaxation

Y ′ = {y :
∑N

i=1 y(i) = N} 2 0 . . . 1︸ ︷︷ ︸
sum to N

Algorithm

Iteration 1:

I update u(i): u(i)← u(i)− α(y(i)− 1)

α = 1

u(i) 0 0 0 0 0 0

y(i) 0 1 2 2 0 1
update

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

Algorithm

Iteration 1:

I update u(i): u(i)← u(i)− α(y(i)− 1)

α = 1

u(i) 0 0 0 0 0 0

y(i) 0 1 2 2 0 1
update

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

our concern our concernmust be

Algorithm

Iteration 1:

I update u(i): u(i)← u(i)− α(y(i)− 1)

α = 1

u(i) 1 0 −1 −1 1 0

y(i) 0 1 2 2 0 1
update

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

our concern our concernmust be

Algorithm

Iteration 2:

I update u(i): u(i)← u(i)− α(y(i)− 1)

α = 0.5

u(i) 1 0 −1 −1 1 0

y(i) 1 2 0 0 2 1
update

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

Algorithm

Iteration 2:

I update u(i): u(i)← u(i)− α(y(i)− 1)

α = 0.5

u(i) 1 0 −1 −1 1 0

y(i) 1 2 0 0 2 1
update

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

this must be equally must equally

Algorithm

Iteration 2:

I update u(i): u(i)← u(i)− α(y(i)− 1)

α = 0.5

u(i) 1 −0.5 −0.5 −0.5 0.5 0

y(i) 1 2 0 0 2 1
update

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

this must be equally must equally

Algorithm

Iteration 3:

I update u(i): u(i)← u(i)− α(y(i)− 1)

α = 0.5

u(i) 1 −0.5 −0.5 −0.5 0.5 0

y(i)
update

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

Algorithm

Iteration 3:

I update u(i): u(i)← u(i)− α(y(i)− 1)

α = 0.5

u(i) 1 −0.5 −0.5 −0.5 0.5 0

y(i) 1 1 1 1 1 1
update

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

this must our concernalso be

Tightening the Relaxation

In some cases, we never reach y(i) = 1 for i = 1 . . .N

If dual L(u) is not decreasing fast enough

run for 10 more iterations

count number of times each constraint is violated

add 3 most often violated constraints

Tightening the Relaxation

Iteration 41:

count(i) 0 0 0 0 1 1

y(i) 1 1 1 1 2 0

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

this must also our concern equally

Add 2 hard constraints (x5, x6) to the dynamic program

Tightening the Relaxation

Iteration 42:

count(i) 0 0 0 0 2 2

y(i) 1 1 1 1 0 2

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

this must be our concern is

Add 2 hard constraints (x5, x6) to the dynamic program

Tightening the Relaxation

Iteration 43:

count(i) 0 0 0 0 3 3

y(i) 1 1 1 1 2 0

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

this must also our concern equally

Add 2 hard constraints (x5, x6) to the dynamic program

Tightening the Relaxation

Iteration 44:

count(i) 0 0 0 0 4 4

y(i) 1 1 1 1 0 2

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

this must be our concern is

Add 2 hard constraints (x5, x6) to the dynamic program

Tightening the Relaxation

Iteration 50:

count(i) 0 0 0 0 10 10

y(i) 1 1 1 1 2 0

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

this must also our concern equally

Add 2 hard constraints (x5, x6) to the dynamic program

Tightening the Relaxation

Iteration 51:

count(i) 0

y(i) 1 1

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

this must our concernalso be

Add 2 hard constraints (x5, x6) to the dynamic program

Tightening the Relaxation

Iteration 51:

count(i) 0

y(i) 1 11 1 1 1

x1 x2 x3 x4 x5 x6

das muss unsere sorge gleichermaßen sein

this must our concernalso be

Add 2 hard constraints (x5, x6) to the dynamic program

Experiments: German to English

I Europarl data: German to English

I Test on 1,824 sentences with length 1-50 words

I Converged: 1,818 sentences (99.67%)

Experiments: Number of Iterations

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

P
er

ce
nt

ag
e

Maximum Number of Lagrangian Relexation Iterations

1-10 words
11-20 words
21-30 words
31-40 words
41-50 words

all

Experiments: Number of Hard Constraints Required

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

Number of Hard Constraints Added

1-10 words
11-20 words
21-30 words
31-40 words
41-50 words

all

Experiments: Mean Time in Seconds

words 1-10 11-20 21-30 31-40 41-50 All

mean 0.8 10.9 57.2 203.4 679.9 120.9
median 0.7 8.9 48.3 169.7 484.0 35.2

Comparison to ILP Decoding

(sec.) (sec.)

1-10 275.2 132.9
11-15 2,707.8 1,138.5
16-20 20,583.1 3,692.6

Higher-order non-projective dependency parsing

setup: given a model for higher-order non-projective dependency
parsing (sibling features)

problem: find non-projective dependency parse that maximizes the
score of this model

difficulty:

• model is NP-hard to decode

• complexity of the model comes from enforcing combinatorial
constraints

strategy: design a decomposition that separates combinatorial
constraints from direct implementation of the scoring function

Non-Projective Dependency Parsing

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Important problem in many languages.

Problem is NP-Hard for all but the simplest models.

Dual Decomposition

A classical technique for constructing decoding algorithms.

Solve complicated models

y∗ = arg max
y

f (y)

by decomposing into smaller problems.

Upshot: Can utilize a toolbox of combinatorial algorithms.

I Dynamic programming

I Minimum spanning tree

I Shortest path

I Min-Cut

I ...

Non-Projective Dependency Parsing

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

I Starts at the root symbol *

I Each word has a exactly one parent word

I Produces a tree structure (no cycles)

I Dependencies can cross

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) =

score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2)

+score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4)

+score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) =

score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1)

+score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Thought Experiment: Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment: Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment: Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment: Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment: Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment: Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid TreesAll Possible

Sibling Arc-Factored

Constraint

Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid TreesAll Possible

Sibling Arc-Factored

Constraint

Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid Trees

All Possible

Sibling Arc-Factored

Constraint

Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid TreesAll Possible

Sibling Arc-Factored

Constraint

Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid TreesAll Possible

Sibling

Arc-Factored

Constraint

Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid TreesAll Possible

Sibling Arc-Factored

Constraint

Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid TreesAll Possible

Sibling Arc-Factored

Constraint

Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k = 1 to K

z(k) ← Decode (f (z) + penalty) by Individual Decoding

y (k) ← Decode (g(y)− penalty) by Minimum Spanning Tree

If y (k)(i , j) = z(k)(i , j) for all i , j Return (y (k), z(k))

Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k = 1 to K

z(k) ← Decode (f (z) + penalty) by Individual Decoding

y (k) ← Decode (g(y)− penalty) by Minimum Spanning Tree

If y (k)(i , j) = z(k)(i , j) for all i , j Return (y (k), z(k))

Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k = 1 to K

z(k) ← Decode (f (z) + penalty) by Individual Decoding

y (k) ← Decode (g(y)− penalty) by Minimum Spanning Tree

If y (k)(i , j) = z(k)(i , j) for all i , j Return (y (k), z(k))

Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k = 1 to K

z(k) ← Decode (f (z) + penalty) by Individual Decoding

y (k) ← Decode (g(y)− penalty) by Minimum Spanning Tree

If y (k)(i , j) = z(k)(i , j) for all i , j Return (y (k), z(k))

Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k = 1 to K

z(k) ← Decode (f (z) + penalty) by Individual Decoding

y (k) ← Decode (g(y)− penalty) by Minimum Spanning Tree

If y (k)(i , j) = z(k)(i , j) for all i , j Return (y (k), z(k))

Else Update penalty weights based on y (k)(i , j)− z(k)(i , j)

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑

i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑

i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑

i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑

i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑

i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑

i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑

i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑

i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑

i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑

i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑

i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑

i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑

i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑

i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑

i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑

i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑

i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑

i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑

i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑

i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑

i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑

i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑

i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑

i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Guarantees

Theorem
If at any iteration y (k) = z(k), then (y (k), z(k)) is the global

optimum.

In experiments, we find the global optimum on 98% of examples.

If we do not converge to a match, we can still return an
approximate solution (more in the paper).

Guarantees

Theorem
If at any iteration y (k) = z(k), then (y (k), z(k)) is the global

optimum.

In experiments, we find the global optimum on 98% of examples.

If we do not converge to a match, we can still return an
approximate solution (more in the paper).

Extensions

I Grandparent Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) =...+ score(gp =∗0, head = saw2, prev =movie4,mod =today5)

I Head Automata (Eisner, 2000)

Generalization of Sibling models

Allow arbitrary automata as local scoring function.

Experiments
Properties:

I Exactness

I Parsing Speed

I Parsing Accuracy

I Comparison to Individual Decoding

I Comparison to LP/ILP

Training:
I Averaged Perceptron (more details in paper)

Experiments on:

I CoNLL Datasets

I English Penn Treebank

I Czech Dependency Treebank

How often do we exactly solve the problem?

 90

 92

 94

 96

 98

 100

Cze
Eng

Dan
Dut

Por
Slo

Swe
Tur

I Percentage of examples where the dual decomposition finds
an exact solution.

Parsing Speed

 0

 10

 20

 30

 40

 50

Cze
Eng

Dan
Dut

Por
Slo

Swe
Tur

Sibling model

 0

 5

 10

 15

 20

 25

Cze
Eng

Dan
Dut

Por
Slo

Swe
Tur

Grandparent model

I Number of sentences parsed per second

I Comparable to dynamic programming for projective parsing

Accuracy

Arc-Factored Prev Best Grandparent

Dan 89.7 91.5 91.8
Dut 82.3 85.6 85.8
Por 90.7 92.1 93.0
Slo 82.4 85.6 86.2
Swe 88.9 90.6 91.4
Tur 75.7 76.4 77.6
Eng 90.1 — 92.5
Cze 84.4 — 87.3

Prev Best - Best reported results for CoNLL-X data set, includes

I Approximate search (McDonald and Pereira, 2006)

I Loop belief propagation (Smith and Eisner, 2008)

I (Integer) Linear Programming (Martins et al., 2009)

Comparison to Subproblems

 88

 89

 90

 91

 92

 93

Eng

Individual
MST
Dual

F1 for dependency accuracy

Comparison to LP/ILP

Martins et al.(2009): Proposes two representations of
non-projective dependency parsing as a linear programming
relaxation as well as an exact ILP.

I LP (1)
I LP (2)
I ILP

Use an LP/ILP Solver for decoding

We compare:

I Accuracy
I Exactness
I Speed

Both LP and dual decomposition methods use the same model,
features, and weights w .

Comparison to LP/ILP: Accuracy

 80

 85

 90

 95

 100
LP(1)
LP(2)

ILP
Dual

Dependency Accuracy

I All decoding methods have comparable accuracy

Comparison to LP/ILP: Exactness and Speed

 80

 85

 90

 95

 100
LP(1)
LP(2)

ILP
Dual

Percentage with exact solution

 0

 2

 4

 6

 8

 10

 12

 14
LP(1)
LP(2)

ILP
Dual

Sentences per second

Summary

presented Lagrangian relaxation as a method for decoding in NLP

formal guarantees

• gives certificate or approximate solution

• can improve approximate solutions by tightening relaxation

efficient algorithms

• uses fast combinatorial algorithms

• can improve speed with lazy decoding

widely applicable

• demonstrated algorithms for a wide range of NLP tasks
(parsing, tagging, alignment, mt decoding)

References I

Y. Chang and M. Collins. Exact Decoding of Phrase-based
Translation Models through Lagrangian Relaxation. In To
appear proc. of EMNLP, 2011.

J. DeNero and K. Macherey. Model-Based Aligner Combination
Using Dual Decomposition. In Proc. ACL, 2011.

J. Duchi, D. Tarlow, G. Elidan, and D. Koller. Using Combinatorial
Optimization within Max-Product Belief Propagation. In NIPS,
pages 369–376, 2007.

D. Klein and C.D. Manning. Factored A* Search for Models over
Sequences and Trees. In Proc IJCAI, volume 18, pages
1246–1251. Citeseer, 2003.

N. Komodakis, N. Paragios, and G. Tziritas. Mrf energy
minimization and beyond via dual decomposition. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2010. ISSN 0162-8828.

References II
Terry Koo, Alexander M. Rush, Michael Collins, Tommi Jaakkola,

and David Sontag. Dual decomposition for parsing with
non-projective head automata. In EMNLP, 2010. URL
http://www.aclweb.org/anthology/D10-1125.

B.H. Korte and J. Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer Verlag, 2008.

A.M. Rush and M. Collins. Exact Decoding of Syntactic
Translation Models through Lagrangian Relaxation. In Proc.
ACL, 2011.

A.M. Rush, D. Sontag, M. Collins, and T. Jaakkola. On Dual
Decomposition and Linear Programming Relaxations for Natural
Language Processing. In Proc. EMNLP, 2010.

D.A. Smith and J. Eisner. Dependency Parsing by Belief
Propagation. In Proc. EMNLP, pages 145–156, 2008. URL
http://www.aclweb.org/anthology/D08-1016.

http://www.aclweb.org/anthology/D10-1125
http://www.aclweb.org/anthology/D08-1016

	References

